Principles of Concurrent
and
Distributed Programming

Emilio Tuosto

Academic Year 2025/2026

January 2026

1/1

Channel-based

concurrency

slides are courtesy of R. Bruni and F. Bonchi

2/1

Google Go

http://golang.org/

Go features

facilitate building reliable and efficient software
open source

compiled, garbage collected

functional and OO features

statically typed (light type system)

concurrent

Go principles

C, C++, Java:

too much typing (writing verbose code)
and too much typing (writing explicit types)
(and poor concurrency)

Python, JS:
no strict typing, no compiler issues
runtime errors that should be caught statically

Google Go:
compiled, static types, type inference
(and nice concurrency primitives)

Go project
designed by Ken Thompson, Rob Pike, Robert Griesemer

2007: started experimentation at Google
nov 2009: first release (more than 250 contributors)

may 2012: version 1.0 (two yearly releases since 2013)
feb 2025: version 1.24.0

C. Doxsey, Introducing Go (2016). Ch: 1-4, 6-7, 10

Introducing

Go

ccccccccc

Go concurrency

any function can be executed in a separate lightweight thread

go f(x)

goroutines run in the same address space
package sync provides basic synchronisation primitives
programmers are encouraged NOT TO USE THEM!

do not communicate by sharing memory
instead, share memory by communicating

use built-in high-level concurrency primitives:
channels and message passing
(inspired by process algebras)

7

Go channels

channels can be created and passed around

var ch = make(chan int)
creates a channel for transmitting integers
chl = ch
aliasing: ch1 and ch now refers to the same channel
go f(ch)
go g(ch)
f and g share the channel ch

Directionality

channels are alway created bidirectional

var ch = make(chan int)
channel types can be annotated with directionality
var rec <-chan int
rec can only be used to receive integers

var snd chan<- int
snd can only be used to send integers

rec = ch
snd = ch
are valid assignments
rec = snd // invalid!

Go communication

to send a value (like ch/2) ch <- 2
to receive and store in x (like ch?x) x = <- ch
to receive and throw the value away <- ch

to close a channel (by the sender) close(ch)
to check if a channel has been closed (by the receiver)

Xx,0k = <= ch // either value,true or 0,false

Go sync communication

by default the communication is synchronous

BOTH send and receive are BLOCKING!

asynchronous channels can be created
by allocating a buffer of fixed size

var ch = make(chan int, 100)

creates an asynchronous channel of size 100

receive on asynchronous channel is of course still blocking
send is blocking only if the buffer is full

no dedicated type for asynchronous channels:
buffering is a property of values not of types

Go communication

to choose between different options

select {
case X = <- chl: { .. }
case ch2 <- v: { .. }

// both send and receive actions
default: { .. }

}

the selection is made pseudo-randomly among enabled cases
if no case is enabled, the default option is applied

if no case is enabled, and no default option is given

the select blocks until (at least) one case is enabled

12

Example

non-blocking receive

select {
case X = <- ch: { .. }
default: { .. }

receives on x from ch, if data available
otherwise proceeds

Example

wait for first among many (senders)

select {
case x = <- chl: { .. }
case x = <- ch2: { .. }
case x = <- ch3: { ... }
}

receives on x from any of ch1, ch2, ch3, if data available
otherwise waits

Example

wait for first among many (receivers)

select {
case chl <- v : { ..
case ch2 <- v : { ..
case ch3 <-v : { ..

e

sends v to any of ch1, ch2, ch3, if available to receive
otherwise waits

Hello

package main
func main() {

println("Hello")
println("world")

Hello
World

Program exited.

concurrency

42

Hello concurrency

package main

func main() {
// launch a goroutine
go println("Hello")
println("World")
// Hey, what happens? Where is Hello?
// (when main ends all its goroutines are terminated)

World

Program exited.

43

Hello

package main
import "time"

func main() {
// launch a goroutine
go println("Hello")
println("World")
time.Sleep(1000)
// Here is Hello!

World
Hello

Program exited.

concurrency

Hello concurrency

package main

// let's sync on a channel
func main() {
done := make(chan bool)
// launch a goroutine
go func() {
println("Hello")
done <- true // send value true on channel done
)
printin("World")
// wait on channel done, ignore received value
<-done

World
Hello

Program exited.

45

Hello concurrency

package main

// Hello takes a channel for exchanging booleans
func Hello(done chan bool) {
println("Hello")
done <- true // send value true on channel done

}

func main() {
// create a channel for sending booleans
done := make(chan bool)
go Hello(done) // launch a goroutine
println("World")
// wait on channel done, ignore received value
<-done // receive a value from channel done
// this way World may get printed before Hello

World
Hello

Program exited.

46

Hello concurrency

package main

// Hello takes a channel for exchanging booleans
func Hello(done chan bool) {
printin("Hello")
done <- true // send value true on channel done

b2

func main() {
done := make(chan bool)
go Hello(done)
<-done
// this way Hello gets printed before World
printin("World")

Hello
World

Program exited.

47

Hello deadlocks

package main

func main() {

c := make(chan int) // create a channel for sending integers

5 c <- 245 // send 245 (but sending is blocking!)
n = <—C // receive from c and store the value in n
printin(n)

fatal error: all goroutines are asleep — deadlock!
goroutine 1 [chan send]:
main.main()

/tmp/sandbox4275027505/prog.go:5 +0x2d

Program exited.

48

Buffering

package main

func main() {
¢ := make(chan int, 1) // create a buffered channel for sending integers

c <- 245 // send 245 (now sending is not blocking!)
n := <—C // receive from c and store the value in n
println(n)
}
Vi
245

Program exited.

49

Communicating goroutines

package main

func main() {
c := make(chan int)
// do the sending in an anonymous goroutine

go func() {
c <— 245
0
n = <-—c
println(n)
}
245

Program exited.

50

Communicating goroutines

package main

func main() {
c := make(chan int)
// do the sending in an anonymous goroutine
go func() {
c <— 245
0
// avoid to use variable n
printin(<-c)

245

Program exited.

5

Name mobility

channels can be sent over channels (like in zz-calculus)

var mob = make(chan chan int)
a channel for communicating channels

mob <- ch

send the channel ch over mob

Name mobility: secrecy

Name mobility: secrecy

Name mobility

as, bs := () // launch server, get secure channels
go A(as) // launch A
(bs) // run B
}

// returns a pair of channels for communicating to the server
func () (as chan chan , bs chan chan) {
// create two channels
// for sending names of channels for sending integers
as (chan chan)
bs (chan chan)
// launch a goroutine for serving requests
go func() {
for {
// forward messages from as to bs
C := <-as
bs <- ¢
}
0

return // naked return

Name mobility

// for N times:
// creates a channel ch
// sends the channel to the server on as
// sends an integer on ch
func A(as chan chan) {
for i := @0; i < N; i++ {
ch : (chan)
fmt. ("created %v (%T) for sending %v\n", ch, ch, i)
as ch // send ch to the server
ch i // send i on ch

b

// for N times:
// receives a channel ch from the server
// receives an integer on ch
func B(bs chan chan) {
for i 0; i <N; i++ {

ch bs

n ch

fmt. ("received %v on %v\n", n, ch)

Name mobility

package main
import "fmt"
const N = 3

// returns a pair of channels for communicating to the server
func Serv() (as chan chan int, bs chan chan int) {
// create two channels
// for sending names of channels for sending integers
as = make(chan chan int)
bs = make(chan chan int)
// launch a anrnutine far carvina renuecte
created 0xc000076150 (chan int) for sending @
received @ on 0xc000076150
created 0xc@000761c@ (chan int) for sending 1
received 1 on 0xc0000761c0@
created 0xc000076230 (chan int) for sending 2
received 2 on 0xc000076230

Program exited.

55

Closing channels

// for N times
// creates a channel ch
// sends the channel to the server on as
// sends an integer on ch
// then closes the communication with the server
func A(as chan chan) {
for i 9; i <N; i {
ch : (chan)
fmt. ("created %v (%T) for sending %v\n", ch, ch, i)
as ch // send ch to the server
ch i // send i on ch

(as) // close channel as shared with server

S

// while bs has not been closed
// receives a channel ch from the server
// receives an integer on ch
func B(bs chan chan) {
// until bs is active
for ch, ok bs; ok; ch, ok bs {
n ch
fmt. ("received %v on %v\n", n, ch)

("done")

Closing channels

// returns a pair of channels for communicating to the server
func () (as chan chan , bs chan chan) {

// create two channels

// for sending names of channels for sending integers

as (chan chan)

bs (chan chan)

// launch a goroutine for serving requests

go (as, bs)

return // naked return

}

func (as chan chan , bs chan chan) {
// until as is active
for c, ok : as; ok; c, ok as {
// forward messages from as to bs
bs C

(bs) // close channel bs shared with B

Closing channels

package main
import "fmt"
const N = 3

func main() {

as, bs := Serv() // launch server, get secure channels
go A(as) // launch A
B(bs) // run B

}

// returnce a nair nf channelec far coammunicatina +n the caruvar

created 0xc00009e150 (chan int) for sending @
created 0xc00009elc@ (chan int) for sending 1
received @ on 0xc00009e150

received 1 on 0xc00009e1lc@

created 0xc00009e230 (chan int) for sending 2
received 2 on 0xc00009e230

done

Program exited.

58

Actor-based concurrency

wslides are courtesy of R. Bruni and F. Bonchi

ERLANG

3/1

Erlang: a concurrent programming language

http://www.erlang.org/

end _:—iii x\\c‘\
InoS Uddo &

SurdAy orureukp.£

aU/o S
“ ,/0,

dule o goi vyon &l
typing, rlang

ic:t;

o5 /ao
.OOI@NNL
b=

@ Jowir} ‘?_%;, s
P4 Jaudr) m

%, %ﬁ%@%@%ﬂ S
JUdIINOUo?

o) Buissed aBessau 2
BN £ s wde £ [19 ¢

YIS

¥
neurrent,

/) puss

S w3 paen?
7 wefoy ey

Erlang: origins

named after Danish mathematician A. K. Erlang

1986: first experimentation at Ericsson, Sweden
1989: internal use only

1990: sold as a product

1998: open source

Joe Armstrong, “Programming Erlang”, ch.1-5, 11-12

Programmin,
Er%ang g
oltware for

Features

declarative (functional, Prolog) programming

arbitrary size integers, tuples, lists, functions, higher-order
atoms everywhere

dynamically typed

open source

unfriendly syntax

variables are assigned only once

left-to-right evaluation, no posinters, no object-orientation

Features: concurrency

concurrent and distributed programming

asynchronous message passing
(no locks, no mutexes)

fault tolerance

hot swapping code

erlang processes are cheap

automatic memory allocation and garbage collection

can handle large telecom applications

6

Erl

Erlang: erl

erl is the Erlang VM emulator

interactive shell or interpreter, executing read-eval-print loop
programmers enter expressions / declarations one at a time

they are compiled / executed

er| expressions

typical interaction: prompt user’s input

1> command .
value \\\\\
/////// 2>

result \ don’t forget the dot!

next prompt

halt () . to exit the emulator

Erlang modules

functions are organised in modules
one module for source file

filename is module name with suffix .erl
a comment arity declarations end with a dot
\

-module(hello)¥\
-export ([hello/0]).

hello() -> io:format("Hello, world!~n").
function def

module name separator function name argument
10

erl: module loading

compile and load the module

1> c(hello) . invoke the function

{ok,hello}
2> hello:hello()
Hello, world!

ok
I I/ 3>\
return value

next prompt

if you edit hello.erl and do c(hello) again
the new version of the module replaces the old one

Erlang basics

Function definition

separates function clauses with ;
last clause ends with .

variables start with upper-case letters X Head Talil
variables are local to function clauses

function definitions cannot be nested
non-exported functions are local to the module

pattern matching allowed
guards allowed (keyword when)

type-checking is done at runtime

13

Atoms, tuples, lists

numbers: arbitrary size integers, floating point values
(cannot start with .)

atoms: start with lower-case character
(can be single-quoted if needed, don’t use camelCase)
true ok hello world. ‘this is an atom’

tuples: main data constructor

tagged tuples: the first element of the tuple is an atom
we can use pattern matching

{} {movie,”Matrix”} {movie,Title}

lists: can contain elements of any type
we can use pattern matching
[1 [1,2,0k] [H|T] [X,Y,2] [X,Y,Z| Tail]

Funs

funs: anonymous functions (lambda expressions)
can have several arguments and clauses

fun () -> 42 end
fun (X) -> X+1 end
fun (X,Y) -> {X, fun (Z) -> Z+Y end} end

fun (F,X) -> F(X) end

Type test & conversion

is_integer (X)
is float(X)

is_number (X) atom to list(A)
is_atom(X) list to atom(L)
is_tuple(X) tuple to list(T)
is_ list(X) list to tuple(L)

is_ function(X)
is pid(X)

Erlang concurrency

Processes

every Erlang code is executed by a process
processes are implemented by the VM (not by OS threads)

multitasking is preemptive (VM switching and scheduling)
processes need very little memory
switching between processes is very fast

the VM can handle a large number of processes

on multiprocessor/multicore machines, processes can be
scheduled to run in parallel on separate CPUs/cores
using multiple schedulers

different processes may be reading the same program code
at the same time (no variable updates!)
18

each process has a process identifier

pPid = self()

new Erlang processes can be spawned to run functions

Pid = spawn(module, function,arguments)
pPid = spawn(fun () -> .. end)

pPid = spawn(fun £/0)

Pid = spawn(fun m:£/0)

the spawn operation returns immediately
(the return value is the pid of the process)

children pids are available to parent process,
not vice versa (unless passed)

19

Communication

Messages can be sent to pids

pPid ! message

N

called bang
Processes can wait to receive (and select) some message

receive
Patternl when Condl -> Expl;
Pattern2 when Cond2 -> ExpZ2;

Patternk when Condk -> Expk
end

20

Communication

Messages can be sent to pids

pid ' {1,2,3}

N

called bang
Processes can wait to receive (and select) some message

receive

{X} when X>0 -> X;

{X,Y} when Y>X -> X+Y;

{X,Y,Z} when Y>X andalso Z2>Y -> X+2Z;
end

21

Communication

Messages can be sent to pids

pid ' {1,2,3}

N

called bang
Processes can wait to receive (and select) some message

receive
{X} when X>0 -> X;
{X,Y} when Y>X -> X+Y;
{X,Y,Z} when Y>X andalso Z2>Y -> X+2Z;
_ >0
end catch-all

22

Communication

Messages can be sent to pids

pid ' {1,2,3}

N

called bang
Processes can wait to receive (and select) some message

receive
{X} when X>0 -> X;
{X,Y} when Y>X -> X+Y;
{X,Y,Z} when Y>X andalso Z2>Y -> X+2Z;
after 0 -> 0

end \\

timeout 2

Message passing

receive ..
pid ! message

W D=

Message passing

messages are sent asynchronously
(the sender continues immediately)

any value can be sent as a message

each process has a message queue (mailbox)
no size limit, messages are kept until extracted

a message is received when it is extracted from the mailbox
messages are ordered from oldest to newest in the mailbox

the message that is extracted is not necessarily the oldest
(pattern matching can be used, if there is no match
the receiver suspends and keeps waiting)

25

To reply a message, its sender must be known

its pid can be inserted in the message syntax for tuples

pid ! { Mypid , message }/

now the receiver Pid can reply to Mypid

from Mypid

to
Mr. Pid

26

erl session

%% EXAMPLE: permutations

(11) = [[11;
(L) — [[H]|T]

99> c(recursion).

recursion.erl:2:2: Warning: export all flag enabled - all functions

will be exported

{ok, recursion}

100> recursion:perms ("abc") .

["abc", "acb", "bac", "bca", "cab", "cba"]

101> recursion:perms ("abcdef").

["abcdef", "abcdfe", "abcedf", "abcefd", "abcfde", "abcfed",
"abdcef", "abdcfe", "abdecf", "abdefc", "abdfce", "abdfec",
"abecdf", "abecfd", "abedcf", "abedfc", "abefcd", "abefdc",
"abfcde", "abfced", "abfdce", "abfdec", "abfecd", "abfedc",
"acbdef", "acbdfe", "acbedf", "acbefd",
(I N R

58

erl session

%% EXAMPLE: length of a list

([1) —> o;
([_|T]) —= 1 (T).

(L) — (L,0).

([1,Acc) —> Acc;
([_|T1,Acc) —>

%% EXAMPLE: replicate

(0,_) —> I[I;
(N,Term) when N > @ —> [Term|

(N, Term) —>

(0,_,List) —> List;

(T,Acc+1).

(N-1,Term)].

(N, Term, [1).

(N,Term,List) when N > 0 —>

%% EXAMPLE: reverse

(1) —=> [1;

([H[T]) —> [H].
% costs too much!!

(L) — (L, [1).

([1,Acc) —> Acc;
([H|T],Acc) —>

(T, [H|Acc]).

(N-1, Term, [Term|List]).

[Ex. 1] Write a server in erlang to convert temperatures from Celsius degrees
to Fahrenheit degrees and vice versa, using the formula F' = 1.8C' + 32. The
server receives requests of the form (Pid,cs,C) or (Pid,ft, F) and replies
to Pid by sending messages in analogous format. The server can be stopped
by sending the message stop. All the other messages are ignored. Spawn
a copy of the server, send it some temperatures to convert, check out the
results and stop the server.

75

Ex. 1, temp converter

-module(exl).
-export ([convert/0]).

convert() ->
receive

end.

76

Ex. 1, temp converter

-module(exl).
-export ([convert/0]).

convert() ->
receive
{pPid,cs,C} ->

end.

77

Ex. 1, temp converter

-module(exl).
-export ([convert/0]).

convert() ->
receive

{Pid,cs,C} -> pid ! {self(),ft,(1.8 * C) + 32},
convert();

end.

78

Ex. 1, temp converter

-module(exl).
-export ([convert/0]).

convert() ->
receive
{pPid,cs,C} -> pPid ! {self(),ft, (1.8 * C) + 32},
convert();
{pPid,ft,F} ->

end.

79

Ex. 1, temp converter

-module(exl).
-export ([convert/0]).

convert() ->
receive
{pPid,cs,C} -> pPid ! {self(),ft, (1.8 * C) + 32},
convert();
{pid,ft,F} -> pid ! {self(),cs,(F - 32) / 1.8},
convert();

end.

80

Ex. 1, temp converter

-module(exl).
-export ([convert/0]).

convert() ->
receive
{pPid,cs,C} -> pPid ! {self(),ft, (1.8 * C) + 32},
convert();
{pid,ft,F} -> pid ! {self(),cs,(F - 32) / 1.8},
convert();
stop -> true;

end.

8l

Ex. 1, temp converter

-module(exl).
-export ([convert/0]).

convert() ->
receive
{pPid,cs,C} -> pPid ! {self(),ft, (1.8 * C) + 32},
convert();
{pid,ft,F} -> pid ! {self(),cs,(F - 32) / 1.8},
convert();
stop -> true;
_=>
end.

82

Ex. 1, temp converter

-module(exl).
-export ([convert/0]).

convert() ->
receive
{Pid,cs,C} -> pid ! {self(),ft,(1.8 * C) + 32},
convert();
{pid,ft,F} -> pid ! {self(),cs,(F - 32) / 1.8},
convert();
stop -> true;
_ => convert()
end.

83

Eshelle%S) 1a1!ort1:vgr\!)\ p CO nve r"reri

1> c(exl).
{ok,exl}
2>

Ex. 1, temp converter

Eshell V10.2.1 (aggrt with "G)
1> c(exl).

{ok,exl}

2> Conv = spawn(exl,convert,[]).
<0.84.0>

3>

85

Ex. 1, temp converter

Eshell Vv10.2.1 ort with "G)
1> c(exl).

{ok,exl}

2> Conv = spawn(exl,convert,[]).
<0.84.0>

3> Conv ! {self(),cs,23}.
{<0.77.0>,cs,23}
4>

86

Ex. 1, temp converter

Eshell Vv10.2.1 ort with "G)
1> c(exl).

{ok,exl}

2> Conv = spawn(exl,convert,[]).
<0.84.0>

3> Conv ! {self(),cs,23}.
{<0.77.0>,cs,23}
4> receive

4> {Conv,ft,F} -> io:format("23 celsius = ~p fahrenheit~n",[F])
4> end.

23 celsius = 73.4 fahrenheit

ok

5>

87

[Ex. 2] Write an erlang function copy that receives an integer n and if n is
positive it prints n copies of n (one per line). Write an erlang function that
receives a list of integers and spawn an instance of copy for each integer in

the list.

9l

Ex. 2, copy

-module (ex2).
-export ([copy/1,1listCopy/1]).

copy(N) when N > 0 ->

92

Ex. 2, copy

-module (ex2).
-export ([copy/1,1listCopy/1]).

copy(N) when N > 0 -> copy(N,N);

93

Ex. 2, copy

-module (ex2).
-export ([copy/1,1listCopy/1]).

copy(N) when N > 0 -> copy(N,N);
copy(_) ->

94

Ex. 2, copy

-module (ex2).
-export ([copy/1,1listCopy/1]).

copy(N) when N > 0 -> copy(N,N);
copy(_) -> true.

95

Ex. 2, copy

-module (ex2).
-export ([copy/1,1listCopy/1]).

copy(N) when N > 0 -> copy(N,N);
copy(_) -> true.

copy(N,M) when N > 0 ->

96

Ex. 2, copy

-module (ex2).
-export ([copy/1,1listCopy/1]).

copy(N) when N > 0 -> copy(N,N);
copy(_) -> true.

copy(N,M) when N > 0 -> io:format("~p~n",[M]),
copy (N-1,M);

97

Ex. 2, copy

-module (ex2).
-export ([copy/1,1listCopy/1]).

copy(N) when N > 0 -> copy(N,N);
copy(_) -> true.

copy(N,M) when N > 0 -> io:format("~p~n",[M]),

copy (N-1,M);
copy(_,_) -> true.

98

Ex. 2, copy

-module (ex2).
-export ([copy/1,1listCopy/1]).

copy(N) when N > 0 -> copy(N,N);
copy(_) -> true.

copy(N,M) when N > 0 -> io:format("~p~n",[M]),
copy (N-1,M);

copy(_,_) -> true.

listCopy (L) ->

99

Ex. 2, copy

-module (ex2).
-export ([copy/1,1listCopy/1]).

copy(N) when N > 0 -> copy(N,N);
copy(_) -> true.

copy(N,M) when N > 0 -> io:format("~p~n",[M]),
copy (N-1,M);

copy(_,_) -> true.

listCopy (L) -> [|| ¥ <- L].

100

Ex. 2, copy

-module (ex2).
-export ([copy/1,1listCopy/1]).

copy(N) when N > 0 -> copy(N,N);
copy(_) -> true.

copy(N,M) when N > 0 -> io:format("~p~n",[M]),
copy (N-1,M);

copy(_,_) -> true.

listCopy (L) -> [spawn(ex2,copy,[N]) || N <- L].

101

Eshell V10.2.1
1> c(ex2).
{ok,ex2}

2>

(abort with "G)

Ex. 2, co

102

PY

Ex. 2, copy

Eshell V10.2.1 (abort with "G)
1> c(ex2).

{ok,ex2}

2> ex2:listCopy(lists:seq(1,5)).
1

<0.84.0>,<0.85.0>,<0.86.0>,<0.87.0>,<0.88.0>]

o WD WD O WD

w
\

103

