Binary Session Types

Motivation
©000

Motivating Example: Travel Agency Example

Travel agency

| Customer | Agency I

I I

| |

.. . . | order |

This interaction can be described as: Il—’lI
uote

» The Customer posts an order e

> The Agency sends a quote :
» Then the customer can choose: |_accept

| |

alt 111 I
|

|

| address |

» To accept the offer. e,
> To simply reject the the quote. bodate !
| |

""" [T R R
| |
! reject !

2/82

Motivation
0000

The Better Travel Agency Example

Better Travel agency

This interaction can be described as:

» The Customer posts an order

> The Agency sends a quote
» Then the customer can choose:
> To accept the offer.
» To retry with a new order (e.g.: to try
a cheaper destination.)
» To simply reject the the quote.

3/82

Motivation
0000

Some Sub-typing Intuition

Some of these processes seem to be related:

Better Travel agency

[| [|

Travel agency T T
| |

| order |
=
! quote !

| |
| order | alt J [I
| |
| |
< quote ! accept !
| | | |
alt I} 6] : | address |
e
| accept ! ! date !
! e
| | | |
| address I |\ e (S Rty [
| |
Do | ! retry !
— Ll
...... R S I I
121
| | [Restart from :
| | the top
reject } }
I N SRR Frnseeemmnmnnnes R
T T [I
| | | |
| | | reject |
[>

Motivation
000e

Some Sub-typing Intuition (2)

Dramatis Personz:
> [Alice: a customer of the old
agency.
> Bob: the clerk of the old agency.

» Charlie: a customer of the better
agency.

O OIEE
8 O3 RO

m [IG| m IS
%

» Eve: the clerk of the better agency.

5/82

Syntax
°0

Syntax of Expressions

Before defining processes, we first introduce a simple expression

language:

Vo= on Integers
| true|false Booleans
| “str” Strings

e, u= w Values
| = Variables
| e+ée|e—€]|—e Arithmetic
| e=écle<e|e>¢ Relational
| enéleve]|-e Logical
| edé Non-determinism

6/82

Syntax
oce

Syntax of Processes

p := Alice|Bob Participant
P.Q == 0 Inaction
| ple).P Message Send

| p(x).P Message Receive

| p>{li: P}icr Branching

| p<l.P Selection

| if e then P else () Conditional

| wX.P Recursive Process

| X Process Variable

M = p:P ‘ qg:Q Binary Composition

7/82

Examples
©00000

Starting Examples

Alice :: Bob (42).0 | Bob :: Alice (z).0

Alice :: Bob (z).0 | Bob :: Alice (42).0

Alice :: if true then Bob (“hi"”).0 else Bob (‘bye”).0

Bob :: Alice (z).0

Alice :: Bob (7).0 | Bob :: Alice (z).Alice (“thx").0 X

8/82

Examples
0@0000

Travel Agency Revisited

Better Travel agency

| |
| order |
|

e
quote

| |
| address |
| |

For Customer (Alice):

Bob (“Hawaii”).Bob (quote).
if quote > 1000
then Bob < retry.
Bob (“Florence”).Bob (newQuote).
if newQuote > 1000
then Bob <reject.0
else Bob < accept.Bob (“L’Aquila”).
Bob (date).0
else Bob <accept.Bob (“L’Aquila”).
Bob (date).0

We denote this process Ppjice.

9/82

Travel Agency Revisited

Better Travel agency

| e For Agency (Bob):
|

quote

A } puX.Alice (order).

| Alice (1000 & 5000).
| | .
%&ﬁ retry : X

|

date . reject : 0
I Alice > .
:F"x'zi """"""" :r """ ice accept : Alice (address).
| |

L Alice ("20230815").0

We denote this process Pgop.

10/82

Examples
00000

Composing Alice and Bob

In our calculus, we use

Alice :: Pajice | Bob :: Pgop,

to compose the two processes in parallel.

11/82

Examples
000000

Structural Preongruence

Similar to w-calculus, we have structural congruence rules for
processes and binary sessions:

pX.P = P[uX.P/X] [C-Rec]

p::P‘q::Q = q::Q‘p::P [CM-ComM]
P=rP — p::P‘q::Q = p::P"q::Q [CM-CTX]
The structural precongruence relation is the smallest reflexive and

transitive precongruence relation containing the rules above.
Where == (= U =7).

12/82

Examples
000000

[C-Rec] explained

uX.P is analogous to the fix-combinator in A-calculus:

pX.Alice (1).X

Alice (1).uX .Alice (1).X

Alice (1).Alice (1).uX .Alice (1). X

Alice (1).Alice (1).Alice (1).uX.Alice (1).X

A

13/82

Semantics
®0000

Expression Evaluation

erd v

[E-NONDET-L] —
e1®ey v

ey L v

[E-NONDET-R] —
e1 eyl v

The rest of the evaluation judgements follow the standard
semantics of operators.

14/82

Semantics
0®000

Operational Semantics

edv P#d
R-C
[R-CouM] puqle).P|q:up(x).Q —p:P|q:Qu/a
[R-LABEL] Jjell;=1 p#q

p::q<1l.P‘q::pl>{li:Qi}i61—>p::P{q::Qj

15/82

Semantics
0000

Operational Semantics

e | true
[R-IFTRUE] - v
p:: if e then P elsePﬂq::Q—)p::Pl ’q::Q
e | false
[R-IFFALSE] - !
p::if e then P elsePQ}q::Q—>p::P2‘q::Q
R-Con] My = M] M; — My My = Mo

Ml — J\/[Q

16 /82

Semantics
00000

Travel Agency Revisited

Alice :: Pajice | Bob :: Pgop,

Alice :: Bob (“Hawaii”).--- | Bob :: X Alice (order). - -
Alice :: Bob (“Hawaii”).--- | Bob :: Alice (order).- - -
Alice :: Bob (quote).- - - | Bob :: Alice (1000 & 5000).. - -
Alice :: if 1000 > 1000 --- | Bob :: Alice {-- -}

Alice :: Bob < accept.- - - ‘ Bob :: Alicer> {accept : -+ ;---}
Alice :: Bob (“L’Aquila”).- - ’ Bob :: Alice (address).- - -
Alice :: Bob (date).0 | Bob :: Alice (“20230815").0

Alice :: 0 | Bob :: 0

LELLL L

17/82

Travel Agency Revisited

Try it yourself: How does the binary session reduce if

1000 & 5000 J. 5000

Bob (“Hawaii”).Bob (quote).
if quote > 1000
then Bob <retry.Bob (“Florence”).Bob (newQuote).
Pajice = if newQuote > 1000
then Bob <reject.0
else Bob < accept.Bob (“L’Aquila”).Bob (date).0
else Bob <accept.Bob (“L’Aquila”).Bob (date).0

1 X . Alice (order).Alice (1000 & 5000).
retry : X
Alicer> ¢ reject : 0
accept : Alice (address).Alice (“20230815").0

Pgob =

18/82

Recap

Last week, we discussed about:
» The syntax of binary session calculus
» The operational semantics
» Some examples

» Some intuition about Subtyping (travel agency, ATM)

19/82

Preliminaries
000000000

Typing Expressions

Recall our expressions have the following syntax:

v = n|true|false| “str”
= v|z|ete|e—¢€]|—e
| e=¢€le<e|e>¢
| enéeleve]|—e
| ede

We assign the following Sorts to expressions:

U ::=1int | bool | string

20/82

Preliminaries
000000000

Representing Type systems

A type system is comprised of:
> A syntax for types.

» A typing judgment that relates programs and types (and the
needed assumptions on the environment).

» The inference rules that define the judgment.

21/82

Preliminaries
[e]e] lelelelelele)

Inference rules

A true B true C true
D true

[RULENAME]

Where it can be read as: A true, B true, and C' true are the
premises needed to establish as conclusion: D true.

[Ax10M]

true

Axioms are rules whose conclusions do not have premises.
(N.B.: the line may be omitted).

22/82

Derivation trees

Inference rules and axioms, naturally form derivation trees that
show how a proof is constructed.
From the definition of the judgement: A & B

A
[A-1] — [A-2] — [A-3] —

[R-1] A&B P q r

We can build a derivation that establishes p & (g & r) in the
following way:

[A2] - [A-3] -
q T

23/82

Preliminaries
[e]e]e]e] Telelele)

How to type?

Typing, or typechecking is relating programs to their types.

24/82

Preliminaries
[e]e]e]e]e] lelele)

How to type?

In a context where we record typing assumptions, we assign sorts
to expressions with a judgment:

We read this judgment as:
Under typing context I, the expression e has sort U'.

25/82

Preliminaries
000000800

Typing Context I

Typing contexts I' stores information about variables and their
sorts.

For the purpose for assigning sorts to expressions, we define

Fo=-|Tz:U

- is an empty context

Iz : U is a context I' extended with an entry that z is of sort U
For convenience, we treat all variables as distinct and ordering in
the typing context as not significant.

2682

Preliminaries
000000080

Typing rules define the judgment

I'ke:int I'eé:int

[TY-INT] ———— [Ty-PLus| ;
I'Fn:int I'Fe+e :int

I'ke:int ke :int

[Ty-LESS] ;
I'Fe<e :bool
I'e:bool I'ke:U ke U
[TY-NOoT| —— [TY-NONDET] ;
I' - —e:bool I'Fede : U
[TY-VAR]

De:Ukax:U

27 /82

Preliminaries
00000000e

Examples of Expression Typing

Example of sum

F3:int -F5:int

[Ty-PLus] :
-F3+5:int

Example of sum with a variable

[TY-VAR]
r:int 2 :int 2:int F 5:int

[Ty-PLus]
r:int Fax +5: int

28/82

Syntax
©00000000000

Syntax of Session Types

S = end Termination
| p!U);S Value Send
| p?UL;S Value Receive
| pB{li: Sitier Selection
| p&{li: Si}icr Branching
|t Type Variable
| ut.S Recursive Type

We often omit end.

29/82

Syntax
0®0000000000

Examples of Session Types

1. Alice![int]; Alice![string]; Alice?[int]; end
2. Alice![int]; Alice![string]; Alice?[int];
orange : Bob![string]; Bob![int]; end
3. Bob&{ cherry : Bob?[string]; end
reject : end
4. Alice![int]; ut.Alice![string]; Alice?[int];t
5. Is this a correct type?
Bob![int]; Alice![string]; Alice?[int]; end
6. Is this a correct type?
orange : Alice![string]; Alice![int];t
Alice®{ cherry : Alice?[string]; end
repeat : t

30/82

Travel Agency Revisited

Travel agency

Let's try to describe the travel agency with | Customer | Agency |
session types! : :
| order |
™
A possible type for the customer (Alice) is: e ote |
| |
alt 111 I
Bob![string]; : !
Bob?[int]; Reeer
S Alice = accept : Bob![string]; | address |
Bob® Bob?[string]; end L date |

reject :end) peeee- froggrememees (-
| |
I reject !
|
I
|
|

31/82

Travel Agency Revisited

Travel agency

| Customer | Agency |
l l
A possible type for the agency (Bob) is: | order I
| —

. ! quote !
Alice?[string]; —
Alice![int]; VA |

SBob = accept : Alice?[string]; | accept |
Alice& Alice![string]; end e 1
reject : end | |
date
| |
""" T A
| |
! reject !
|
I
|
|

32/82

Syntax
0000®0000000

On Recursive Types

We use an equi-recursive presentation of recursive types.

We identify pt.S and S[ut.S/t]
i.e. we do not distinguish between these two types.

We assume types are closed and guarded.
i.e. type variables are bounded and ut.t is forbidden.

33/82

Syntax
00000@000000

On Recursive Types and Coinduction

We can construct an infinite type with recursion.

pt.Alice![int]; t

is the same type as Alice![int]; Alice![int]; Alice![int];- -

To reason about infinite types, we need to use coinduction.

Interested students can read [Pierce, 2002, Chapter 21] for the meta-theory of
recursive types and [Kozen and Silva, 2017] for coinduction.

34/82

Recursive Types as Infinite Trees

The recursive type can also be represented as an infinite tree.

pt.Alice![int];t

The tree nodes will not have ut.S or t.

35/82

Syntax
0000000@0000

Recursive Types as Infinite Trees

The following recursive types have the same tree representation
(shown in previous slide).

ut.Alice![int];t
Alice![int]; ut.Alice![int]; t
ut.Alice![int]; Alice![int]; t

We treat them as the same type.

36/82

Syntax
00000000@000

Labelled Transition System (LTS) of Session Types

Session types are behavioural types so that we can define the
transition systems. We first define the actions:

ax=p?U]|p!U] | pal|p&l
The labelled transition relation on types is defined by:

p7[U]

[L-IN] p7[0]; s 212 p![U]

s [L-Ovut] p![U]; S——=5S

kel kel
i [L-BRA] o
p®{l; : Si}ier—Sk p&e{l; : Si}ier—Sk

[L-SEL]

S[ut.S/t] %S’

[L-REC] =
ut.S =S’

37/82

Syntax
000000000800

Bisimulation on Session Types

Let S be a set of closed session types. A binary relation
R C (8 x 8) is called bisimulation whenever S; R Sy implies that:

» for all o, if S;5", then there exists S’ such that Sgih%
and S| R S%; and
> for all o, if Sp=S%, then there exists S| such that S;-5]
and S| R S5.
The largest bisimulation, denoted by ~, is called bisimilarity. In
this course, if S; ~ S5, we say S1 and S, are equivalent.

38/82

Syntax
000000000080

Examples of Recursive Types

ut.t

Alice![int]; Alice?[bool]; ut.Alice!
pt.Alice![int]; Alice?[bool]; Alice!
Alice![int]; ut.Alice?[bool]; Alice!
Alice![int]; ut.Alice?[bool]; Alice!

; Alice?[bool]; t
; Alice?[bool]; t
it

;end

int
int
int

int

pt.end
ut.Alice?[t];

NSOk

39/82

Syntax
000000000000

Challenge: Type Equivalence

Let:

S1 = Alice![int]; Alice?[bool]; ut.Alice![int]; Alice?[bool]; t
Sy = pt.Alice![int]; Alice?[bool]; Alice! [int]; Alice?[bool]; t
S3 = Alice![int]; ut.Alice?[bool]; Alice![int]; t

S4 = pt.Alice![int]; Alice?[bool]; Alice![int]; t

Can you prove S1 ~ S and Sy ~ S37 Can you prove S3 % Sy4?

40/82

Duality
©00000000

Motivation

We use session types to describe the behaviour of processes.

To achieve type safety, we would like to ensure that the binary
session is able to progress.

Recall, in the operational semantics, if a process sends and the
other receives, the binary session reduces. (Similarly for offering

and taking branches)

We define duality to describe such relation of session types.
Duality becomes important when we type a binary session.

41/82

Duality
0@0000000

Duality of Binary Session Types

We first define duality of participants:

Alicet = Bob Bobt = Alice

42/82

Duality of Binary Session Types

We define duality of binary session types as a function:

end = end

p![lU;S = q?U};8

p?U;S = ql[U];S
po{li: Sitier = a&{li: Si}ier
p&{li : Sitier = a®{li: Si}ier

t =t
ut.S = ut.S
where g = pt

Exercise: Show that S = .

43/82

Duality
000@00000

Travel Agency Revisited

Travel agency

Verify: Salice = SBob-

Bob![string]; | — | N |
ustomer gency

Bob?[int]; : :

SAlice = accept : Bob![string]; Do

Bob® Bob?[string]; end e !

reject : end i |

alt IJ 1 :

Alice?[string]; | accept |

. | |

Alice! [lnt], | address |

SBob = accept : Alice?[string]; D e |
Alice&; Alice![string];end) |...... T -

[2]
reject : end : :
reject

g

I

|

|

4482

Duality
0000®0000

Duality operates on the infinite tree

We are usually interested in determining whether a type is a dual
of the other type.

For example: Let

S1 = Alice![int]; ut.Alice?[bool]; Alice![int]; t
Sy = pt.Bob?[int|; Bob![bool];t

Is S dual of S57?

Naively

S1 = Bob?[int]; ut.Bob![bool]; Bob?[int]; t

4582

Duality
00000@000

Duality operates on the infinite tree
We have that

51 = Bob?[int]; ut.Bob![bool]; Bob?[int];t
Sa = ut.Bob?[int]; Bob![bool]; t

They are syntactically different, but they expand to the same

infinite tree:
?
///// \
Bob int !
//////\ \\\\\\\\
Bob bool ?
\
Bob int !
//////\ \\\\\\\
Bob bool cen

So we can conclude S7 is dual of Ss.
46/82

Duality
000000800

Quiz: Duality

1. Give a dual type for each (correct) type given in Examples of
Session Types.

2. Give a dual type for each (correct) type given in Examples of
Recursive Types.

3. Define a duality as a bisimilation relation and prove the
duality between a pair of types you gave using the bisimilarity.

4782

Duality
0000000e0

Recap: Two Travel Agencies

Better Travel agency

Travel agency
H . Customer Agency | |
> RAlice: a customer of S

the old agency. | oder e |
gency E— —
> Bob: the clerk of the ot | U e |
It I 1] I
old agency. P D aress
! accept | date

» Charlie: a customer

| |
| address 21
I
of the better agency. e L oy
. I
better agency. reject &
] reject
I

|
T 1
| |
! I
| f
I
| I
| | I I
» Eve: the clerk of the [A — i
| | |
i
i !
1
|
I
I

4882

Duality
000000000

Recap: Two Travel Agencies
Alice’s interaction has the type:

Bob![string]; Bob?[int];
accept : Bob![string];

Shlice = Bob® Bob?[string]; end
reject : end
Eve's has:
Alice?[string]; Alice![int];
accept : Alice?[string];
Sgob’ = pt. Alice Alice![string]; end

reject : end

retry : t

Note that, the two types may not not dual of each other, and yet
intuitively we know their communication does not lead to error.

4982

Subtyping
©0000000000

Subtyping

We define a subtyping relation on session types.
Subtyping is defined coinductively to be the greatest relation
satisfying the rules:

50 /82

Subtyping
0@000000000

Subtyping rules

[SuB-END] end < end

S<s
[SUB-SEND]
p![U]; S < p!U]; S
S<8
[SuB-RECV]
p?[U]; S < p?[U]; S’

51/82

Subtyping
00®00000000

Subtyping rules (continued)

Viel.S; <SS!
p&{l; : Siticrus < p&{li : S }ier

Intuition: A process can implement more branches and forget
about them.

[SUB-BRA]

Viel.S; <SS
pd{li : Sitier < p®{li : S} }ficrus

Intuition: A process can always make a choice in a wider range of
choices.

[SUB-SEL]

52/82

Subtyping
000®0000000

Subtyping rules (continued)

S[ut.S/t) < 8’

CatS<S

S < S [ut.S'/t]
S < put.S’

[SuB-uL]

[SuB-uR)

53/82

Subtyping
00000000000

Two Travel Agencies Again
Alice has type:

Bob![string]; Bob?[int];
G accept : Bob![string];
Alice = Bobg Bob?[string]; end
reject : end

Charlie has type:

Bob![string]; Bob?[int];
accept : Bob![string];
H / = ? 7 .
S Alice ut. Bobe . Bob?[string]; end
reject : end
retry : t

So Salice < Salice’-

54 /82

Subtyping
00000@00000

Two Travel Agencies Again
Bob has type:

Alice?[string]; Alice![int];
Gt accept : Alice?[string];
Bob ™ Alice& Alice![string]; end
reject : end

Eve has type:

Alice?[string]; Alice! [int];

accept : Alice?[string];
Alice![string]; end

reject : end

retry : t

I _
SBob = 1t plices

So Sgob’ < SBob-

55 /82

Subtyping
00000000000

The bigger picture

Satice < Shlice’

I I
SBob P SBob/

1. Prove if S; < S then Sy < 5.
2. Give examples of subtyping to (3) and (6) in Examples of
Session Types

3. (Challenging) Define a subtyping relation as a binary
co-inductive relation R C (8 x 8) and use it to prove
subtyping between a pair of types you gave.

56 /82

Subtyping
00000000000

Challenge Solution V1
Let S be a set of closed session types. A binary relation

R C (8 x 8) is a subtyping whenever S; R So implies that:

b 1f 5 2L 6 then $,2 1L o7 with S R S
bl (U]

> If 51L>S then 52—>5' with S R §'
> If 52—>S’ then SI—>S with S R §’
> 1f 5, 2% 5 then 5,225 8" with S R S

> If Vo, 35 such that S1-S then Vo, 35’ such that Sga—,>5’
Do the following hold? What about now?

end R p?[U]; end
pt.end R end

What is a potential issue in implementation?
57 /82

Challenge Solution V2

Extending the semantics of the LTS allows us to distinguish
reductions of terminal session types.

[L-IN] endﬂskip
Let S be a set of closed session types. A binary relation
R C (8 x 8) is a subtyping whenever S; R So implies that:
> If $; = Piskip then Sp—Prskip

1f 12 5 then S, 21 7 with S R S

| g
b 1f 5,2 6 then S, 217 7 with S R S
> If 5’2—>5" then 5’1—>S with S R S’
>

If 5,225 S then S5 228" with S R '

58/82

Subtyping
00000000000

Unfolding of Session Types

unf (pt.S) = unf(S[ut.S/t])
unf(S) = S if S # ut.T for some T’

Example:

unf (pt.p![U];t) = unf (p![U]; ut.p![U]; t)
= p![U]; pt.p![U]; t

59/82

Subtyping
0000000000e

Challenge Solution V3

Let 8 be a set of closed session types. A binary relation
R C (8 x 8) is a subtyping whenever S; R Sy implies that:

» If unf(S;) = end then unf(S2) = end

» If unf(S;) = p![U]; S then unf(Sy) = p![U]; 5" with S R S’

» If unf(S;) = p?[U]; S then unf(Sy) = p?[U]; 5" with S R S’

» If unf(S1) = p&{l; : Si}tierus then unf(S2) = p&{l; : S }tier
and Vi € I we have S; R S

If unf(Sl) = p@{li : Si}ie] then unf(Sg) = p@{li : Sg}ielu]
and Vi € I we have S; R S

v

60 /82

Recap

Last week, we discussed about:
> Typing expressions
» The syntax of binary session types
P Recursive types
» The notion of duality
>

Subtyping of session types

61/82

Typing
@0000(

Typing Processes

In a context where we record typing assumptions, for processes we
also need to store type variables.

Fe=-|Tz:U|X:S

We assign session types to processes with a judgment:

We read this judgment as:
Under typing context I', the process P has session type S.

6282

Typing
O@000(

Typing rules

[TY-END] ———
I'0:end

An inactive process 0 always has session type end.

63 /82

Typing
[e]e] TeJel

Typing rules

I'ke:U I'EP:S
I'Fple).P:plU;S

[TY-SEND]

A sending process p (e).P has session type p![U]; S, if the
expression e to send has sort U, and the process P has session
type S.

Fx:UFP:S
'tp(z).P:p?U];S

[TYy-RECV]

A receiving process p (x).P has session type p?[U]; S, if the
process P has session type S under the assumption that the
variable = has sort U.

64 /82

Typing
000@0(

Example

I'y = address : string

I'y F “20230815" : string I'y-0:end
I'y + Alice (*20230815").0 : Alice![string]; end
- Alice (address).Alice (*20230815").0 : Alice?[string]; Alice! [string]; end

65 /82

Typing
[e]e]e]e] T

Example
'y = date : string
I'sF0:end
-F “L’Aquila” : string -+ Bob (date).0 : Bob?[string]; end

-+ Bob (“L’Aquila").Bob (date).0 : Bob![string]; Bob?[string];end

66 /82

Typing
00000

Typing rules

'=pP:S
F'Fpal.P:pa{l:S}

[Ty-SEL]

A selection process p <I.P has session type p@®{l : S}, if the
process P has session type S.

VjEIF"P7S]
I'Epo>{li: Pilier - p&{li © Sitier

A branching process p > {l; : P;};cr has session type
p&{l; : S;}icr, if for all indices ¢ € I, the process P; has session
type S;.

[Ty-BRraA]

67 /82

Typing
00000«

Example

-F0:end - Alice (address).- - - : Alice?[string];- -
- Alice > {reject : 0,accept : - -- } : Alice&{reject : end, accept : - - }

68 /82

Typing
00000«

Example

-+ 0:end
-F Bob <reject.0 : Bob®{reject : end}

-+ Bob (“L’Aquila”).--- : Bob![string];---
-+ Bob <accept.- - - : Bob®{accept : ---}

69 /82

Typing rules

'-pP:S S<S
r=p:95

[Ty-SusB|

A process P has session type S’ if it has session type S and S is a
subtype of S’.

Recall that in [TY-SEL], the session type in the conclusion always
has form p&{l : S}.

By composing [Ty-SuB] and [Ty-SEL], we can add more choices to
the result type by subtyping.

70/82

Typing
00000«

Example

“F0:end Bob&{reject : end}
<

reject : end

accept : - - -

-+ Bob <reject.0 : Bob@®{reject : end}
oo

- Bob < reject.0 : Bob@{reject : end, accept : - - -}

-+ Bob (“L’Aquila”).-- - : Bob![string];- - Bob®{accept : ---}
<

reject : end }

-+ Bob < accept.- - - : Bob&®{accept : - -}
Bo @{
accept - -+

-+ Bob < accept.- - - : Bob&{reject : end, accept : - - - }

71/82

Typing rules

I'e:bool I'=pP:5S r-Q@:»s

[Tv-IF]
I'Fif e then Pelse @: S

A process if e then P else () has session type S if the
expression e has sort bool and both P and () have session type S.

Hint: If you have a derivation of P having session type S, and Q

having session type So, you can try to use [Ty-SuB] and find a
type S such that 51 < S and Sy < S.

72/82

Typing
00000«

Example

-k -+ :bool
- Bob <reject.0 : Bob@®{reject : end, accept : ---}
-+ Bob < accept.- - - : Bob®{reject : end, accept : --- }
S if e : Bob®{reject : end, accept : - - - }
then Bob <reject.0
else Bob <accept.- - -

73/82

Typing
00000«

Typing rules

[TY-PVAR]

LxX:SFX:8
A process X has session type S, if we know that information from
the typing context.
rLXxX:SFP:S
F'FpuX.P:S

[Ty-REC]

A process uX.P has session type S, if the process P has session
type S under the assumption that X has session type S.
Hint: You may wish to use a recursive type for S here.

7482

Typing
00000«

Example

Let's define:

Se = pt.Alice![int];t

And keep in mind that it is the same as:
Se = Alice![int]; ut.Alice![int]; t

- 7:int -F pX.Alice (42).X : S,
- Alice (7).uX.Alice (42). X : Alice![int]; S,
-+ Alice (7).uX Alice (42). X : S,

7582

Typing
00000«

Example

Remember:
Se = pt.Alice![int];t

-F42:int X:5FHX:S,
X : S, I~ Alice (42).X : Alice![int]; S,
X : S, F Alice (42).X : S,

-+ pX.Alice (42).X : S,

76 /82

Typing
00000«

Composing processes

We use the judgment
FM

to say that M is well-typed.

The derivation rule is

P S FQ:S

[MTy] —
- Alice :: P | Bob :: Q

which requires dual types for the two composed processes.

77/82

Examples

Are these M well-typed?
1. Alice :: Bob (42).0]
Bob :: Alice (z).if x =42 then 0 else 0

2. Alice :: Bob (42).0 |
Bob :: Allce() if z = "42" then 0 else 0

3. Alice :: Bob (42).Bob (y).0 | Bob :: Alice (z).Alice (z + 1).0
4. Alice :: Bob (42).0 | Bob : Alice (z).Alice (z).0
5. Alice :: Bob < banana.0 }
Bob :: Alice > {apple : 0, banana : 0}
6. Alice :: Bob < orange.0 ’
Bob :: Alice > {apple : 0, banana : 0}
7. Alice :: Bob < bye.Bob < hello.0 |
Bob :: pX.Alice> {bye : 0, hello: X}

78/82

Typing
00000«

Examples

Is this well-typed?

Alice :: if false then O else Bob(“Hello”)O‘ Bob :: Alice (z).0

Alice :: if true then 0 else Bob (“Hello").0 | Bob :: Alice (z).0

Both are not well-typed, but the first will reduce to
Alice :: 0 ‘ Bob :: 0, while the second will be stuck.

79/82

Preservation

Theorem (Preservation)

If M is well-typed (i.e. - M) and M — M,
Then M is well-typed (i.e. = M').

Preservation is also known as Subject Reduction.

The presevation theorem states that well-typeness is preserved
during reduction.

N.B. However, it doesn't mean that types of processes are preserved.

80 /82

Progress

Theorem (Progress)

If M is well-typed (i.e. = M),

Then either there exists M’ such that M — M/, or

M = Alice :: 0 | Bob :: 0.

The progress theorem states that either a well-typed binary session
has reached the end, or it can be further reduced. Implicitly, it
states that a well-typed binary session does not get stuck.

81/82

Reading List for Session Types

To learn more about session types:

» A Very Gentle Introduction to Multiparty Session Types
available on Materials

» On the Preciseness of Subtyping in Session Types
DOI : 10.23638/LMCS-13(2:12)2017

Logical Methods in Computer Science Vol. 13(2:12)2017, pp.
1—61

82/82

[4 Kozen, D. and Silva, A. (2017). Practical coinduction.
Mathematical Structures in Computer Science,
27(7):1132-1152.

[4 Pierce, B. C. (2002). Types and Programming Languages. The
MIT Press, 1st edition.

82/82

	Motivation
	Syntax
	Examples
	Semantics
	Recap
	Preliminaries
	Syntax
	Duality
	Subtyping
	Recap
	Typing
	Type Safety
	Readings
	References

