Principles of Concurrent
and
Distributed Programming

Emilio Tuosto

Academic Year 2025/2026

January 2026

1/11

On using the “right” primitives

2/11

Advanced primitives for concurrency

Join patterns are very high-level

Based on the join calculuc [FG96]

Integrated in some programming languages (Erlang, C#, etc.)

We'll see a combination of join patterns and actors

3/11

Introduction
[o)

» Novel specification of fair join pattern matching for actors
> Novel stateful tree-based matching algorithm with proof of correctness

» JoinActors: novel Scala 3 library for actors with fair join pattern matching

1/13

Introduction
oce

What are Join Patterns?

» Coordination mechanism for concurrent message passing programs

» Introduced in Join Calculus (Fournet et al., POPL 1996)

2/13

What are Join Patterns?

» Coordination mechanism for concurrent message passing programs

» Introduced in Join Calculus (Fournet et al., POPL 1996)

» Message passing programs may react to complex message sequences and
conditions

2/13

Introduction
oce

What are Join Patterns?

v

Coordination mechanism for concurrent message passing programs

v

Introduced in Join Calculus (Fournet et al., POPL 1996)

v

Message passing programs may react to complex message sequences and
conditions

v

Join patterns simplify specifying the association of out-of-order messages

2/13

Example
®0

Monitoring a Factory Shop Floor

» The monitoring program must
associate machine Fault notifications
to Fix notifications from workers

3/13

Example
®0

Monitoring a Factory Shop Floor

» The monitoring program must
associate machine Fault notifications
to Fix notifications from workers

» Messages arrive asynchronously and
out-of-order

3/13

Monitoring a Factory Shop Floor

» The monitoring program must
associate machine Fault notifications
to Fix notifications from workers

» Messages arrive asynchronously and
out-of-order

» Monitor reacts to a combination of
messages in the mailbox

3/13

Example
®0

Monitoring a Factory Shop Floor

» The monitoring program must
associate machine Fault notifications
to Fix notifications from workers

» Messages arrive asynchronously and
out-of-order

» Monitor reacts to a combination of
messages in the mailbox

» Traditionally, programmers write
custom code for message association

3/13

Example
®0

Monitoring a Factory Shop Floor

» The monitoring program must
associate machine Fault notifications
to Fix notifications from workers

» Messages arrive asynchronously and
out-of-order

» Monitor reacts to a combination of
messages in the mailbox

» Traditionally, programmers write
custom code for message association
(e.g., Akka/Pekko actors, Socket
programming)

3/13

Example
oce

Factory Shop Monitor Using JoinActors Ky 2 &*
Using our JoinActors library we can declaratively specify di j?g e
F—=
order-independent message associations o T &

1 def monitor() = Actor[...] {

2 receive { (...) = {

3 case (Fault(idl, _), Fix(id2, _)) if idl == id2 => ...

4 case (Fault(_, ts1), Fault(id2, ts2), Fix(id3, _))

5 if id2 == id3 && ts2 - ts1 > TEN_MIN => ...
6 1}

7}

» Uses Scala 3 macros

Join Patterns Formally
[]

Join Patterns More Formally

Let D = II; + Il where

II; = Fault(’/,'dj , ,) A F]'.X(’l/'dg, ,) if id; = ido
I = Fault(_, t;) A Fault(ids,ts) A Fix(ids,_)ifide = ids && to —t; > 10min

Refer to the paper for more details

5/13

Fair Matching
[]

Join Patterns Matching Ko K
The join definition for the factory shop floor monitor is D = I1; + II5 where 7 lessl ©

II; = Fault('zfdz , ,) A FiX(idg, ,) if id; = ido
Il = Fault(,, tj) A Fault(z'dg, fg) A Fix(idg, ,) if idy = idg && ty — t; > 10min

Now consider the following mailbox M:

6/13

Fair Matching
[]

Join Patterns Matching K ®

The join definition for the factory shop floor monitor is D = I1; + II5 where =L

II; = Fault('zfdz , ,) A FiX(idg, ,) if id; = ido
Il = Fault(,, tj) A Fault(z'dg, fg) A Fix(idg, ,) if idy = idg && ty — t; > 10min

Now consider the following mailbox M:
M =

6/13

Fair Matching
[]

Join Patterns Matching K ®

The join definition for the factory shop floor monitor is D = I1; + II5 where =

II; = Fault('zfdz , ,) A Fix(idg, ,) if id; = ido
Il = Fault(,, tj) A Fault(z'dg, fg) A Fix(idg, ,) if idy = idg && ty — t; > 10min

Now consider the following mailbox M:
M = Faulty (1,10:35)-

6/13

Fair Matching
[]

Join Patterns Matching K ®

The join definition for the factory shop floor monitor is D = I1; + II5 where =L

II; = Fault('zfdz , ,) A Fix(idg, ,) if id; = ido
Il = Fault(,, tj) A Fault(z'dg, fg) A Fix(idg, ,) if idy = idg && ty — t; > 10min

Now consider the following mailbox M:
M = Faulty (1,10:35)- Faulte (2,10:40)-

6/13

Fair Matching
[]

Join Patterns Matching K ®

The join definition for the factory shop floor monitor is D = I1; + II5 where =L

II; = Fault(idz , ,) A Fix(idg, ,) if id; = ido
Il = Fault(,, tj) A Fault(z'dg, fg) A Fix(idg./ ,) if idy = idg && ty — t; > 10min

Now consider the following mailbox M:
M = Faulty (1,10:35)- Faulte (2, 10:40)- Faults (3, 10:55)-

6/13

Fair Matching
[]

Join Patterns Matching K ®

The join definition for the factory shop floor monitor is D = I1; + II5 where =L

II; = Fault(idz , ,) A Fix(idg, ,) if id; = ido
Il = Fault(,, tj) A Fault(z'dg, fg) A Fix(idg./ ,) if idy = idg && ty — t; > 10min

Now consider the following mailbox M:
M = Faulty (1,10:35)- Faulte (2, 10:40)- Faults (3, 10:55) Fix4 (3, 11:00)

6/13

Fair Matching
[]

Join Patterns Matching K o

The join definition for the factory shop floor monitor is D = I1; + II5 where =L

II; = Fault(idz , ,) A Fix(idg, ,) if id; = ido
Il = Fault(,, tj) A Fault(z'dg, fg) A Fix(idg./ ,) if idy = idg && ty — t; > 10min

Now consider the following mailbox M:
M = Faulty (1,10:35)- Faulte (2, 10:40)- Faults (3, 10:55) Fix4 (3, 11:00)

» We have many options to match from M.

6/13

Fair Matching
[]

Join Patterns Matching K o

The join definition for the factory shop floor monitor is D = I1; + II5 where "less)

II; = Fault(idz , ,) A Fix(idg, ,) if id; = ido
1l = Fault(,, tj) A Fault(z'dg, fg) A Fix(idg./ ,) if idy = idg && ty — t; > 10min

Now consider the following mailbox M:
M = Faulty (1,10:35)- Faulte (2, 10:40)- Faults (3, 10:55) Fix4 (3, 11:00)

» We have many options to match from M. How and which one do we pick?

6/13

Fair Matching
[]

Join Patterns Matching K o

The join definition for the factory shop floor monitor is D = I1; + II5 where "less)

II; = Fault(idz , ,) A Fix(idg, ,) if id; = ido

1l = Fault(,, tj) A Fault(z'dg, fg) A Fix(idg./ ,) if idy = idg && ty — t; > 10min
Now consider the following mailbox M:

M = Faulty (1,10:35)- Faulte (2, 10:40)- Faults (3, 10:55) Fix4 (3, 11:00)

» We have many options to match from M. How and which one do we pick?
» 11, : ({Faults,Fix,})

6/13

Fair Matching
[]

Join Patterns Matching o %
[[s%
The join definition for the factory shop floor monitor is D = I1; + Il where =

II; = Fault(idz , ,) A Fix(idg, ,) if id; = ido
1l = Fault(,, tj) A Fault(z'dg, fg) A FiX(Z'dg./ ,) if idy = idg && ty — t; > 10min

Now consider the following mailbox M:
M = Faulty (1,10:35) Faulty (2, 10:40) - Faults (3, 10:55) - Fixa (3, 11:00)

» We have many options to match from M. How and which one do we pick?
» 11, : ({Faults,Fix,})
» 11, : ({Fault,,Faults,Fix,}, {Faulty, Faults, Fix,})

6/13

Fair Matching
[]

Join Patterns Matching Ko K
:] e
The join definition for the factory shop floor monitor is D = I1; + II5 where s l%‘% | <

® P W

II; = Fault(idz , ,) A Fix(idg, ,) if id; = ido
1l = Fault(,, t[) A Fault(z'dg, fg) A FiX(Z'd,g)./ ,) if idy = idg && ty — t; > 10min

Now consider the following mailbox M:
M = Faulty (1,10:35) Faulty (2, 10:40) - Faults (3, 10:55) - Fixa (3, 11:00)

» We have many options to match from M. How and which one do we pick?
» 11, : ({Faults,Fix,})
» 11, : ({Fault,,Faults,Fix,}, {Faulty, Faults, Fix,})

> In existing literature, the selection is either

» Non-deterministic choice. This is usually undesirable
» Pick longest-matching sequence

6/13

Fair Matching
®0

Our Proposal: “Fair Match” K _e K
Recall that we have the following D = I1; + 15 where: i X
IT; = Fault(id;,) A Fix(idg,)ifid; = idy £ = Ty

[Ty = Fault(_, t;) A Fault(ids,ts) A Fix(idg,_)if ide = idg && to —t; > 10min

And the following final mailbox configuration:
M = Faulty (1,10:35)-Faulte (2, 10:40)- Faults (3, 10:55) Fixg (3, 11:00)

» A “fair” match is the one that consumes the oldest messages in M
> No message that can be matched is left in the mailbox indefinitely

7/13

Fair Matching
®0

Our Proposal: “Fair Match” K _e K
Recall that we have the following D = I1; + 15 where: S X
IT; = Fault(id;,) A Fix(idg,)ifid; = idy £ = Ty

[Ty = Fault(_, t;) A Fault(ids,ts) A Fix(idg,_)if ide = idg && to —t; > 10min

And the following final mailbox configuration:
M = Faulty (1,10:35)-Faulte (2, 10:40)- Faults (3, 10:55) Fixg (3, 11:00)

» A “fair” match is the one that consumes the oldest messages in M

> No message that can be matched is left in the mailbox indefinitely
» Now we can pick the fairest match from M:

Hl !({Faultg, FiX4})
II, : ({Fault,, Faults, Fix,} ,{Fault,,Faults,Fix,})

7/13

Fair Matching
®0

Our Proposal: “Fair Match” K _e K
Recall that we have the following D = I1; + 15 where: S X
IT; = Fault(id;,) A Fix(idg,)ifid; = idy £ = Ty

[Ty = Fault(_, t;) A Fault(ids,ts) A Fix(idg,_)if ide = idg && to —t; > 10min

And the following final mailbox configuration:
M = Faulty (1,10:35)-Faulte (2, 10:40)- Faults (3, 10:55) Fixg (3, 11:00)

» A “fair” match is the one that consumes the oldest messages in M

> No message that can be matched is left in the mailbox indefinitely
» Now we can pick the fairest match from M:

H1 1({Fau1t3, FiX4})
I, : ({Fault,, Faults, Fix,} ,{Fault,,Faults, Fix,})
D: ({Faults,Fix,}, {Fault;, Faults, Fixs})

7/13

(e]

“Fair”’ Match Formalisation

We have formalised this notion of “fair” join pattern matching declaratively using
inference rules:

Vie{l,...,n}: pjoc=m; Yo
M1 oo My Eg LA A Ly 1Ty

Match Messages Against Pattern

M(Z] =, 11 for some o
M =g 11

Pick Messages From M

MEer 1l V7' (M Er Il = 7 jex I,) Sel . M h
MeTl o7 elect Fairest Matc

» Translate inference rules into a “fair” message matching brute-force algorithm

» Current implementations use matching without fairness e.g. (Haller et al.
COORDINATION 2008, Plociniczak and Eisenbach COORDINATION 2010, Avila et al. 2020)

» Refer to the paper for more details

8/13

Brute-force Algorithm
[]

Brute-force Algorithm for “Fair” Message Matching % L
Naive algorithm that performs redundant matching attempts -
We have that II;: o

II; = Fault(id,,,) A Fix(idg,,) if id; = ids

and the following mailbox:
M =

9/13

Brute-force Algorithm
[]

Brute-force Algorithm for “Fair” Message Matching % L
Naive algorithm that performs redundant matching attempts -
We have that II;: o

II; = Fault(id,,,) A Fix(idg,,) if id; = ids

and the following mailbox:
M = Fixg (3,.) -

9/13

Brute-force Algorithm
[]

Brute-force Algorithm for “Fair” Message Matching % L
Naive algorithm that performs redundant matching attempts -
We have that II;: o

II; = Fault(id,,,) A Fix(idg,,) if id; = ids

and the following mailbox:
M = Fixg (3,.) -
» Find a match for IT; from M
M[1] : (Fixy (3,.))

9/13

Brute-force Algorithm
[]

Brute-force Algorithm for “Fair” Message Matching % L
Naive algorithm that performs redundant matching attempts -
We have that II;: o

II; = Fault(id,,,) A Fix(idg,,) if id; = ids

and the following mailbox:
M = Fixg (3,.) -
» Find a match for IT; from M

M([1] : (Fixy (3,-)) = Not enough messages X

9/13

Brute-force Algorithm
[]

Brute-force Algorithm for “Fair” Message Matching % L
Naive algorithm that performs redundant matching attempts -
We have that II;: o

II; = Fault(id,,,) A Fix(idg,,) if id; = ids

and the following mailbox:
M = Fix; (3,.)- Faulty (1,_)-
» Find a match for IT; from M

M([1] : (Fixy (3,-)) = Not enough messages X

9/13

Brute-force Algorithm
[]

Brute-force Algorithm for “Fair” Message Matching % L
Naive algorithm that performs redundant matching attempts -
We have that II;: o

II; = Fault(id,,,) A Fix(idg,,) if id; = ids

and the following mailbox:
M = Fix; (3,.)- Faulty (1,_)-
» Find a match for IT; from M

M[1] : (Fixy (3,.)) - Not enough messages X
M][1-2] : (Fixq (3,-)-Faults (1,.))

9/13

Brute-force Algorithm
[]

Brute-force Algorithm for “Fair” Message Matching % L
Naive algorithm that performs redundant matching attempts -
We have that II;: o

II; = Fault(id,,,) A Fix(fdg,,) if id; = ids

and the following mailbox:
M = Fix; (3,_)- Faulty (1,_)- Fault3(2,_)-
» Find a match for IT; from M

M([1] : (Fixy (3,.)) - Not enough messages X
M[1-2] + (Fixy (3,.) -Faulty (1,))

9/13

Brute-force Algorithm
[]

Brute-force Algorithm for “Fair” Message Matching % L
Naive algorithm that performs redundant matching attempts -
We have that II;: o

II; = Fault(id,,,) A Fix(fdg,,) if id; = ids

and the following mailbox:
M = Fix; (3,_)- Faulty (1,_)- Fault3(2,_)-
» Find a match for IT; from M

M([1] : (Fixy (3,.)) - Not enough messages X
M[1-2] + (Fixy (3,.) -Faulty (1,))
M[1-2-3]

9/13

Brute-force Algorithm
[]

Brute-force Algorithm for “Fair” Message Matching % L
Naive algorithm that performs redundant matching attempts -
We have that II;: o

II; = Fault(id,,,) A Fix(fdg,,) if id; = ids

and the following mailbox:
M = Fix; (3,_)- Faulty (1,_)- Fault3(2,_)-
» Find a match for IT; from M
M([1] : (Fixy (3,.)) - Not enough messages X
M[1-2] : (Fixy (3,-)-Faults (1,.))
M[1-2-3] :+ (Fixy (3,-) Faulty(1,.))

9/13

Brute-force Algorithm
[]

Brute-force Algorithm for “Fair” Message Matching % L
Naive algorithm that performs redundant matching attempts -
We have that II;: o

II; = Fault(id,,,) A Fix(fdg,,) if id; = ids

and the following mailbox:
M = Fix; (3,_)- Faulty (1,_)- Fault3(2,_)-
» Find a match for IT; from M
M[1] : (Fix; (3,2)) = Not enough messages X
M[1-2] : (Fixy (3,-)-Faults (1,.))
M[1-2-3] + (Fixy (3,.)-Faulty(1,.)) , (Fixy (3,_) Faults(2,.))

9/13

Brute-force Algorithm
[]

Brute-force Algorithm for “Fair” Message Matching % L
Naive algorithm that performs redundant matching attempts & :g‘ﬂg o
We have that II;: o

II; = Fault(id,,,) A Fix(fdg,,) if id; = idy

and the following mailbox:
M = Fix; (3,.)- Faultg (1,_)- Faults(2,_)- Faulty(3,-)
» Find a match for IT; from M
M[1] : (Fix; (3,2)) = Not enough messages X
M[1-2] : (Fixy (3,-)-Faults (1,.))
M[1-2-3] + (Fixy (3,.)-Faulty(1,.)) , (Fixy (3,_) Faults(2,.))

9/13

Brute-force Algorithm
[]

Brute-force Algorithm for “Fair” Message Matching % L
Naive algorithm that performs redundant matching attempts & :g‘ﬂg o
We have that II;: o

II; = Fault(id,,,) A Fix(fdg,,) if id; = idy

and the following mailbox:
M = Fixq (3,.)- Faulte (7,_)- Faultg (2,) Faulty(3,.)
» Find a match for IT; from M

M[1] : (Fix; (3,2)) = Not enough messages X
M([1-2] : (Fix; (3,.)-Faults (1,.))
M[1-2-3] + (Fixq(3,-) -Faulty(1,.)) , (Fixq(3,-) Faults(2,.))
M[1-2-3-4] : (Fixq (5,.) Faulty (7,.)) , (Fixy (3,-)-Faults(2,.)) ,

9/13

Brute-force Algorithm
[]

Brute-force Algorithm for “Fair” Message Matching % L
Naive algorithm that performs redundant matching attempts & :g‘ﬂg o
We have that II;: o

II; = Fault(id,,,) A Fix(fdg,,) if id; = idy

and the following mailbox:
M = Fixq (3,.)- Faulte (7,_)- Faultg (2,) Faulty(3,.)
» Find a match for IT; from M

M[1] : (Fix; (3,2)) = Not enough messages X
M[1-2] + (Fixq(3,-) Faulty(1,.))
M[1-2-3] + (Fixq(3,-) -Faulty(1,.)) , (Fixq(3,-) Faults(2,.))
M[1-2-3-4] + (Fixq(3,-)-Faulty(1,.)) , (Fixq(3,-) -Faults(2,.)) , (Fixy (3,-) Faulty(3,-))

9/13

Stateful Tree-based Algorithm
®0

Stateful Tree-based Algorithm for “Fair” Message Matching

Use state to track partial matches and avoid redundant matching attempts Ko 2 &%
Recall that I1;: R
IT; = Fault(idy,) A Fix(idg,_)if id; = idy W g R
and the following mailbox: B
M =
0 Check if id; = ids

10/13

Stateful Tree-based Algorithm
®0

Stateful Tree-based Algorithm for “Fair” Message Matching

Use state to track partial matches and avoid redundant matching attempts X 2 ax
Recall that I1;: 8% ;%; a8
IT; = Fault(idy,) A Fix(idg,_)if id; = idy &7 = Ty

and the following mailbox:

M = Fault, (Z,,) .

0 Check if 7d; = ids

10/13

Stateful Tree-based Algorithm
®0

Stateful Tree-based Algorithm for “Fair” Message Matching

Use state to track partial matches and avoid redundant matching attempts ~ *» = %
Recall that I1;: 8% :2; 8
IT; = Fault(idy,) A Fix(idg,_)if id; = idy &7 = Ty
and the following mailbox: B
M = Fault, (Z,,) .
0 Check if ’id] = 7(13
L{Faultl} » Not enough messages to match

10/13

Stateful Tree-based Algorithm
®0

Stateful Tree-based Algorithm for “Fair” Message Matching

Use state to track partial matches and avoid redundant matching attempts ~ *. = %
Recall that I1;: 8. :’gﬁg -
IT; = Fault(idy,) A Fix(idg,_)if id; = idy &7 = Ty
and the following mailbox: B
M = Faulty (1,)- Faulty (2,)-
0 Check if ’id] = 7(13
L{Faultl} » Not enough messages to match

10/13

Stateful Tree-based Algorithm
®0

Stateful Tree-based Algorithm for “Fair” Message Matching

Use state to track partial matches and avoid redundant matching attempts X ® &
Recall that I1;: 8% :%; a8
II; = Fault(’édl , ,) A FiX(’idg, ,) if id; = ids ,“.8 g E’,‘&:
and the following mailbox: B
M = Faulty (1,)- Faulty (2,)-
0 Check if ’I:d[= 7(13
{Fault,} » Not enough messages to match
{Fault,}

10/13

Stateful Tree-based Algorithm
®0

Stateful Tree-based Algorithm for “Fair” Message Matching

Use state to track partial matches and avoid redundant matching attempts N 2 o
Recall that I1;: R
IT; = Fault(idy,) A Fix(idg,_)if id; = idy . g Tg
and the following mailbox: B
M = Faulty (1,_)- Faulty(2,_)- Faultz(3,.)-
0 Check if id; = id»
{Fault,} » Not enough messages to match
{Fault,}

10/13

Stateful Tree-based Algorithm
®0

Stateful Tree-based Algorithm for “Fair” Message Matching

Use state to track partial matches and avoid redundant matching attempts %, = %
Recall that I1;: R
IT; = Fault(id;,) A Fix(ide,)ifid; = idy o 5 B

and the following mailbox: B

M = Faulty (1, ,) - Faults (27 ,) - Faults (3,) -

0 Check if ’I:d[= 7(13

| (Fault,} » Not enough messages to match

—{Fault,}

L_{Fault;}

10/13

Stateful Tree-based Algorithm
®0

Stateful Tree-based Algorithm for “Fair” Message Matching

Use state to track partial matches and avoid redundant matching attempts X ® &
Recall that I1;: R
IT; = Fault(id;,) A Fix(ide,)ifid; = idy o 5 B

and the following mailbox: B

M = Faulty (1,)- Faulty (2,)- Faults (5,)- Fixq (3,)

0 Check if ’I:d[= 7(13

| (Fault,} » Not enough messages to match

—{Fault,}

L_{Fault;}

10/13

Stateful Tree-based Algorithm
®0

Stateful Tree-based Algorithm for “Fair” Message Matching

Use state to track partial matches and avoid redundant matching attempts Ko 2 g"&'
Recall that I1;: 8% :%ég a8
IT; = Fault(idy,) A Fix(idg,_)if id; = idy &7 = Ty

and the following mailbox:
M = Faulty (1,)- Faulty (2,)- Faults (5,)- Fixq (3,)

0 Check if 7d; = ids
—{Fault,}

{Fault,,Fix,}

—{Fault,}

L_{Fault;}

10/13

Stateful Tree-based Algorithm
®0

Stateful Tree-based Algorithm for “Fair” Message Matching

Use state to track partial matches and avoid redundant matching attempts Ko 2 g"&'
Recall that I1;: 8% :%ég a8
IT; = Fault(idy,) A Fix(idg,_)if id; = idy &7 = Ty

and the following mailbox:
M = Faulty (1,)- Faulty (2,)- Faults (5,)- Fixq (3,)

0 Check if 7d; = ids

—{Fault,}
. » Attempt 1: 7 + 3
{Fault,,Fix,}

—{Fault,}

L_{Fault;}

10/13

Stateful Tree-based Algorithm
®0

Stateful Tree-based Algorithm for “Fair” Message Matching

Use state to track partial matches and avoid redundant matching attempts X 2 g"&'
Recall that I1;: 8% :%ég a8
IT; = Fault(idy,) A Fix(idg,_)if id; = idy . g T

and the following mailbox:
M = Faulty (1,)- Faulty (2,)- Faults (5,)- Fixq (3,)

¢ Check if id; = idy
—{Fault,}

) » Attempt 1: 7 + 3 X
{Fault,,Fix,}

—{Fault,}

L_{Fault;}

10/13

Stateful Tree-based Algorithm
®0

Stateful Tree-based Algorithm for “Fair” Message Matching

Use state to track partial matches and avoid redundant matching attempts X 2 g"&'
Recall that I1;: 8% :%ég a8
IT; = Fault(idy,) A Fix(idg,_)if id; = idy . g T

and the following mailbox:
M = Faulty (1,)- Faulty (2,)- Faults (5,)- Fixq (3,)

¢ Check if id; = idy
—{Fault,}
fffffffffffff » Attempt 1: 7 = 3 X

—{Fault,}

L_{Fault;}

10/13

Stateful Tree-based Algorithm
®0

Stateful Tree-based Algorithm for “Fair” Message Matching

Use state to track partial matches and avoid redundant matching attempts X 2 g"&'
Recall that I1;: 8% :%ég a8
IT; = Fault(idy,) A Fix(idg,_)if id; = idy . g T

and the following mailbox:
M = Faulty (1,)- Faulty (2,)- Faults (5,)- Fixq (3,)

¢ Check if id; = idy
—{Fault,}
fffffffffffff » Attempt 1: 7 = 3 X

—{Fault,}
{Fault,,Fix,}

L_{Fault;}

10/13

Stateful Tree-based Algorithm
®0

Stateful Tree-based Algorithm for “Fair” Message Matching

Use state to track partial matches and avoid redundant matching attempts X 2 g"&'
Recall that I1;: 8% :’2; a8
II; = Fault(idl , ,) A FiX(’idg, ,) if id; = ido .“.8 E, & &

and the following mailbox:
M = Faulty (1,)- Faulty (2,)- Faults (5,)- Fixq (3,)

¢ Check if id; = idy
—{Fault,}
fffffffffffff » Attempt 1: 7 = 3 X

|_{Fault,} » Attempt 2: 2+ 3

{Fault,,Fix,}

L {Faults}

10/13

Stateful Tree-based Algorithm
®0

Stateful Tree-based Algorithm for “Fair” Message Matchmg

Use state to track partial matches and avoid redundant matching attempts b B g"&'
Recall that I1;: R
II; = Fault(idl , ,) A FiX(’idg, ,) if id; = ido ng ? B @

and the following mailbox:
M = Faulty (1,)- Faulty (2,)- Faults (5,)- Fixq (3,)

] Check if idy = 7(]3
—{Fault,}

» Attempt 1: 7 # 3 X

L {Fault,} » Attempt 2: 2+ 3 X

{Fault,, Fix,}

L_{Fault;}

10/13

Stateful Tree-based Algorithm
®0

Stateful Tree-based Algorithm for “Fair” Message Matchmg

Use state to track partial matches and avoid redundant matching attempts b B g"&'
Recall that I1;: R
II; = Fault(idl , ,) A FiX(’idg, ,) if id; = ido ng ? B @

and the following mailbox:
M = Faulty (1,)- Faulty (2,)- Faults (5,)- Fixq (3,)

] Check if idy = 7(]3
—{Fault,}

» Attempt 1: 7 +# 3 X
—{Falji;;} 77777777 » Attempt 2: 2+ 3 X

L_{Fault;}

10/13

Stateful Tree-based Algorithm
®0

Stateful Tree-based Algorithm for “Fair” Message Matchmg

Use state to track partial matches and avoid redundant matching attempts b B g"&'
Recall that I1;: R
II; = Fault(idl , ,) A FiX(’idg, ,) if id; = ido ng ? B @

and the following mailbox:
M = Faulty (1,)- Faulty (2,)- Faults (5,)- Fixq (3,)

] Check if idy = 7(]3
—{Fault,}

» Attempt 1: 7 +# 3 X
—{Falji;;} 77777777 » Attempt 2: 2+ 3 X

L_{Fault;}

{Faults, Fix,}

10/13

Stateful Tree-based Algorithm
®0

Stateful Tree-based Algorithm for “Fair” Message Matchmg

Use state to track partial matches and avoid redundant matching attempts b B g"&'
Recall that I1;: R
II; = Fault(idl , ,) A FiX(’idg, ,) if id; = ido ng ? B @

and the following mailbox:
M = Faulty (1,)- Faulty (2,)- Faults (5,)- Fixq (3,)

] Check if idy = 7(]3
—{Fault,}

» Attempt 1: 7 # 3 X

L {Fault,} » Attempt 2: 2 + 3 X
Lifaut, Fixix > Attempt 3: 5 -
L {Faults}

{Faults, Fix,}

10/13

Stateful Tree-based Algorithm
®0

Stateful Tree-based Algorithm for “Fair” Message Matchmg

Use state to track partial matches and avoid redundant matching attempts b B g"&'
Recall that I1;: R
II; = Fault(idl , ,) A FiX(’idg, ,) if id; = ido ng ? B @

and the following mailbox:
M = Faulty (1,)- Faulty (2,)- Faults (5,)- Fixq (3,)

] Check if idy = 7(]3
—{Fault,}

» Attempt 1: 7 # 3 X

L {Fault,} » Attempt 2: 2 + 3 X
Lifaut, Fixix > Attempt 3: 5 -
L {Faults}

{Faults, Fix,}

10/13

Stateful Tree-based Algorithm
®0

Stateful Tree-based Algorithm for “Fair” Message Matchmg

Use state to track partial matches and avoid redundant matching attempts b B g"&'
Recall that I1;: R
II; = Fault(idl , ,) A FiX(’idg, ,) if id; = ido ng ? B @

and the following mailbox:
M = Faulty (1,)- Faulty (2,)- Faults (5,)- Fixq (3,)

] Check if idy = 7(]3
—{Fault,}

» Attempt 1: 7 # 3 X

L {Fault,} » Attempt 2: 2 + 3 X
Lifaut, Fixix > Attempt 3: 5 -
L {Faults}

{Faults, Fix,}

10/13

Stateful Tree-based Algorithm
®0

Stateful Tree-based Algorithm for “Fair” Message Matchmg

Use state to track partial matches and avoid redundant matching attempts b B g"&'
Recall that I1;: R
IT; = Fault(idy,) A Fix(idg,_)if id; = idy " L e "

and the following mailbox:
M = Faulty (1,)- Faulty (2,)- Faults (5,)- Fixq (3,)

(] Check if idy = 7(]3
I {Fault,}

» Attempt 1: 7 # 3 X

| {Fault.,} > Attempt 2: 2+3 X
Liaites Fixiix > Attempt 3: -
| (Fault,} We don't record a partlal match
Fixy because we matched ear-

{Fault(;,FiX4} I.
ler
Li{Fixs} 10/13

Stateful Tree-based Algorithm
oce

Tree Construction (continued) x5 K
We now consider the second join pattern Il5: - R

I = Fault(_, ;) A Fault(ids,ts) A Fix(ids,_)ifide = ids && to —t; > 1Oﬂm5ihg Dgs
and the following mailbox:

M = Faulty (1,10:35)- Faulty (2, 10:40)- Faults(3,10:55)- Fixs (3, 11:00)

11/13

Stateful Tree-based Algorithm
oce

Tree Construction (continued) Ko K

We now consider the second join pattern Ils: o o gl
I = Fault(_, ;) A Fault(ids,ts) A Fix(ids,_)ifide = ids && to —t; > 1Qﬂmmé B

B,

and the following mailbox: N

M = Faulty (1,10:35)- Faulty (2, 10:40)- Faults(3,10:55)- Fixs (3, 11:00)

L (Fault,} Check if idy = idy && ty — t; > 10min:

{Fault,,Fault,}
Lpautes Fauies, Fing > Attempt 1.
= 3 && 10: 40 - 10 : 35 > 10min X
L{Faultl,Fault;g,Fim}
| (Faulte) > Attempt 2:
L (Fault,, Fault.) 3=8&& 10:55-10:35 > 10min

L{Faultz, Faults, Fix,}

{Fault,,Faults}

[-{Fault,}
{Faults, Fix,}

—{Fixs} 11/13

Stateful Tree-based Algorithm
oce

Tree Construction (continued) Ko K

We now consider the second join pattern Ils: o o gl
I = Fault(_, ;) A Fault(ids,ts) A Fix(ids,_)ifide = ids && to —t; > 1Qﬂmmé B

B,

and the following mailbox:

M = Fault; (1,10:35)- Faulty(2,10:40)- Faults(3,10:55)- Fixq(3,11:00)

| (Fault,} Check if ids = idg && to — t; > 10min:
{Fault,,Fault,}
Lpautes Fauies, Fing > Attempt 1.

=3 && 10: 40— 10: 35 > 10min X

{Fault,,Faults}
L{Faultl, Faults, Fix,}

| (Fault,} > Attempt 2:
L {Fault,, Faulte} 3=3&& 10:55-10:35 > 10min
raute Faut Fixy We avoid computing (partial)
[-{Fault,}

_ matches
{Faults, Fix,}

—{Fixs} 11/13

Conclusion

Performance Evaluation

5 Smart House benchmark with upto 32 random messages. 5 iterations .
10°- -10
- «—— Brute-force Algorithm --e-- Brute-force Algorithm Matches per second
14 Stateful Tree-based Algorithm --x-- Stateful Tree-based Algorithm Matches per second

Time (s) - log scale
Matches per second - log scale

0 4 8 12 16 20 24 28 32
Number of random messages sent

Figure: Smart House benchmark based on (Rodriguez-Avila et al. 2021)
12/13

Conclusion
(o] }

Contributions & Future Work
Contributions:
» Novel specification of fair and deterministic join pattern matching

> Novel stateful tree-based matching algorithm to avoid redundant
recomputations

» Proof of correctness of the stateful fair matching algorithm
» JoinActors: novel Scala 3 library with brute-force & stateful matching

» Established a benchmark suite to evaluate join pattern matching performance

13/13

Conclusion
(o] }

Contributions & Future Work
Contributions:
» Novel specification of fair and deterministic join pattern matching

> Novel stateful tree-based matching algorithm to avoid redundant
recomputations

» Proof of correctness of the stateful fair matching algorithm
» JoinActors: novel Scala 3 library with brute-force & stateful matching

» Established a benchmark suite to evaluate join pattern matching performance

Future Work:

Expand benchmark suite with more examples from the literature

v

v

Refine and optimise the Scala 3 implementation of join patterns

v

Alternative matching policies

v

Verify join pattern unreachablity

13/13

Appendix
[1 JeleJe)

Smal’t House Examp|e (Rodriguez-Auvila et al. 2021) l

1 case (Motion(_, mStatus, mRoom, t@),
2 AmbientLight(_, value, alRoom, t1),
Light(_, 1Status, 1Room, t2)) if bathroomOccupied(...) => ...

case (Motion(_, mStatus@, mRoom@, t@),
5 Contact(_, cStatus, cRoom, t1),
Motion(_, mStatus1, mRooml, t2)) if occupiedHome(...) => ...

7 case (Motion(_, mStatus@, mRoom@, t@),
Contact(_, cStatus, cRoom, t1),
Motion(_, mStatusl, mRooml, t2)) if emptyHome(...) => ...

13/13

Smart House Examp|e (Rodriguez-Avila et al. 2021) ll

Smart House benchmark with upto 32 random messages. 5 iterations
103+
- e«—=— Brute-force Algorithm

 “— Stateful Tree-based Algorithm

- Brute-force Algorithm Matches per second
- Stateful Tree-based Algorithm Matches per second

Time (s) - log scale

0 4 8 12 16 20 24 28 32
Number of random messages sent

-104

Matches per second - log scale

13/13

JoinActors vs. Evrete Benchmark

RETE vs. Stateful Tree-based Algorithm with 20 Prefix Messages

/

—@— Stateful Tree-based Algorithm

—— Evrete-based implementation

2

33)0

g 10 /

20

= D/a
=

)

g 107t

&

0 4 8 12 16 20
Number of prefix messages

JoinActors vs. Evrete (lower is better)

Time (s) - log scale

RETE vs. Stateful Tree-based Algorithm with 20 Prefix Messages
With Heavy Guards

L —
—

—8— Stateful Tree-based Algorithm

—— Evrete-based implementation

10!
10°

10-!

0 4 8 12 16 20
Number of prefix messages

JoinActors vs. Evrete (lower is better)

> Evrete is a mature and highly optimised RETE-based Java rule engine library

» JoinActors is our proof-of-concept Scala 3 actor library

13/13

Appendix
[e]e]e] Jo)

Join Patterns Implementation in Scala 3

1 inline def receive[M, TI](
2 inline f: ActorRef[M] => PartialFunction[Any, Result[T]]

3): MatchingAlgorithm => Matcher[M, Result[T]]

13/13

Appendix
[ee]e]e])

Macro Expansion & Code Transformation

The body of receive:

1

2 expr.asTerm match

3 case Inlined(_, _, Block(_, Block(stmts, _))) =>

4 stmts.head match

5 case DefDef(_, List(TermParamClause(params)), _, Some(Block(_,
~ Block(body, _)))) =>

6 body.head match

7 case DefDef(_, _, _, Some(Match(_, cases))) =>

8 cases.flatMap { generateJoinPattern[M, T1(_) }

9

13/13

A problem in concurrency [Tro94]

Problem Definition

Santa Claus sleeps in his shop up at the North Pole, and can only be wakened by either all
nine reindeer being back from their year long vacation on the beaches of some tropical island in the
South Pacific, or by some elves who are having some difficulties making the toys. One elf's problem
is never serious enough to wake up Santa (otherwise, he may never get any sleep), so, the elves visit
Santa in a group of three. When three elves are having their problems solved, any other elves wishing
to visit Santa must wait for those elves to return. If Santa wakes up to find three elves waiting at his
shop's door, along with the last reindeer having come back from the tropics, Santa has decided that
the elves can wait until after Christmas, because it is more important to get his sleigh ready as soon
as possible. (It is assumed that the reindeer don't want to leave the tropics, and therefore they stay
there until the last possible moment. They might not even come back, but since Santa is footing the
bill for their year in paradise ... This could also explain the quickness in their delivering of presents,
since the reindeer can't wait to get back to where it is warm.) The penalty for the last reindeer to
arrive is that it must get Santa while the others wait in a warming hut before being harnessed to the
sleigh.

The solution with semaphores takes about
2 pages of C code [Tro94]!

A Solution

The solution that has worked best over the years, and also appears to be the simplest, is
written using C statements and pseudo-code. (Constants are also used in case the number of reindeer
were to change, or if the group size of "solution-secking" elves is modified.) Basically, the reindeer
arrive, update the count of how many have arrived, and the last one wakes up Santa. An elf, upon
discovering a problem, attempts to modify the count for the number of elves with a problem and
either: waits outside Santa's shop if he/she is the first or second such elf; knocks on the door and
wakes up Santa if that elf is the third one; or waits in the elves' shop until the elves currently with
Santa start coming back. (The code for this solution can be found in the Appendix.)

1 receive

2 {reindeer, Pidl} and {reindeer, Pid2) and {reindeer, Pid3}

3 and {reindeer, Pid4} and {reindeer, PidS} and {reindeer, Pidé}

A and {reindeer, Pid7} and {reindeer, Pid8} and {reindeer, Pid9} —>

io:format ("Ho, ho, ho! let’s deliver presents!™n"),

E [Pidl, Pid2, Pid3, Pid4, PidS, Pid6, Pid7, Pids, Pidd];

- {elf, Pidl} and {elf, Pid2} and {elf, Pid3} —>

s io:format ("Ho, ho, ho! Let’s discuss R&D possibilities!™n"),
B [Pidl, Pid2, Pid3]

10 end

4/11

Applying Concurrency with generative
communication [CG89]

5/11

A model-driven approach for multi-robots missions [BTBS26]

Multi-robot application are complex: robots’ interactions are “low-level”

Model-driven development based on BPMN and X-KLAIM lowers barries

X-Klaim
code

Java
code

X-Klaim robotics

application

Jjava_rosbridge
library

Gazebo simulator

6/11

Business Process

Modelling Notation

send
position

30 sec.

not join

Work
Alone

join

8
5 Work
g O—. Explore Alone
&
start H =] ond
|
| arrived
! ! Work
} Together
| | 4 [22]
| | | !
[| 1 !
sition 7 |
——-- fagr PR join notification | | | anva
______ | notification
| | notjoin | |
! e
| | | /s
I | I
| | N |
| | ¥/ |
v (=9 | notify |
notjoin
5 Evaluate | \
£ Position
H I |
get end
position
Move To Help the
is reachable? Explorer

7/11

Business Process

Modelling Notation

send
position

30 sec.

not join

Work
Alone

join

8
5 Work
g O—. Explore Alone
&
start H =] ond
|
| arrived
! ! Work
} Together
| | 4 [22]
| | | !
[| 1 !
sition 7 |
——-- fagr PR join notification | | | anva
______ | notification
| | notjoin | |
! e
| | | /s
I | I
| | N |
| | ¥/ |
v (=9 | notify |
notjoin
5 Evaluate | \
£ Position
H I |
get end
position
Move To Help the
is reachable? Explorer

8/11

From BPMN to X-Klaim [BTBS26]

XOR

AND

Event-Based
(between
messages)

iftcondition)(
translate(P1)
inely@self |

else{
translate(P2)
in(e2)@self |

out(e3)@self

while(condition){
translate(P1)
in(e)@self |

out(e2)@self

eval(new ProcP1())@self
evalinew ProcP2())@self
in(el)@self

in(e2)@self
out(e3)@self

var eventOccured = false
while(leventOccured)]

if(in(m1,vars]) @self within pollTimeout){

eventOceured = true
wanslate(P1)
in(el)@self |

else if(in(m2,vars2) @self within pollTimeout){

eventOccured = true

translate(P2)

in(e2)@self })
out(e3)@self

/ Processes 1o be

// added to the node

proc ProcP1(){
translate(P1)

proc ProcP2(){
translate(P2)

9/11

Klaim

Network-aware programming and generative communication:
X-KLAIM: eXtended Kernel Language for Agents Interaction and Mobility

Network
MRS {

Drone { (new DroneBehavior(Tractor)) @ self }
Tractor { (new TractorBehavior()) @ self }

}

where

Some processes

DroneBehavior(Locality Tractor) {
(new WeedHandler(Tractor)) @ self
(new TakeOff("el”))tractor @ self
("el”) @ self

(new Explore(”e2")) @ self
("e2") @ self

(new Land("e3")) @ self
("e3") @ self

TractorBehavior() {
(WEED_POSITION, Double x, Double y) @ self
(new MoveTo("e4", x, y)) @ self
("ed") @ self
(new CutGrass(”e5")) @ self
("e5”) @ self
(new ReturnToBase("e6")) @ self
("e6”) @ self

10/11

Programming support

2.xklaim Current and Index - Eclipse

xklai - Compare /com

File Edit Navigate Search Project Run Window Help

&

- Bi%~A~i%~0~QA- B85 F~ D G :

=/ Compare MissionRobot2.xklaim Current and Index x
¢ Xklaim Compare
Local: MissionRobot2.xklaim
1package xklaim.missionrobot2
2
3import klava.lLocality
4import xklaim.activities.*
5

Index: MissionRobot2.xklaim (editable)
1package xklaim.missionrobot2
2
3import klava.locality
4import xklaim.activities.*

5
6proc MissionRobot2() {

6proc MissionRobot2() {

}o{ 7 in('Message_2g93ger', val Double x, val Dou

| 7] in('message_2g93ger')eself
8 8
9 Thread.sleep(6000) 9 Thread.sleep(3000)
10 10
11 eval(new MoveTo('Flow_1i95ynf'/* TODO: Pass other necessary args */))@self - : 11 eval(new MoveTo('Flow_1i95ynf', 'robot2',x,y
12 in('Flow_1i95ynf')@self il ! i95ynf ')@self
13
14
15}
16

11/11

[BTBS26] Khalid Bourr, Francesco Tiezzi, Lorenzo Bettini, and Stefano Seriani. Translating

[CG89]

[FG96]

[Tro94]

bpmn models into x-klaim programs for developing multi-robot missions.
International Journal on Software Tools for Technology Transfer, pages
1433-2787, January 2026.

Nicholas Carriero and David Gelernter. Linda in context.
Communications of the ACM, 32(4):444—-458, April 1989.

Cedric Fournet and George Gonthier. The reflexive CHAM and the join-calculus.
In Conference Record of POPL '96: The 23"4 ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 372-385, St.
Petersburg Beach, Florida, January 1996.

John A. Trono. A new exercise in concurrency.
SIGCSE Bull., 26(3):8-10, September 1994.

11/11

