
Principles of Concurrent
and

Distributed Programming

Emilio Tuosto

Academic Year 2025/2026

January 2026

1 / 11

On using the “right” primitives

2 / 11

Advanced primitives for concurrency

Join patterns are very high-level

Based on the join calculuc [FG96]

Integrated in some programming languages (Erlang, C#, etc.)

We’ll see a combination of join patterns and actors

3 / 11

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

▸ Novel specification of fair join pattern matching for actors▸ Novel stateful tree-based matching algorithm with proof of correctness▸ JoinActors: novel Scala 3 library for actors with fair join pattern matching

1 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

What are Join Patterns?

▸ Coordination mechanism for concurrent message passing programs▸ Introduced in Join Calculus (Fournet et al., POPL 1996)

▸ Message passing programs may react to complex message sequences and
conditions▸ Join patterns simplify specifying the association of out-of-order messages

2 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

What are Join Patterns?

▸ Coordination mechanism for concurrent message passing programs▸ Introduced in Join Calculus (Fournet et al., POPL 1996)▸ Message passing programs may react to complex message sequences and
conditions

▸ Join patterns simplify specifying the association of out-of-order messages

2 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

What are Join Patterns?

▸ Coordination mechanism for concurrent message passing programs▸ Introduced in Join Calculus (Fournet et al., POPL 1996)▸ Message passing programs may react to complex message sequences and
conditions▸ Join patterns simplify specifying the association of out-of-order messages

2 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Monitoring a Factory Shop Floor

▸ The monitoring program must
associate machine Fault notifications
to Fix notifications from workers

▸ Messages arrive asynchronously and
out-of-order▸ Monitor reacts to a combination of
messages in the mailbox▸ Traditionally, programmers write
custom code for message association

(e.g., Akka/Pekko actors, Socket
programming)

3 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Monitoring a Factory Shop Floor

▸ The monitoring program must
associate machine Fault notifications
to Fix notifications from workers▸ Messages arrive asynchronously and
out-of-order

▸ Monitor reacts to a combination of
messages in the mailbox▸ Traditionally, programmers write
custom code for message association

(e.g., Akka/Pekko actors, Socket
programming)

3 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Monitoring a Factory Shop Floor

▸ The monitoring program must
associate machine Fault notifications
to Fix notifications from workers▸ Messages arrive asynchronously and
out-of-order▸ Monitor reacts to a combination of
messages in the mailbox

▸ Traditionally, programmers write
custom code for message association

(e.g., Akka/Pekko actors, Socket
programming)

3 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Monitoring a Factory Shop Floor

▸ The monitoring program must
associate machine Fault notifications
to Fix notifications from workers▸ Messages arrive asynchronously and
out-of-order▸ Monitor reacts to a combination of
messages in the mailbox▸ Traditionally, programmers write
custom code for message association

(e.g., Akka/Pekko actors, Socket
programming)

3 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Monitoring a Factory Shop Floor

▸ The monitoring program must
associate machine Fault notifications
to Fix notifications from workers▸ Messages arrive asynchronously and
out-of-order▸ Monitor reacts to a combination of
messages in the mailbox▸ Traditionally, programmers write
custom code for message association
(e.g., Akka/Pekko actors, Socket
programming)

3 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Factory Shop Monitor Using JoinActors
Using our JoinActors library we can declaratively specify
order-independent message associations

1 def monitor() = Actor[...] {
2 receive { (...) => {
3 case (Fault(id1, _), Fix(id2, _)) if id1 == id2 => ...

4 case (Fault(_, ts1), Fault(id2, ts2), Fix(id3, _))
5 if id2 == id3 && ts2 - ts1 > TEN_MIN => ...
6 }}
7 }

▸ Uses Scala 3 macros
4 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Join Patterns More Formally

Let D = Π1 +Π2 where

Π1 = Fault(id1 ,) ∧ Fix(id2 ,) if id1 = id2

Π2 = Fault(, t1) ∧ Fault(id2 , t2) ∧ Fix(id3 ,) if id2 = id3 && t2 − t1 > 10min

Refer to the paper for more details

5 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Join Patterns Matching
The join definition for the factory shop floor monitor is D = Π1 +Π2 where

Π1 = Fault(id1 ,) ∧ Fix(id2 ,) if id1 = id2

Π2 = Fault(, t1) ∧ Fault(id2 , t2) ∧ Fix(id3 ,) if id2 = id3 && t2 − t1 > 10min

Now consider the following mailbox M:

M =

Fault1 (1 , 10 ∶35) ⋅ Fault2 (2 , 10 ∶40) ⋅ Fault3 (3 , 10 ∶55) ⋅ Fix4 (3 , 11 ∶00)

▸ We have many options to match from M.

How and which one do we pick?▸ Π1 ∶ ⟨{Fault3,Fix4}⟩▸ Π2 ∶ ⟨{Fault1,Fault3,Fix4},{Fault2,Fault3,Fix4}⟩

▸ In existing literature, the selection is either▸ Non-deterministic choice. This is usually undesirable▸ Pick longest-matching sequence

6 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Join Patterns Matching
The join definition for the factory shop floor monitor is D = Π1 +Π2 where

Π1 = Fault(id1 ,) ∧ Fix(id2 ,) if id1 = id2

Π2 = Fault(, t1) ∧ Fault(id2 , t2) ∧ Fix(id3 ,) if id2 = id3 && t2 − t1 > 10min

Now consider the following mailbox M:M =

Fault1 (1 , 10 ∶35) ⋅ Fault2 (2 , 10 ∶40) ⋅ Fault3 (3 , 10 ∶55) ⋅ Fix4 (3 , 11 ∶00)
▸ We have many options to match from M.

How and which one do we pick?▸ Π1 ∶ ⟨{Fault3,Fix4}⟩▸ Π2 ∶ ⟨{Fault1,Fault3,Fix4},{Fault2,Fault3,Fix4}⟩

▸ In existing literature, the selection is either▸ Non-deterministic choice. This is usually undesirable▸ Pick longest-matching sequence

6 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Join Patterns Matching
The join definition for the factory shop floor monitor is D = Π1 +Π2 where

Π1 = Fault(id1 ,) ∧ Fix(id2 ,) if id1 = id2

Π2 = Fault(, t1) ∧ Fault(id2 , t2) ∧ Fix(id3 ,) if id2 = id3 && t2 − t1 > 10min

Now consider the following mailbox M:M = Fault1 (1 , 10 ∶35) ⋅

Fault2 (2 , 10 ∶40) ⋅ Fault3 (3 , 10 ∶55) ⋅ Fix4 (3 , 11 ∶00)
▸ We have many options to match from M.

How and which one do we pick?▸ Π1 ∶ ⟨{Fault3,Fix4}⟩▸ Π2 ∶ ⟨{Fault1,Fault3,Fix4},{Fault2,Fault3,Fix4}⟩

▸ In existing literature, the selection is either▸ Non-deterministic choice. This is usually undesirable▸ Pick longest-matching sequence

6 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Join Patterns Matching
The join definition for the factory shop floor monitor is D = Π1 +Π2 where

Π1 = Fault(id1 ,) ∧ Fix(id2 ,) if id1 = id2

Π2 = Fault(, t1) ∧ Fault(id2 , t2) ∧ Fix(id3 ,) if id2 = id3 && t2 − t1 > 10min

Now consider the following mailbox M:M = Fault1 (1 , 10 ∶35) ⋅ Fault2 (2 , 10 ∶40) ⋅

Fault3 (3 , 10 ∶55) ⋅ Fix4 (3 , 11 ∶00)
▸ We have many options to match from M.

How and which one do we pick?▸ Π1 ∶ ⟨{Fault3,Fix4}⟩▸ Π2 ∶ ⟨{Fault1,Fault3,Fix4},{Fault2,Fault3,Fix4}⟩

▸ In existing literature, the selection is either▸ Non-deterministic choice. This is usually undesirable▸ Pick longest-matching sequence

6 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Join Patterns Matching
The join definition for the factory shop floor monitor is D = Π1 +Π2 where

Π1 = Fault(id1 ,) ∧ Fix(id2 ,) if id1 = id2

Π2 = Fault(, t1) ∧ Fault(id2 , t2) ∧ Fix(id3 ,) if id2 = id3 && t2 − t1 > 10min

Now consider the following mailbox M:M = Fault1 (1 , 10 ∶35) ⋅ Fault2 (2 , 10 ∶40) ⋅ Fault3 (3 , 10 ∶55) ⋅

Fix4 (3 , 11 ∶00)
▸ We have many options to match from M.

How and which one do we pick?▸ Π1 ∶ ⟨{Fault3,Fix4}⟩▸ Π2 ∶ ⟨{Fault1,Fault3,Fix4},{Fault2,Fault3,Fix4}⟩

▸ In existing literature, the selection is either▸ Non-deterministic choice. This is usually undesirable▸ Pick longest-matching sequence

6 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Join Patterns Matching
The join definition for the factory shop floor monitor is D = Π1 +Π2 where

Π1 = Fault(id1 ,) ∧ Fix(id2 ,) if id1 = id2

Π2 = Fault(, t1) ∧ Fault(id2 , t2) ∧ Fix(id3 ,) if id2 = id3 && t2 − t1 > 10min

Now consider the following mailbox M:M = Fault1 (1 , 10 ∶35) ⋅ Fault2 (2 , 10 ∶40) ⋅ Fault3 (3 , 10 ∶55) ⋅ Fix4 (3 , 11 ∶00)

▸ We have many options to match from M.

How and which one do we pick?▸ Π1 ∶ ⟨{Fault3,Fix4}⟩▸ Π2 ∶ ⟨{Fault1,Fault3,Fix4},{Fault2,Fault3,Fix4}⟩

▸ In existing literature, the selection is either▸ Non-deterministic choice. This is usually undesirable▸ Pick longest-matching sequence

6 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Join Patterns Matching
The join definition for the factory shop floor monitor is D = Π1 +Π2 where

Π1 = Fault(id1 ,) ∧ Fix(id2 ,) if id1 = id2

Π2 = Fault(, t1) ∧ Fault(id2 , t2) ∧ Fix(id3 ,) if id2 = id3 && t2 − t1 > 10min

Now consider the following mailbox M:M = Fault1 (1 , 10 ∶35) ⋅ Fault2 (2 , 10 ∶40) ⋅ Fault3 (3 , 10 ∶55) ⋅ Fix4 (3 , 11 ∶00)
▸ We have many options to match from M.

How and which one do we pick?▸ Π1 ∶ ⟨{Fault3,Fix4}⟩▸ Π2 ∶ ⟨{Fault1,Fault3,Fix4},{Fault2,Fault3,Fix4}⟩▸ In existing literature, the selection is either▸ Non-deterministic choice. This is usually undesirable▸ Pick longest-matching sequence

6 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Join Patterns Matching
The join definition for the factory shop floor monitor is D = Π1 +Π2 where

Π1 = Fault(id1 ,) ∧ Fix(id2 ,) if id1 = id2

Π2 = Fault(, t1) ∧ Fault(id2 , t2) ∧ Fix(id3 ,) if id2 = id3 && t2 − t1 > 10min

Now consider the following mailbox M:M = Fault1 (1 , 10 ∶35) ⋅ Fault2 (2 , 10 ∶40) ⋅ Fault3 (3 , 10 ∶55) ⋅ Fix4 (3 , 11 ∶00)
▸ We have many options to match from M. How and which one do we pick?

▸ Π1 ∶ ⟨{Fault3,Fix4}⟩▸ Π2 ∶ ⟨{Fault1,Fault3,Fix4},{Fault2,Fault3,Fix4}⟩▸ In existing literature, the selection is either▸ Non-deterministic choice. This is usually undesirable▸ Pick longest-matching sequence

6 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Join Patterns Matching
The join definition for the factory shop floor monitor is D = Π1 +Π2 where

Π1 = Fault(id1 ,) ∧ Fix(id2 ,) if id1 = id2

Π2 = Fault(, t1) ∧ Fault(id2 , t2) ∧ Fix(id3 ,) if id2 = id3 && t2 − t1 > 10min

Now consider the following mailbox M:M = Fault1 (1 , 10 ∶35) ⋅ Fault2 (2 , 10 ∶40) ⋅ Fault3 (3 , 10 ∶55) ⋅ Fix4 (3 , 11 ∶00)
▸ We have many options to match from M. How and which one do we pick?▸ Π1 ∶ ⟨{Fault3,Fix4}⟩

▸ Π2 ∶ ⟨{Fault1,Fault3,Fix4},{Fault2,Fault3,Fix4}⟩▸ In existing literature, the selection is either▸ Non-deterministic choice. This is usually undesirable▸ Pick longest-matching sequence

6 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Join Patterns Matching
The join definition for the factory shop floor monitor is D = Π1 +Π2 where

Π1 = Fault(id1 ,) ∧ Fix(id2 ,) if id1 = id2

Π2 = Fault(, t1) ∧ Fault(id2 , t2) ∧ Fix(id3 ,) if id2 = id3 && t2 − t1 > 10min

Now consider the following mailbox M:M = Fault1 (1 , 10 ∶35) ⋅ Fault2 (2 , 10 ∶40) ⋅ Fault3 (3 , 10 ∶55) ⋅ Fix4 (3 , 11 ∶00)
▸ We have many options to match from M. How and which one do we pick?▸ Π1 ∶ ⟨{Fault3,Fix4}⟩▸ Π2 ∶ ⟨{Fault1,Fault3,Fix4},{Fault2,Fault3,Fix4}⟩

▸ In existing literature, the selection is either▸ Non-deterministic choice. This is usually undesirable▸ Pick longest-matching sequence

6 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Join Patterns Matching
The join definition for the factory shop floor monitor is D = Π1 +Π2 where

Π1 = Fault(id1 ,) ∧ Fix(id2 ,) if id1 = id2

Π2 = Fault(, t1) ∧ Fault(id2 , t2) ∧ Fix(id3 ,) if id2 = id3 && t2 − t1 > 10min

Now consider the following mailbox M:M = Fault1 (1 , 10 ∶35) ⋅ Fault2 (2 , 10 ∶40) ⋅ Fault3 (3 , 10 ∶55) ⋅ Fix4 (3 , 11 ∶00)
▸ We have many options to match from M. How and which one do we pick?▸ Π1 ∶ ⟨{Fault3,Fix4}⟩▸ Π2 ∶ ⟨{Fault1,Fault3,Fix4},{Fault2,Fault3,Fix4}⟩▸ In existing literature, the selection is either▸ Non-deterministic choice. This is usually undesirable▸ Pick longest-matching sequence

6 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Our Proposal: “Fair Match”
Recall that we have the following D = Π1 +Π2 where:

Π1 = Fault(id1 ,) ∧ Fix(id2 ,) if id1 = id2

Π2 = Fault(, t1) ∧ Fault(id2 , t2) ∧ Fix(id3 ,) if id2 = id3 && t2 − t1 > 10min

And the following final mailbox configuration:M = Fault1 (1 , 10 ∶35) ⋅ Fault2 (2 , 10 ∶40) ⋅ Fault3 (3 , 10 ∶55) ⋅ Fix4 (3 , 11 ∶00)
▸ A “fair” match is the one that consumes the oldest messages in M▸ No message that can be matched is left in the mailbox indefinitely

▸ Now we can pick the fairest match from M:
Π1 ∶ ⟨ {Fault3, Fix4} ⟩
Π2 ∶ ⟨ {Fault1, Fault3, Fix4} ,{Fault2,Fault3,Fix4}⟩

D ∶ ⟨{Fault3,Fix4}, {Fault1, Fault3, Fix4} ⟩

7 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Our Proposal: “Fair Match”
Recall that we have the following D = Π1 +Π2 where:

Π1 = Fault(id1 ,) ∧ Fix(id2 ,) if id1 = id2

Π2 = Fault(, t1) ∧ Fault(id2 , t2) ∧ Fix(id3 ,) if id2 = id3 && t2 − t1 > 10min

And the following final mailbox configuration:M = Fault1 (1 , 10 ∶35) ⋅ Fault2 (2 , 10 ∶40) ⋅ Fault3 (3 , 10 ∶55) ⋅ Fix4 (3 , 11 ∶00)
▸ A “fair” match is the one that consumes the oldest messages in M▸ No message that can be matched is left in the mailbox indefinitely▸ Now we can pick the fairest match from M:

Π1 ∶ ⟨ {Fault3, Fix4} ⟩
Π2 ∶ ⟨ {Fault1, Fault3, Fix4} ,{Fault2,Fault3,Fix4}⟩

D ∶ ⟨{Fault3,Fix4}, {Fault1, Fault3, Fix4} ⟩

7 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Our Proposal: “Fair Match”
Recall that we have the following D = Π1 +Π2 where:

Π1 = Fault(id1 ,) ∧ Fix(id2 ,) if id1 = id2

Π2 = Fault(, t1) ∧ Fault(id2 , t2) ∧ Fix(id3 ,) if id2 = id3 && t2 − t1 > 10min

And the following final mailbox configuration:M = Fault1 (1 , 10 ∶35) ⋅ Fault2 (2 , 10 ∶40) ⋅ Fault3 (3 , 10 ∶55) ⋅ Fix4 (3 , 11 ∶00)
▸ A “fair” match is the one that consumes the oldest messages in M▸ No message that can be matched is left in the mailbox indefinitely▸ Now we can pick the fairest match from M:

Π1 ∶ ⟨ {Fault3, Fix4} ⟩
Π2 ∶ ⟨ {Fault1, Fault3, Fix4} ,{Fault2,Fault3,Fix4}⟩
D ∶ ⟨{Fault3,Fix4}, {Fault1, Fault3, Fix4} ⟩

7 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

“Fair” Match Formalisation
We have formalised this notion of “fair” join pattern matching declaratively using
inference rules:

∀i ∈ {1, . . . , n} ∶ µiσ =mi γσ Match Messages Against Pattern
m1⋅ . . . ⋅mn ⊧σ µ1 ∧ . . .∧µn if γ

M[I] ⊧σ Π for some σ Pick Messages From MM⊧I Π

M⊧I Π ∀I ′. (M ⊧I′ Π Ô⇒ I ⩽lex I ′) Select Fairest MatchM⊧ Π↝ I
▸ Translate inference rules into a “fair” message matching brute-force algorithm▸ Current implementations use matching without fairness e.g. (Haller et al.

COORDINATION 2008, Plociniczak and Eisenbach COORDINATION 2010, Avila et al. 2020)▸ Refer to the paper for more details
8 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Brute-force Algorithm for “Fair” Message Matching
Naive algorithm that performs redundant matching attempts
We have that Π1:

Π1 = Fault(id1 ,) ∧ Fix(id2 ,) if id1 = id2

and the following mailbox:M =

Fix1 (3 ,) ⋅ Fault2 (1 ,) ⋅ Fault3 (2 ,) ⋅ Fault4 (3 ,)

▸ Find a match for Π1 from M

M[1] : ⟨Fix1 (3 ,)⟩

– Not enough messages ×

M[1 ⋅ 2] : ⟨Fix1 (3 ,) ⋅ Fault2 (1 ,)⟩
M[1 ⋅ 2 ⋅ 3] :

⟨Fix1 (3 ,) ⋅ Fault2 (1 ,)⟩ , ⟨Fix1 (3 ,) ⋅ Fault3 (2 ,)⟩

M[1 ⋅ 2 ⋅ 3 ⋅ 4] :

⟨Fix1 (3 ,) ⋅ Fault2 (1 ,)⟩ , ⟨Fix1 (3 ,) ⋅ Fault3 (2 ,)⟩

,

⟨Fix1 (3 ,) ⋅ Fault4 (3 ,)⟩

9 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Brute-force Algorithm for “Fair” Message Matching
Naive algorithm that performs redundant matching attempts
We have that Π1:

Π1 = Fault(id1 ,) ∧ Fix(id2 ,) if id1 = id2

and the following mailbox:M = Fix1 (3 ,) ⋅

Fault2 (1 ,) ⋅ Fault3 (2 ,) ⋅ Fault4 (3 ,)

▸ Find a match for Π1 from M

M[1] : ⟨Fix1 (3 ,)⟩

– Not enough messages ×

M[1 ⋅ 2] : ⟨Fix1 (3 ,) ⋅ Fault2 (1 ,)⟩
M[1 ⋅ 2 ⋅ 3] :

⟨Fix1 (3 ,) ⋅ Fault2 (1 ,)⟩ , ⟨Fix1 (3 ,) ⋅ Fault3 (2 ,)⟩

M[1 ⋅ 2 ⋅ 3 ⋅ 4] :

⟨Fix1 (3 ,) ⋅ Fault2 (1 ,)⟩ , ⟨Fix1 (3 ,) ⋅ Fault3 (2 ,)⟩

,

⟨Fix1 (3 ,) ⋅ Fault4 (3 ,)⟩

9 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Brute-force Algorithm for “Fair” Message Matching
Naive algorithm that performs redundant matching attempts
We have that Π1:

Π1 = Fault(id1 ,) ∧ Fix(id2 ,) if id1 = id2

and the following mailbox:M = Fix1 (3 ,) ⋅

Fault2 (1 ,) ⋅ Fault3 (2 ,) ⋅ Fault4 (3 ,)

▸ Find a match for Π1 from M
M[1] : ⟨Fix1 (3 ,)⟩

– Not enough messages ×M[1 ⋅ 2] : ⟨Fix1 (3 ,) ⋅ Fault2 (1 ,)⟩
M[1 ⋅ 2 ⋅ 3] :

⟨Fix1 (3 ,) ⋅ Fault2 (1 ,)⟩ , ⟨Fix1 (3 ,) ⋅ Fault3 (2 ,)⟩

M[1 ⋅ 2 ⋅ 3 ⋅ 4] :

⟨Fix1 (3 ,) ⋅ Fault2 (1 ,)⟩ , ⟨Fix1 (3 ,) ⋅ Fault3 (2 ,)⟩

,

⟨Fix1 (3 ,) ⋅ Fault4 (3 ,)⟩

9 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Brute-force Algorithm for “Fair” Message Matching
Naive algorithm that performs redundant matching attempts
We have that Π1:

Π1 = Fault(id1 ,) ∧ Fix(id2 ,) if id1 = id2

and the following mailbox:M = Fix1 (3 ,) ⋅

Fault2 (1 ,) ⋅ Fault3 (2 ,) ⋅ Fault4 (3 ,)

▸ Find a match for Π1 from M
M[1] : ⟨Fix1 (3 ,)⟩ – Not enough messages ×

M[1 ⋅ 2] : ⟨Fix1 (3 ,) ⋅ Fault2 (1 ,)⟩
M[1 ⋅ 2 ⋅ 3] :

⟨Fix1 (3 ,) ⋅ Fault2 (1 ,)⟩ , ⟨Fix1 (3 ,) ⋅ Fault3 (2 ,)⟩

M[1 ⋅ 2 ⋅ 3 ⋅ 4] :

⟨Fix1 (3 ,) ⋅ Fault2 (1 ,)⟩ , ⟨Fix1 (3 ,) ⋅ Fault3 (2 ,)⟩

,

⟨Fix1 (3 ,) ⋅ Fault4 (3 ,)⟩

9 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Brute-force Algorithm for “Fair” Message Matching
Naive algorithm that performs redundant matching attempts
We have that Π1:

Π1 = Fault(id1 ,) ∧ Fix(id2 ,) if id1 = id2

and the following mailbox:M = Fix1 (3 ,) ⋅ Fault2 (1 ,) ⋅

Fault3 (2 ,) ⋅ Fault4 (3 ,)

▸ Find a match for Π1 from M
M[1] : ⟨Fix1 (3 ,)⟩ – Not enough messages ×

M[1 ⋅ 2] : ⟨Fix1 (3 ,) ⋅ Fault2 (1 ,)⟩
M[1 ⋅ 2 ⋅ 3] :

⟨Fix1 (3 ,) ⋅ Fault2 (1 ,)⟩ , ⟨Fix1 (3 ,) ⋅ Fault3 (2 ,)⟩

M[1 ⋅ 2 ⋅ 3 ⋅ 4] :

⟨Fix1 (3 ,) ⋅ Fault2 (1 ,)⟩ , ⟨Fix1 (3 ,) ⋅ Fault3 (2 ,)⟩

,

⟨Fix1 (3 ,) ⋅ Fault4 (3 ,)⟩

9 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Brute-force Algorithm for “Fair” Message Matching
Naive algorithm that performs redundant matching attempts
We have that Π1:

Π1 = Fault(id1 ,) ∧ Fix(id2 ,) if id1 = id2

and the following mailbox:M = Fix1 (3 ,) ⋅ Fault2 (1 ,) ⋅

Fault3 (2 ,) ⋅ Fault4 (3 ,)

▸ Find a match for Π1 from M
M[1] : ⟨Fix1 (3 ,)⟩ – Not enough messages ×M[1 ⋅ 2] : ⟨Fix1 (3 ,) ⋅ Fault2 (1 ,)⟩

M[1 ⋅ 2 ⋅ 3] :

⟨Fix1 (3 ,) ⋅ Fault2 (1 ,)⟩ , ⟨Fix1 (3 ,) ⋅ Fault3 (2 ,)⟩

M[1 ⋅ 2 ⋅ 3 ⋅ 4] :

⟨Fix1 (3 ,) ⋅ Fault2 (1 ,)⟩ , ⟨Fix1 (3 ,) ⋅ Fault3 (2 ,)⟩

,

⟨Fix1 (3 ,) ⋅ Fault4 (3 ,)⟩

9 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Brute-force Algorithm for “Fair” Message Matching
Naive algorithm that performs redundant matching attempts
We have that Π1:

Π1 = Fault(id1 ,) ∧ Fix(id2 ,) if id1 = id2

and the following mailbox:M = Fix1 (3 ,) ⋅ Fault2 (1 ,) ⋅ Fault3 (2 ,) ⋅

Fault4 (3 ,)

▸ Find a match for Π1 from M
M[1] : ⟨Fix1 (3 ,)⟩ – Not enough messages ×M[1 ⋅ 2] : ⟨Fix1 (3 ,) ⋅ Fault2 (1 ,)⟩

M[1 ⋅ 2 ⋅ 3] :

⟨Fix1 (3 ,) ⋅ Fault2 (1 ,)⟩ , ⟨Fix1 (3 ,) ⋅ Fault3 (2 ,)⟩

M[1 ⋅ 2 ⋅ 3 ⋅ 4] :

⟨Fix1 (3 ,) ⋅ Fault2 (1 ,)⟩ , ⟨Fix1 (3 ,) ⋅ Fault3 (2 ,)⟩

,

⟨Fix1 (3 ,) ⋅ Fault4 (3 ,)⟩

9 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Brute-force Algorithm for “Fair” Message Matching
Naive algorithm that performs redundant matching attempts
We have that Π1:

Π1 = Fault(id1 ,) ∧ Fix(id2 ,) if id1 = id2

and the following mailbox:M = Fix1 (3 ,) ⋅ Fault2 (1 ,) ⋅ Fault3 (2 ,) ⋅

Fault4 (3 ,)

▸ Find a match for Π1 from M
M[1] : ⟨Fix1 (3 ,)⟩ – Not enough messages ×M[1 ⋅ 2] : ⟨Fix1 (3 ,) ⋅ Fault2 (1 ,)⟩

M[1 ⋅ 2 ⋅ 3] :

⟨Fix1 (3 ,) ⋅ Fault2 (1 ,)⟩ , ⟨Fix1 (3 ,) ⋅ Fault3 (2 ,)⟩
M[1 ⋅ 2 ⋅ 3 ⋅ 4] :

⟨Fix1 (3 ,) ⋅ Fault2 (1 ,)⟩ , ⟨Fix1 (3 ,) ⋅ Fault3 (2 ,)⟩

,

⟨Fix1 (3 ,) ⋅ Fault4 (3 ,)⟩

9 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Brute-force Algorithm for “Fair” Message Matching
Naive algorithm that performs redundant matching attempts
We have that Π1:

Π1 = Fault(id1 ,) ∧ Fix(id2 ,) if id1 = id2

and the following mailbox:M = Fix1 (3 ,) ⋅ Fault2 (1 ,) ⋅ Fault3 (2 ,) ⋅

Fault4 (3 ,)

▸ Find a match for Π1 from M
M[1] : ⟨Fix1 (3 ,)⟩ – Not enough messages ×M[1 ⋅ 2] : ⟨Fix1 (3 ,) ⋅ Fault2 (1 ,)⟩

M[1 ⋅ 2 ⋅ 3] : ⟨Fix1 (3 ,) ⋅ Fault2 (1 ,)⟩

, ⟨Fix1 (3 ,) ⋅ Fault3 (2 ,)⟩
M[1 ⋅ 2 ⋅ 3 ⋅ 4] :

⟨Fix1 (3 ,) ⋅ Fault2 (1 ,)⟩ , ⟨Fix1 (3 ,) ⋅ Fault3 (2 ,)⟩

,

⟨Fix1 (3 ,) ⋅ Fault4 (3 ,)⟩

9 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Brute-force Algorithm for “Fair” Message Matching
Naive algorithm that performs redundant matching attempts
We have that Π1:

Π1 = Fault(id1 ,) ∧ Fix(id2 ,) if id1 = id2

and the following mailbox:M = Fix1 (3 ,) ⋅ Fault2 (1 ,) ⋅ Fault3 (2 ,) ⋅

Fault4 (3 ,)

▸ Find a match for Π1 from M
M[1] : ⟨Fix1 (3 ,)⟩ – Not enough messages ×M[1 ⋅ 2] : ⟨Fix1 (3 ,) ⋅ Fault2 (1 ,)⟩

M[1 ⋅ 2 ⋅ 3] : ⟨Fix1 (3 ,) ⋅ Fault2 (1 ,)⟩ , ⟨Fix1 (3 ,) ⋅ Fault3 (2 ,)⟩

M[1 ⋅ 2 ⋅ 3 ⋅ 4] :

⟨Fix1 (3 ,) ⋅ Fault2 (1 ,)⟩ , ⟨Fix1 (3 ,) ⋅ Fault3 (2 ,)⟩

,

⟨Fix1 (3 ,) ⋅ Fault4 (3 ,)⟩

9 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Brute-force Algorithm for “Fair” Message Matching
Naive algorithm that performs redundant matching attempts
We have that Π1:

Π1 = Fault(id1 ,) ∧ Fix(id2 ,) if id1 = id2

and the following mailbox:M = Fix1 (3 ,) ⋅ Fault2 (1 ,) ⋅ Fault3 (2 ,) ⋅ Fault4 (3 ,)▸ Find a match for Π1 from M
M[1] : ⟨Fix1 (3 ,)⟩ – Not enough messages ×M[1 ⋅ 2] : ⟨Fix1 (3 ,) ⋅ Fault2 (1 ,)⟩

M[1 ⋅ 2 ⋅ 3] : ⟨Fix1 (3 ,) ⋅ Fault2 (1 ,)⟩ , ⟨Fix1 (3 ,) ⋅ Fault3 (2 ,)⟩

M[1 ⋅ 2 ⋅ 3 ⋅ 4] :

⟨Fix1 (3 ,) ⋅ Fault2 (1 ,)⟩ , ⟨Fix1 (3 ,) ⋅ Fault3 (2 ,)⟩

,

⟨Fix1 (3 ,) ⋅ Fault4 (3 ,)⟩

9 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Brute-force Algorithm for “Fair” Message Matching
Naive algorithm that performs redundant matching attempts
We have that Π1:

Π1 = Fault(id1 ,) ∧ Fix(id2 ,) if id1 = id2

and the following mailbox:M = Fix1 (3 ,) ⋅ Fault2 (1 ,) ⋅ Fault3 (2 ,) ⋅ Fault4 (3 ,)▸ Find a match for Π1 from M
M[1] : ⟨Fix1 (3 ,)⟩ – Not enough messages ×M[1 ⋅ 2] : ⟨Fix1 (3 ,) ⋅ Fault2 (1 ,)⟩

M[1 ⋅ 2 ⋅ 3] : ⟨Fix1 (3 ,) ⋅ Fault2 (1 ,)⟩ , ⟨Fix1 (3 ,) ⋅ Fault3 (2 ,)⟩
M[1 ⋅ 2 ⋅ 3 ⋅ 4] : ⟨Fix1 (3 ,) ⋅ Fault2 (1 ,)⟩ , ⟨Fix1 (3 ,) ⋅ Fault3 (2 ,)⟩ ,

⟨Fix1 (3 ,) ⋅ Fault4 (3 ,)⟩

9 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Brute-force Algorithm for “Fair” Message Matching
Naive algorithm that performs redundant matching attempts
We have that Π1:

Π1 = Fault(id1 ,) ∧ Fix(id2 ,) if id1 = id2

and the following mailbox:M = Fix1 (3 ,) ⋅ Fault2 (1 ,) ⋅ Fault3 (2 ,) ⋅ Fault4 (3 ,)▸ Find a match for Π1 from M
M[1] : ⟨Fix1 (3 ,)⟩ – Not enough messages ×M[1 ⋅ 2] : ⟨Fix1 (3 ,) ⋅ Fault2 (1 ,)⟩

M[1 ⋅ 2 ⋅ 3] : ⟨Fix1 (3 ,) ⋅ Fault2 (1 ,)⟩ , ⟨Fix1 (3 ,) ⋅ Fault3 (2 ,)⟩
M[1 ⋅ 2 ⋅ 3 ⋅ 4] : ⟨Fix1 (3 ,) ⋅ Fault2 (1 ,)⟩ , ⟨Fix1 (3 ,) ⋅ Fault3 (2 ,)⟩ , ⟨Fix1 (3 ,) ⋅ Fault4 (3 ,)⟩

9 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Stateful Tree-based Algorithm for “Fair” Message Matching
Use state to track partial matches and avoid redundant matching attempts
Recall that Π1:

Π1 = Fault(id1 ,) ∧ Fix(id2 ,) if id1 = id2

and the following mailbox:M =

Fault1 (1 ,) ⋅ Fault2 (2 ,) ⋅ Fault3 (3 ,) ⋅ Fix4 (3 ,)

Check if id1 = id2

▸ Attempt 1: 1 ≠ 3▸ Attempt 2: 2 ≠ 3▸ Attempt 3: 3 = 3
We don’t record a partial match
Fix4 because we matched ear-
lier

10 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Stateful Tree-based Algorithm for “Fair” Message Matching
Use state to track partial matches and avoid redundant matching attempts
Recall that Π1:

Π1 = Fault(id1 ,) ∧ Fix(id2 ,) if id1 = id2

and the following mailbox:M = Fault1 (1 ,) ⋅

Fault2 (2 ,) ⋅ Fault3 (3 ,) ⋅ Fix4 (3 ,)

Check if id1 = id2

▸ Attempt 1: 1 ≠ 3▸ Attempt 2: 2 ≠ 3▸ Attempt 3: 3 = 3
We don’t record a partial match
Fix4 because we matched ear-
lier

10 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Stateful Tree-based Algorithm for “Fair” Message Matching
Use state to track partial matches and avoid redundant matching attempts
Recall that Π1:

Π1 = Fault(id1 ,) ∧ Fix(id2 ,) if id1 = id2

and the following mailbox:M = Fault1 (1 ,) ⋅

Fault2 (2 ,) ⋅ Fault3 (3 ,) ⋅ Fix4 (3 ,)

Check if id1 = id2▸ Not enough messages to match

▸ Attempt 1: 1 ≠ 3▸ Attempt 2: 2 ≠ 3▸ Attempt 3: 3 = 3
We don’t record a partial match
Fix4 because we matched ear-
lier

10 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Stateful Tree-based Algorithm for “Fair” Message Matching
Use state to track partial matches and avoid redundant matching attempts
Recall that Π1:

Π1 = Fault(id1 ,) ∧ Fix(id2 ,) if id1 = id2

and the following mailbox:M = Fault1 (1 ,) ⋅ Fault2 (2 ,) ⋅

Fault3 (3 ,) ⋅ Fix4 (3 ,)

Check if id1 = id2▸ Not enough messages to match

▸ Attempt 1: 1 ≠ 3▸ Attempt 2: 2 ≠ 3▸ Attempt 3: 3 = 3
We don’t record a partial match
Fix4 because we matched ear-
lier

10 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Stateful Tree-based Algorithm for “Fair” Message Matching
Use state to track partial matches and avoid redundant matching attempts
Recall that Π1:

Π1 = Fault(id1 ,) ∧ Fix(id2 ,) if id1 = id2

and the following mailbox:M = Fault1 (1 ,) ⋅ Fault2 (2 ,) ⋅

Fault3 (3 ,) ⋅ Fix4 (3 ,)

Check if id1 = id2▸ Not enough messages to match

▸ Attempt 1: 1 ≠ 3▸ Attempt 2: 2 ≠ 3▸ Attempt 3: 3 = 3
We don’t record a partial match
Fix4 because we matched ear-
lier

10 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Stateful Tree-based Algorithm for “Fair” Message Matching
Use state to track partial matches and avoid redundant matching attempts
Recall that Π1:

Π1 = Fault(id1 ,) ∧ Fix(id2 ,) if id1 = id2

and the following mailbox:M = Fault1 (1 ,) ⋅ Fault2 (2 ,) ⋅ Fault3 (3 ,) ⋅

Fix4 (3 ,)

Check if id1 = id2▸ Not enough messages to match

▸ Attempt 1: 1 ≠ 3▸ Attempt 2: 2 ≠ 3▸ Attempt 3: 3 = 3
We don’t record a partial match
Fix4 because we matched ear-
lier

10 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Stateful Tree-based Algorithm for “Fair” Message Matching
Use state to track partial matches and avoid redundant matching attempts
Recall that Π1:

Π1 = Fault(id1 ,) ∧ Fix(id2 ,) if id1 = id2

and the following mailbox:M = Fault1 (1 ,) ⋅ Fault2 (2 ,) ⋅ Fault3 (3 ,) ⋅

Fix4 (3 ,)

Check if id1 = id2▸ Not enough messages to match

▸ Attempt 1: 1 ≠ 3▸ Attempt 2: 2 ≠ 3▸ Attempt 3: 3 = 3
We don’t record a partial match
Fix4 because we matched ear-
lier

10 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Stateful Tree-based Algorithm for “Fair” Message Matching
Use state to track partial matches and avoid redundant matching attempts
Recall that Π1:

Π1 = Fault(id1 ,) ∧ Fix(id2 ,) if id1 = id2

and the following mailbox:M = Fault1 (1 ,) ⋅ Fault2 (2 ,) ⋅ Fault3 (3 ,) ⋅ Fix4 (3 ,)
Check if id1 = id2▸ Not enough messages to match

▸ Attempt 1: 1 ≠ 3▸ Attempt 2: 2 ≠ 3▸ Attempt 3: 3 = 3
We don’t record a partial match
Fix4 because we matched ear-
lier

10 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Stateful Tree-based Algorithm for “Fair” Message Matching
Use state to track partial matches and avoid redundant matching attempts
Recall that Π1:

Π1 = Fault(id1 ,) ∧ Fix(id2 ,) if id1 = id2

and the following mailbox:M = Fault1 (1 ,) ⋅ Fault2 (2 ,) ⋅ Fault3 (3 ,) ⋅ Fix4 (3 ,)
Check if id1 = id2

▸ Attempt 1: 1 ≠ 3▸ Attempt 2: 2 ≠ 3▸ Attempt 3: 3 = 3
We don’t record a partial match
Fix4 because we matched ear-
lier

10 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Stateful Tree-based Algorithm for “Fair” Message Matching
Use state to track partial matches and avoid redundant matching attempts
Recall that Π1:

Π1 = Fault(id1 ,) ∧ Fix(id2 ,) if id1 = id2

and the following mailbox:M = Fault1 (1 ,) ⋅ Fault2 (2 ,) ⋅ Fault3 (3 ,) ⋅ Fix4 (3 ,)
Check if id1 = id2▸ Attempt 1: 1 ≠ 3

▸ Attempt 2: 2 ≠ 3▸ Attempt 3: 3 = 3
We don’t record a partial match
Fix4 because we matched ear-
lier

10 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Stateful Tree-based Algorithm for “Fair” Message Matching
Use state to track partial matches and avoid redundant matching attempts
Recall that Π1:

Π1 = Fault(id1 ,) ∧ Fix(id2 ,) if id1 = id2

and the following mailbox:M = Fault1 (1 ,) ⋅ Fault2 (2 ,) ⋅ Fault3 (3 ,) ⋅ Fix4 (3 ,)
Check if id1 = id2

▸ Attempt 1: 1 ≠ 3 ×

▸ Attempt 2: 2 ≠ 3▸ Attempt 3: 3 = 3
We don’t record a partial match
Fix4 because we matched ear-
lier

10 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Stateful Tree-based Algorithm for “Fair” Message Matching
Use state to track partial matches and avoid redundant matching attempts
Recall that Π1:

Π1 = Fault(id1 ,) ∧ Fix(id2 ,) if id1 = id2

and the following mailbox:M = Fault1 (1 ,) ⋅ Fault2 (2 ,) ⋅ Fault3 (3 ,) ⋅ Fix4 (3 ,)
Check if id1 = id2

▸ Attempt 1: 1 ≠ 3 ×

▸ Attempt 2: 2 ≠ 3▸ Attempt 3: 3 = 3
We don’t record a partial match
Fix4 because we matched ear-
lier

10 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Stateful Tree-based Algorithm for “Fair” Message Matching
Use state to track partial matches and avoid redundant matching attempts
Recall that Π1:

Π1 = Fault(id1 ,) ∧ Fix(id2 ,) if id1 = id2

and the following mailbox:M = Fault1 (1 ,) ⋅ Fault2 (2 ,) ⋅ Fault3 (3 ,) ⋅ Fix4 (3 ,)
Check if id1 = id2

▸ Attempt 1: 1 ≠ 3 ×

▸ Attempt 2: 2 ≠ 3▸ Attempt 3: 3 = 3
We don’t record a partial match
Fix4 because we matched ear-
lier

10 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Stateful Tree-based Algorithm for “Fair” Message Matching
Use state to track partial matches and avoid redundant matching attempts
Recall that Π1:

Π1 = Fault(id1 ,) ∧ Fix(id2 ,) if id1 = id2

and the following mailbox:M = Fault1 (1 ,) ⋅ Fault2 (2 ,) ⋅ Fault3 (3 ,) ⋅ Fix4 (3 ,)
Check if id1 = id2

▸ Attempt 1: 1 ≠ 3 ×▸ Attempt 2: 2 ≠ 3

▸ Attempt 3: 3 = 3
We don’t record a partial match
Fix4 because we matched ear-
lier

10 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Stateful Tree-based Algorithm for “Fair” Message Matching
Use state to track partial matches and avoid redundant matching attempts
Recall that Π1:

Π1 = Fault(id1 ,) ∧ Fix(id2 ,) if id1 = id2

and the following mailbox:M = Fault1 (1 ,) ⋅ Fault2 (2 ,) ⋅ Fault3 (3 ,) ⋅ Fix4 (3 ,)
Check if id1 = id2

▸ Attempt 1: 1 ≠ 3 ×
▸ Attempt 2: 2 ≠ 3 ×

▸ Attempt 3: 3 = 3
We don’t record a partial match
Fix4 because we matched ear-
lier

10 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Stateful Tree-based Algorithm for “Fair” Message Matching
Use state to track partial matches and avoid redundant matching attempts
Recall that Π1:

Π1 = Fault(id1 ,) ∧ Fix(id2 ,) if id1 = id2

and the following mailbox:M = Fault1 (1 ,) ⋅ Fault2 (2 ,) ⋅ Fault3 (3 ,) ⋅ Fix4 (3 ,)
Check if id1 = id2

▸ Attempt 1: 1 ≠ 3 ×
▸ Attempt 2: 2 ≠ 3 ×

▸ Attempt 3: 3 = 3
We don’t record a partial match
Fix4 because we matched ear-
lier

10 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Stateful Tree-based Algorithm for “Fair” Message Matching
Use state to track partial matches and avoid redundant matching attempts
Recall that Π1:

Π1 = Fault(id1 ,) ∧ Fix(id2 ,) if id1 = id2

and the following mailbox:M = Fault1 (1 ,) ⋅ Fault2 (2 ,) ⋅ Fault3 (3 ,) ⋅ Fix4 (3 ,)
Check if id1 = id2

▸ Attempt 1: 1 ≠ 3 ×
▸ Attempt 2: 2 ≠ 3 ×

▸ Attempt 3: 3 = 3
We don’t record a partial match
Fix4 because we matched ear-
lier

10 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Stateful Tree-based Algorithm for “Fair” Message Matching
Use state to track partial matches and avoid redundant matching attempts
Recall that Π1:

Π1 = Fault(id1 ,) ∧ Fix(id2 ,) if id1 = id2

and the following mailbox:M = Fault1 (1 ,) ⋅ Fault2 (2 ,) ⋅ Fault3 (3 ,) ⋅ Fix4 (3 ,)
Check if id1 = id2

▸ Attempt 1: 1 ≠ 3 ×
▸ Attempt 2: 2 ≠ 3 ×▸ Attempt 3: 3 = 3

We don’t record a partial match
Fix4 because we matched ear-
lier

10 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Stateful Tree-based Algorithm for “Fair” Message Matching
Use state to track partial matches and avoid redundant matching attempts
Recall that Π1:

Π1 = Fault(id1 ,) ∧ Fix(id2 ,) if id1 = id2

and the following mailbox:M = Fault1 (1 ,) ⋅ Fault2 (2 ,) ⋅ Fault3 (3 ,) ⋅ Fix4 (3 ,)
Check if id1 = id2

▸ Attempt 1: 1 ≠ 3 ×
▸ Attempt 2: 2 ≠ 3 ×▸ Attempt 3: 3 = 3 ✓

We don’t record a partial match
Fix4 because we matched ear-
lier

10 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Stateful Tree-based Algorithm for “Fair” Message Matching
Use state to track partial matches and avoid redundant matching attempts
Recall that Π1:

Π1 = Fault(id1 ,) ∧ Fix(id2 ,) if id1 = id2

and the following mailbox:M = Fault1 (1 ,) ⋅ Fault2 (2 ,) ⋅ Fault3 (3 ,) ⋅ Fix4 (3 ,)
Check if id1 = id2

▸ Attempt 1: 1 ≠ 3 ×
▸ Attempt 2: 2 ≠ 3 ×▸ Attempt 3: 3 = 3 ✓

We don’t record a partial match
Fix4 because we matched ear-
lier

10 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Stateful Tree-based Algorithm for “Fair” Message Matching
Use state to track partial matches and avoid redundant matching attempts
Recall that Π1:

Π1 = Fault(id1 ,) ∧ Fix(id2 ,) if id1 = id2

and the following mailbox:M = Fault1 (1 ,) ⋅ Fault2 (2 ,) ⋅ Fault3 (3 ,) ⋅ Fix4 (3 ,)
Check if id1 = id2

▸ Attempt 1: 1 ≠ 3 ×
▸ Attempt 2: 2 ≠ 3 ×▸ Attempt 3: 3 = 3 ✓

We don’t record a partial match
Fix4 because we matched ear-
lier

10 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Tree Construction (continued)
We now consider the second join pattern Π2:

Π2 = Fault(, t1) ∧ Fault(id2 , t2) ∧ Fix(id3 ,) if id2 = id3 && t2 − t1 > 10min
and the following mailbox:
M = Fault1 (1 , 10 ∶35) ⋅ Fault2 (2 , 10 ∶40) ⋅ Fault3 (3 , 10 ∶55) ⋅ Fix4 (3 , 11 ∶00)

Check if id2 = id3 && t2 − t1 > 10min:

▸ Attempt 1:
1 = 3 && 10 ∶ 40 − 10 ∶ 35 > 10min ×▸ Attempt 2:
3 = 3 && 10 ∶ 55 − 10 ∶ 35 > 10min ✓

We avoid computing (partial)
matches

11 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Tree Construction (continued)
We now consider the second join pattern Π2:

Π2 = Fault(, t1) ∧ Fault(id2 , t2) ∧ Fix(id3 ,) if id2 = id3 && t2 − t1 > 10min
and the following mailbox:
M = Fault1 (1 , 10 ∶35) ⋅ Fault2 (2 , 10 ∶40) ⋅ Fault3 (3 , 10 ∶55) ⋅ Fix4 (3 , 11 ∶00)

Check if id2 = id3 && t2 − t1 > 10min:
▸ Attempt 1:

1 = 3 && 10 ∶ 40 − 10 ∶ 35 > 10min ×▸ Attempt 2:
3 = 3 && 10 ∶ 55 − 10 ∶ 35 > 10min ✓

We avoid computing (partial)
matches

11 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Tree Construction (continued)
We now consider the second join pattern Π2:

Π2 = Fault(, t1) ∧ Fault(id2 , t2) ∧ Fix(id3 ,) if id2 = id3 && t2 − t1 > 10min
and the following mailbox:
M = Fault1 (1 , 10 ∶35) ⋅ Fault2 (2 , 10 ∶40) ⋅ Fault3 (3 , 10 ∶55) ⋅ Fix4 (3 , 11 ∶00)

Check if id2 = id3 && t2 − t1 > 10min:
▸ Attempt 1:

1 = 3 && 10 ∶ 40 − 10 ∶ 35 > 10min ×▸ Attempt 2:
3 = 3 && 10 ∶ 55 − 10 ∶ 35 > 10min ✓

We avoid computing (partial)
matches

11 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Performance Evaluation

0 4 8 12 16 20 24 28 320 4 8 12 16 20 24 28 32
Number of random messages sent

10 2

10 1

100

101

102

103

Ti
m

e
(s

) -
 lo

g
sc

al
e

Smart House benchmark with upto 32 random messages. 5 iterations
Brute-force Algorithm
Stateful Tree-based Algorithm

0

100

101

102

103

104

M
at

ch
es

 p
er

 se
co

nd
 -

lo
g

sc
al

e

Brute-force Algorithm Matches per second
Stateful Tree-based Algorithm Matches per second

Figure: Smart House benchmark based on (Rodriguez-Avila et al. 2021)
12 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Contributions & Future Work
Contributions:▸ Novel specification of fair and deterministic join pattern matching▸ Novel stateful tree-based matching algorithm to avoid redundant

recomputations▸ Proof of correctness of the stateful fair matching algorithm▸ JoinActors: novel Scala 3 library with brute-force & stateful matching▸ Established a benchmark suite to evaluate join pattern matching performance

Future Work:▸ Expand benchmark suite with more examples from the literature▸ Refine and optimise the Scala 3 implementation of join patterns▸ Alternative matching policies▸ Verify join pattern unreachablity

13 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Contributions & Future Work
Contributions:▸ Novel specification of fair and deterministic join pattern matching▸ Novel stateful tree-based matching algorithm to avoid redundant

recomputations▸ Proof of correctness of the stateful fair matching algorithm▸ JoinActors: novel Scala 3 library with brute-force & stateful matching▸ Established a benchmark suite to evaluate join pattern matching performance

Future Work:▸ Expand benchmark suite with more examples from the literature▸ Refine and optimise the Scala 3 implementation of join patterns▸ Alternative matching policies▸ Verify join pattern unreachablity
13 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Smart House Example (Rodriguez-Avila et al. 2021) I

1 case (Motion(_, mStatus, mRoom, t0),
2 AmbientLight(_, value, alRoom, t1),
3 Light(_, lStatus, lRoom, t2)) if bathroomOccupied(...) => ...

4 case (Motion(_, mStatus0, mRoom0, t0),
5 Contact(_, cStatus, cRoom, t1),
6 Motion(_, mStatus1, mRoom1, t2)) if occupiedHome(...) => ...

7 case (Motion(_, mStatus0, mRoom0, t0),
8 Contact(_, cStatus, cRoom, t1),
9 Motion(_, mStatus1, mRoom1, t2)) if emptyHome(...) => ...

13 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Smart House Example (Rodriguez-Avila et al. 2021) II

0 4 8 12 16 20 24 28 320 4 8 12 16 20 24 28 32
Number of random messages sent

10 2

10 1

100

101

102

103

Ti
m

e
(s

) -
 lo

g
sc

al
e

Smart House benchmark with upto 32 random messages. 5 iterations
Brute-force Algorithm
Stateful Tree-based Algorithm

0

100

101

102

103

104

M
at

ch
es

 p
er

 se
co

nd
 -

lo
g

sc
al

e

Brute-force Algorithm Matches per second
Stateful Tree-based Algorithm Matches per second

13 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

JoinActors vs. Evrete Benchmark

0 4 8 12 16 200 4 8 12 16 20

Number of prefix messages

10−1

100

T
im

e
(s

)
-

lo
g

sc
al

e

RETE vs. Stateful Tree-based Algorithm with 20 Prefix Messages

Stateful Tree-based Algorithm

Evrete-based implementation

JoinActors vs. Evrete (lower is better)

0 4 8 12 16 200 4 8 12 16 20

Number of prefix messages

10−1

100

101

T
im

e
(s

)
-

lo
g

sc
al

e

RETE vs. Stateful Tree-based Algorithm with 20 Prefix Messages
With Heavy Guards

Stateful Tree-based Algorithm

Evrete-based implementation

JoinActors vs. Evrete (lower is better)▸ Evrete is a mature and highly optimised RETE-based Java rule engine library▸ JoinActors is our proof-of-concept Scala 3 actor library

13 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Join Patterns Implementation in Scala 3

1 inline def receive[M, T](

2 inline f: ActorRef[M] => PartialFunction[Any, Result[T]]

3): MatchingAlgorithm => Matcher[M, Result[T]]

13 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Macro Expansion & Code Transformation

The body of receive:

1 ...
2 expr.asTerm match
3 case Inlined(_, _, Block(_, Block(stmts, _))) =>
4 stmts.head match
5 case DefDef(_, List(TermParamClause(params)), _, Some(Block(_,

Block(body, _)))) =>↪
6 body.head match
7 case DefDef(_, _, _, Some(Match(_, cases))) =>
8 cases.flatMap { generateJoinPattern[M, T](_) }
9 ...

13 / 13

A problem in concurrency [Tro94]

The solution with semaphores takes about
2 pages of C code [Tro94]!

4 / 11

Applying Concurrency with generative
communication [CG89]

5 / 11

A model-driven approach for multi-robots missions [BTBS26]

Multi-robot application are complex: robots’ interactions are “low-level”

Model-driven development based on BPMN and X-KLAIM lowers barries

6 / 11

Business Process Modelling Notation

7 / 11

Business Process Modelling Notation

8 / 11

From BPMN to X-Klaim [BTBS26]

9 / 11

Klaim

Network-aware programming and generative communication:
X-KLAIM: eXtended Kernel Language for Agents Interaction and Mobility

Network
net MRS {
node Drone { eval(new DroneBehavior(Tractor)) @ self }
node Tractor { eval(new TractorBehavior()) @ self }
}

where

Some processes

proc DroneBehavior(Locality Tractor) {
eval(new WeedHandler(Tractor)) @ self
eval(new TakeOff(”e1”))tractor @ self
in(”e1”) @ self
eval(new Explore(”e2”)) @ self
in(”e2”) @ self
eval(new Land(”e3”)) @ self
in(”e3”) @ self
}

proc TractorBehavior() {
in(WEED POSITION, var Double x, var Double y) @ self
eval(new MoveTo(”e4”, x, y)) @ self
in(”e4”) @ self
eval(new CutGrass(”e5”)) @ self
in(”e5”) @ self
eval(new ReturnToBase(”e6”)) @ self
in(”e6”) @ self

10 / 11

Programming support

11 / 11

[BTBS26] Khalid Bourr, Francesco Tiezzi, Lorenzo Bettini, and Stefano Seriani. Translating
bpmn models into x-klaim programs for developing multi-robot missions.
International Journal on Software Tools for Technology Transfer, pages
1433–2787, January 2026.

[CG89] Nicholas Carriero and David Gelernter. Linda in context.
Communications of the ACM, 32(4):444–458, April 1989.

[FG96] Cedric Fournet and George Gonthier. The reflexive CHAM and the join-calculus.
In Conference Record of POPL ’96: The 23rd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 372–385, St.
Petersburg Beach, Florida, January 1996.

[Tro94] John A. Trono. A new exercise in concurrency.
SIGCSE Bull., 26(3):8–10, September 1994.

11 / 11

