
Multiparty Session Types

Recap Motivation Processes Global Types Projection Typing Conclusion

Recap

We learnt about binary session types:

▶ Syntax of expressions, processes, and binary sessions.

▶ Operational semantics of binary sessions.

▶ Syntax of session types.

▶ Typing rules for expressions, processes, and binary sessions.

▶ Type safety theorems (Preservation and Progress).

2 / 41

Recap Motivation Processes Global Types Projection Typing Conclusion

From Binary to Multiparty

Recall we defined previously in the syntax:

p ::= Alice | Bob Participant
P ,Q ::= p ⟨e⟩.P Message Send

| p (x).P Message Receive
| p ▷ {li : Pi}i∈I Branching
| p ◁ l.P Selection
| · · · · · ·

To extend our calculus to Multiparty, we need more participants:

p ::= Alice | Bob | Carol | · · · Participant

But is only extending participants enough?

3 / 41

Recap Motivation Processes Global Types Projection Typing Conclusion

Well-typed Session

In binary session types, we have the syntax for binary session:

M ::= p :: P
∣∣ q :: Q Binary Composition

and the typing rule:

[MTy]
· ⊢ P : S · ⊢ Q : S

⊢ Alice :: P
∣∣ Bob :: Q

We also need to extend the syntax of M.

4 / 41

Recap Motivation Processes Global Types Projection Typing Conclusion

Duality Revisited

We previously defined Duality:

Alice† = Bob Bob† = Alice

end = end

p ! [U];S = q?[U];S

p?[U];S = q ! [U];S
· · ·

where q = p†.

How do we define † beyond duality?

5 / 41

Recap Motivation Processes Global Types Projection Typing Conclusion

Travel Agency

Two Travellers

Alice Agency Bob

order

quote

quote

amount

reject

purchase?

accept

amount

purchase?

alt [1]

[2]

We can have two travellers, since there can be more than
two participants.

We could decompose the protocol into two binary sessions,
but . . .

▶ Causal dependencies in messages cannot be expressed.

▶ n participants have up to O(n2) decomposed sessions.

▶ Moreover . . .

6 / 41

Recap Motivation Processes Global Types Projection Typing Conclusion

Pairwise Duality Revisited

Suppose

PAlice = Carol (x).Bob ⟨x⟩.0 : Carol?[int];Bob ! [int]; end
PBob = Alice (x).Carol ⟨x⟩.0 : Alice?[int];Carol ! [int]; end
PCarol = Bob (x).Alice ⟨x⟩.0 : Bob?[int];Alice ! [int]; end

Pairwise, binary sessions have dual types.

Composing together, the multiparty session is stuck.

7 / 41

Recap Motivation Processes Global Types Projection Typing Conclusion

A New Methodology

When we draw the sequence diagram, we consider a global scenario.
(Global Types)

Each role can then find out their role in the global scenario.
(Local Types)

Each role can implement their own processes, independent of each other, according to
their role in the global scenario.
(Local Processes)

8 / 41

Recap Motivation Processes Global Types Projection Typing Conclusion

Diagrammatically ...

Global Type G

Local Type S1
. . . Local Type Sn

Local Process P1
. . . Local Process Pn

Projection

Typecheck

9 / 41

Recap Motivation Processes Global Types Projection Typing Conclusion

Syntax

As discussed previously, we extend the alphabet for participants beyond Alice and
Bob, and use the same syntax for processes.

We re-define the syntax of session:

M,M′ ::= p :: P Single Process
| M

∣∣ M′ Parallel Composition

We write
∏

i∈I pi :: Pi as the short hand notation for p1 :: P1

∣∣ · · · ∣∣ pn :: Pn for
I = {1, · · · , n}.

10 / 41

Recap Motivation Processes Global Types Projection Typing Conclusion

Structural Congruence

We adapt the usual π-calculus structural congruence rules for parallel composition into
our multiparty session syntax:

M
∣∣ M′ ≡ M′ ∣∣ M [Cm-Comm]

M1

∣∣ (M2

∣∣ M3) ≡ (M1

∣∣ M2)
∣∣ M3 [Cm-Assoc]

p :: 0
∣∣ M ≡ M [Cm-Inact]

P ≡ P ′ =⇒ p :: P
∣∣ M ≡ p :: P ′ ∣∣ M [Cm-Ctx]

11 / 41

Recap Motivation Processes Global Types Projection Typing Conclusion

Operational Semantics

[R-Com]
e ↓ v p ̸= q

p :: q ⟨e⟩.P
∣∣ q :: p (x).Q

∣∣ M −→ p :: P
∣∣ q :: Q[v/x]

∣∣ M
[R-Label]

∃j ∈ I.lj = l p ̸= q

p :: q ◁ l.P
∣∣ q :: p ▷ {li : Qi}i∈I

∣∣ M −→ p :: P
∣∣ q :: Qj

∣∣ M
[R-IfTrue]

e ↓ true

p :: if e then P else Q
∣∣ M −→ p :: P

∣∣ M
[R-IfFalse]

e ↓ false

p :: if e then P else Q
∣∣ M −→ p :: Q

∣∣ M
[R-Cong]

M1 ≡ M
′
1 M

′
1 −→ M

′
2 M

′
2 ≡ M2

M1 −→ M2

12 / 41

Recap Motivation Processes Global Types Projection Typing Conclusion

Old Travel Agency Still Works!

Alice :: PAlice

∣∣ Bob :: PBob is still in valid syntax of multiparty sessions.
Binary sessions are subsumed by multiparty sessions.

13 / 41

Recap Motivation Processes Global Types Projection Typing Conclusion

What is a global type?

A global type describes the global communication behaviour between a number of
participants, providing a bird’s eye view.

14 / 41

Recap Motivation Processes Global Types Projection Typing Conclusion

Syntax

G ::= end Termination
| p → q : [U];G Message
| p → q {li : Gi}i∈I Branching
| µt.G Recursive Type
| t Type Variable

15 / 41

Recap Motivation Processes Global Types Projection Typing Conclusion

Travel Agency in Global Types

A global type for the travel agency protocol can be:

Alice → Bob : [string];
Bob → Alice : [int];

Alice → Bob


accept :
Alice → Bob : [string];
Bob → Alice : [string];
end

reject : end



Travel agency

Customer Agency

order

quote

accept

address

date

reject

alt [1]

[2]

16 / 41

Recap Motivation Processes Global Types Projection Typing Conclusion

Try it Yourself: Better Travel Agency

Give the global type for the better travel agency.

Better Travel agency

Customer Agency

order

quote

accept

address

date

retry

Restart from
the top

reject

alt [1]

[2]

[3]

17 / 41

Recap Motivation Processes Global Types Projection Typing Conclusion

Try it Yourself: Two Travellers

Give the global type for the two travellers.

Two Travellers

Alice Agency Bob

order

quote

quote

amount

reject

purchase?

accept

amount

purchase?

alt [1]

[2]

18 / 41

Recap Motivation Processes Global Types Projection Typing Conclusion

Overview

Projection gives the local session types Sp for a participant p given a global protocol G.

We write G ↾ p as the projection of G to the participant p.

19 / 41

Recap Motivation Processes Global Types Projection Typing Conclusion

Intuition

To project a global type G to a participant p, the “relevant” interaction for p is
preserved.

p → q : [U]; · · · has a prefix that p sends a message to q of sort U .

▶ From the viewpoint of p, they send a message of sort U to q, hence their local
type should have a prefix q ! [U]; · · ·.

▶ From the viewpoint of q, they receive a message of sort U from p, hence their
local type should have a prefix p?[U]; · · ·.

▶ From the viewpoint of r, where r is another participant, this interaction is
unrelated to them.

20 / 41

Recap Motivation Processes Global Types Projection Typing Conclusion

Intuition

p → q {li : · · · }i∈I has a prefix that p sends a label among a set of labels to q.

▶ From the viewpoint of p, they take a branch among the set of labels to q, hence
their local type should have a prefix q⊕{li : · · · }i∈I .

▶ From the viewpoint of q, they offer branches among the set of labels from p,
hence their local type should have a prefix p&{li : · · · }i∈I .

▶ From the viewpoint of r, where r is another participant, what is the projection for
them . . .

21 / 41

Recap Motivation Processes Global Types Projection Typing Conclusion

Examples

We use a few examples to motivate the projection of branches to a participant not
involved in the branch.

p → q

{
yes : q → r : [int]; end
no : q → r : [int]; end

}

In the yes branch, r receives a message from q.
In the no branch, r also receives a message from q.

In either case, r receives a message from q, regardless of the label sent from p to q.

22 / 41

Recap Motivation Processes Global Types Projection Typing Conclusion

Examples

p → q

{
yes : q → p : [int];p → r : [int]; end
no : q → p : [string];p → r : [int]; end

}
In the yes branch, r receives a message of sort int from p.
In the no branch, r receives a message of sort int from p.

Regardless of what branch p has chosen, r can expect a message from p of sort int.

Therefore, the global type can be projected to r.

23 / 41

Recap Motivation Processes Global Types Projection Typing Conclusion

Examples

p → q

{
yes : q → r : [int]; end
no : end

}
In the yes branch, r receives a message from q.
In the no branch, r does nothing.

There is no way for r to know about the selection of p, which determines whether r
needs to wait for a message from q.

Therefore, the global type cannot be projected to r.

24 / 41

Recap Motivation Processes Global Types Projection Typing Conclusion

Examples

p → q

{
yes : r → q : [int]; end
no : r → q : [string]; end

}
In the yes branch, r sends a message of sort int to q.
In the no branch, r sends a message of sort string to q.

Whereas q may know the sort of the message to expect from r, r doesn’t learn the
choice made by p, and cannot always produce the correct sort according to the choice.

Therefore, the global type cannot be projected to r.

25 / 41

Recap Motivation Processes Global Types Projection Typing Conclusion

Plain Merge

When projecting a branch to a participant not involved, the continuations of global
protocol in each branch are projected, then merged to a single type.

We are aware not all session types can be merged.

In Plain Merging, we require that the projected session types to be identical, and they
merge to one session type.

Interested students can read the very gentle introduction paper to learn about full merging (available
in materials).

26 / 41

Recap Motivation Processes Global Types Projection Typing Conclusion

Some Auxiliary Definitions

We define pt(G) as the set of participants involved in the global type G.

pt(p → q : [U];G) = {p,q} ∪ pt(G)
pt(p → q {li : Gi}i∈I) = {p,q} ∪

⋃
i∈I pt(Gi)

pt(µt.G) = pt(G)
pt(t) = ∅

pt(end) = ∅

27 / 41

Recap Motivation Processes Global Types Projection Typing Conclusion

Projection, Formally

We define projection as follows:

p → q : [U];G ↾ r =


q ! [U];G ↾ r p = r
p?[U];G ↾ r q = r

G ↾ r otherwise

28 / 41

Recap Motivation Processes Global Types Projection Typing Conclusion

Projection, Formally

p → q {li : Gi}i∈I ↾ r =



q⊕{li : Gi ↾ r}i∈I p = r
p&{li : Gi ↾ r}i∈I q = r

Gi ↾ r(i∈I)

p ̸= r,q ̸= r
∀i, j ∈ I.
Gi ↾ r = Gj ↾ r

undefined otherwise

29 / 41

Recap Motivation Processes Global Types Projection Typing Conclusion

Projection, Formally

µt.G ↾ r =

{
end r /∈ pt(G) and µt.G is closed
µt.G ↾ r otherwise

t ↾ r = t
end ↾ r = end

30 / 41

Recap Motivation Processes Global Types Projection Typing Conclusion

Exercise: Projection

We begin with a global type with only two participants.

G =
Alice → Bob : [int];
Bob → Alice : [bool];
end

What is G ↾ Alice and G ↾ Bob?

G ↾ Alice = Bob ! [int];Bob?[bool]; end
G ↾ Bob = Alice?[int];Alice ! [bool]; end

Note that we have G ↾ Alice = G ↾ Bob (using binary duality)

31 / 41

Recap Motivation Processes Global Types Projection Typing Conclusion

Exercise: Projection

G =
Alice → Bob : [int];
Bob → Carol : [int];
end

What is G ↾ Alice, G ↾ Bob and G ↾ Carol?

G ↾ Alice = Bob ! [int]; end
G ↾ Bob = Alice?[int];Carol ! [bool]; end

G ↾ Carol = Bob?[bool]; end

Verify: If you only look at communication between Alice and Bob in the projection,
are they “dual” of each other?
(Similarly, for other pairs of roles)

32 / 41

Recap Motivation Processes Global Types Projection Typing Conclusion

Exercise: Projection

Are the following protocols projectable on Carol?

G1 = Alice → Bob

{
l1 : Bob → Carol : [int]; end
l2 : Bob → Carol : [string]; end

}

G2 = Alice → Bob

{
l1 : Bob → Carol : [int]; end
l2 : Bob → Alice : [int]; end

}

G3 = Alice → Bob

{
l1 : Bob → Carol {l1 : end}
l2 : Bob → Carol {l2 : end}

}

33 / 41

Recap Motivation Processes Global Types Projection Typing Conclusion

Travel Agency

G =

Alice → Bob : [string];
Bob → Alice : [int];

Alice → Bob


accept :
Alice → Bob : [string];
Bob → Alice : [string];
end

reject : end


G ↾ Alice =

Bob ! [string];Bob?[int];

Bob⊕


accept : Bob ! [string];

Bob?[string]; end
reject : end



Travel agency

Customer Agency

order

quote

accept

address

date

reject

alt [1]

[2]

34 / 41

Recap Motivation Processes Global Types Projection Typing Conclusion

Travel Agency

G =

Alice → Bob : [string];
Bob → Alice : [int];

Alice → Bob


accept :
Alice → Bob : [string];
Bob → Alice : [string];
end

reject : end


G ↾ Bob =

Alice?[string];Alice ! [int];

Alice&


accept : Alice?[string];

Alice ! [string]; end
reject : end



Travel agency

Customer Agency

order

quote

accept

address

date

reject

alt [1]

[2]

35 / 41

Recap Motivation Processes Global Types Projection Typing Conclusion

Try it Yourself: Two Travellers

Can you project this global type to 3 participants?

G =

Alice → Carol : [string];
Carol → Alice : [int];
Carol → Bob : [int];
Alice → Bob : [int];

Bob → Alice



accept :
Bob → Alice : [int];
Alice → Carol : [bool];
end

reject :
Alice → Carol : [bool];
end



Two Travellers

Alice Agency Bob

order

quote

quote

amount

reject

purchase?

accept

amount

purchase?

alt [1]

[2]

36 / 41

Recap Motivation Processes Global Types Projection Typing Conclusion

Try it Yourself: Two Travellers – Projections
G ↾ Alice = Carol ! [string];Carol?[int];

Bob ! [int];

Bob&


accept :
Bob?[int];
Carol ! [bool]; end

reject :
Carol ! [bool]; end


G ↾ Bob = Carol?[int];Alice?[int];

Alice⊕


accept :
Alice ! [int]; end

reject : end


G ↾ Carol = Alice?[string];Alice ! [int];

Bob ! [int];Alice?[bool]; end

Two Travellers

Alice Agency Bob

order

quote

quote

amount

reject

purchase?

accept

amount

purchase?

alt [1]

[2]

37 / 41

Recap Motivation Processes Global Types Projection Typing Conclusion

Try it Yourself: Travel Agency with Airlines
Write a global type for the diagram, and project the
global type to airlines.

Alice → Bob : [string];
Bob → Alice : [int];

Alice → Bob



accept :
Alice → Bob : [string];
Bob → Carol : [string];
Carol → Bob : [string];
Bob → Alice : [string];
end

reject : end


We cannot project the global type to airlines, because
we cannot merge the two branches.

Travel agency

Customer Agency Airline

order

quote

accept

address

destination

date

date

reject

alt [1]

[2]

38 / 41

Recap Motivation Processes Global Types Projection Typing Conclusion

Typechecking Binary Session

Recall in binary session types, we have the judgment

⊢ M

for well-typed binary session.

It can be derived via the typing rule:

[MTy]
· ⊢ P : S · ⊢ Q : S

⊢ Alice :: P
∣∣ Bob :: Q

39 / 41

Recap Motivation Processes Global Types Projection Typing Conclusion

Typechecking Multiparty Session

For multiparty sessions, we use the global type in the judgement:

⊢ M : G

It can be derived via the typing rule:

[MTy]
∀i ∈ I. · ⊢ Pi : G ↾ pi pt(G) ⊆ {pi | i ∈ I}

⊢
∏
i∈I

pi :: Pi : G

40 / 41

Recap Motivation Processes Global Types Projection Typing Conclusion

Summary

To summarise, we discussed:

▶ Syntax and operational semantics for multiparty sessions

▶ Syntax of global types

▶ Projection of global types into local session types

▶ Typechecking multiparty sessions

41 / 41

	Recap
	Motivation
	Processes
	Global Types
	Projection
	Typing
	Conclusion

