
Principles of Concurrent
and

Distributed Programming

Emilio Tuosto

Academic Year 2025/2026

January 2026

1 / 1

Channel-based
concurrency

slides are courtesy of R. Bruni and F. Bonchi

2 / 1

33

http://golang.org/

Google Go

44

Go features
facilitate building reliable and efficient software

open source

compiled, garbage collected

functional and OO features

statically typed (light type system)

concurrent

55

Go principles
C, C++, Java:
too much typing (writing verbose code)
and too much typing (writing explicit types)
(and poor concurrency)

Python, JS:
no strict typing, no compiler issues
runtime errors that should be caught statically

Google Go:
compiled, static types, type inference
(and nice concurrency primitives)

66

Go project

2007: started experimentation at Google
nov 2009: first release (more than 250 contributors)
may 2012: version 1.0 (two yearly releases since 2013)
feb 2025: version 1.24.0

C. Doxsey, Introducing Go (2016). Ch: 1-4, 6-7, 10

designed by Ken Thompson, Rob Pike, Robert Griesemer

77

Go concurrency
any function can be executed in a separate lightweight thread

go f(x)

goroutines run in the same address space
package sync provides basic synchronisation primitives
programmers are encouraged NOT TO USE THEM!

do not communicate by sharing memory
instead, share memory by communicating

use built-in high-level concurrency primitives:
channels and message passing
(inspired by process algebras)

88

Go channels
channels can be created and passed around

var ch = make(chan int)

creates a channel for transmitting integers

aliasing: ch1 and ch now refers to the same channel

f and g share the channel ch

ch1 = ch

go f(ch)
go g(ch)

99

Directionality
channels are alway created bidirectional

var ch = make(chan int)

channel types can be annotated with directionality

rec can only be used to receive integers
var rec <-chan int

var snd chan<- int
snd can only be used to send integers

rec = ch
snd = ch

are valid assignments
rec = snd // invalid!

1010

Go communication
to send a value (like ch!2) ch <- 2

to receive and store in x (like ch?x)

to receive and throw the value away

x = <- ch

<- ch

to close a channel (by the sender) close(ch)

to check if a channel has been closed (by the receiver)

x,ok = <- ch // either value,true or 0,false

1111

Go sync communication
by default the communication is synchronous

BOTH send and receive are BLOCKING!

creates an asynchronous channel of size 100
receive on asynchronous channel is of course still blocking

asynchronous channels can be created
by allocating a buffer of fixed size

var ch = make(chan int, 100)

send is blocking only if the buffer is full

no dedicated type for asynchronous channels:
buffering is a property of values not of types

1212

Go communication
to choose between different options

select {
 case x = <- ch1: { … }
 case ch2 <- v: { … }
 // both send and receive actions
 default: { … }
}

the selection is made pseudo-randomly among enabled cases
if no case is enabled, the default option is applied
if no case is enabled, and no default option is given
the select blocks until (at least) one case is enabled

1313

Example
non-blocking receive

select {
 case x = <- ch: { … }
 default: { … }
}

receives on x from ch, if data available
otherwise proceeds

1414

Example
wait for first among many (senders)

select {
 case x = <- ch1: { … }
 case x = <- ch2: { … }
 case x = <- ch3: { … }
}

receives on x from any of ch1, ch2, ch3, if data available
otherwise waits

1515

Example
wait for first among many (receivers)

select {
 case ch1 <- v : { … }
 case ch2 <- v : { … }
 case ch3 <- v : { … }
}

sends v to any of ch1, ch2, ch3, if available to receive
otherwise waits

4242

Hello concurrency

4343

Hello concurrency

4444

Hello concurrency

4545

Hello concurrency

4646

Hello concurrency

4747

Hello concurrency

4848

Hello deadlocks

4949

Buffering

5050

Communicating goroutines

5151

Communicating goroutines

1616

Name mobility
channels can be sent over channels (like in -calculus)π

a channel for communicating channels

send the channel ch over mob

var mob = make(chan chan int)

mob <- ch

1717

Name mobility: secrecy

S

<latexit sha1_base64="TN8hXS2Ikx5Axv128O6bLvECOMU=">AAACEHicbVDLSgNBEJz1GeMr6tHLYBA8hd0gqLegF48JmgckS+iddOKQ2QczvWJY8gXeRP/Fm3j1D/wVT+7GICaxTkVVN1WUFylpyLY/raXlldW19dxGfnNre2e3sLffMGGsBdZFqELd8sCgkgHWSZLCVqQRfE9h0xteZX7zHrWRYXBLowhdHwaB7EsBlEq1m26haJfsCfgicaakyKaodgtfnV4oYh8DEgqMaTt2RG4CmqRQOM53YoMRiCEMsJ3SAHw0bjIpOubHsQEKeYSaS8UnIv79SMA3ZuR76aUPdGfmvUz8z2vH1D93ExlEMWEgsiCSCidBRmiZLoC8JzUSQdYcuQy4AA1EqCUHIVIxTieZCVRA+JDW+U1Mx3Lmp1kkjXLJOS1d1MrFyuV0thw7ZEfshDnsjFXYNauyOhMM2SN7Zi/Wk/VqvVnvP6dL1vTngM3A+vgGVLedZA==</latexit>

as •

<latexit sha1_base64="p4bomjorEuhKQN2NkUbJO2GkTvo=">AAACG3icbVC7TgJBFJ3FF+ILpbSZSEysyK4hUTuijSUm8khgQ+4OF5ww+8jMXSPZ4J8YW/0OO2Nr4Wf4B+4ihYCnOjnnPk6OFylpyLa/rNzK6tr6Rn6zsLW9s7tX3D9omjDWAhsiVKFue2BQyQAbJElhO9IIvqew5Y2uMr91j9rIMLilcYSuD8NADqQASqVesdT1ge4kJWAmj10vVgqpVyzbFXsKvkycGSmzGeq94ne3H4rYx4CEAmM6jh2Rm4AmKRROCt3YYARiBEPspDQAH42bTMNP+HFsgEIeoeZS8amIfzcS8I0Z+146mUU1i14m/ud1Yhqcu4kMopgwENkjkgqnj4zQMm0FeV9qJIIsOXIZcAEaiFBLDkKkYpzWNHcUlHKTh/Ek7chZbGSZNE8rTrVycVMt1y5nbeXZITtiJ8xhZ6zGrlmdNZhgY/bMXtir9WS9We/Wx+9ozprtlNgcrM8f9f+i0g==</latexit>

• bs

<latexit sha1_base64="4ks2pV4i4k/fucpZFJYyAqX3Ue0=">AAACG3icbVC7TgJBFJ3FF+ILpbSZSEysyK4hUTuijSUm8khgQ+4OF5ww+8jMXSPZ4J8YW/0OO2Nr4Wf4B+4ihYCnOjnnPk6OFylpyLa/rNzK6tr6Rn6zsLW9s7tX3D9omjDWAhsiVKFue2BQyQAbJElhO9IIvqew5Y2uMr91j9rIMLilcYSuD8NADqQASqVesdT1YqWQHrs+0J2kxDOTXrFsV+wp+DJxZqTMZqj3it/dfihiHwMSCozpOHZEbgKapFA4KXRjgxGIEQyxk9IAfDRuMg0/4cexAQp5hJpLxaci/t1IwDdm7HvpZBbRLHqZ+J/XiWlw7iYyiGLCQGSPSCqcPjJCy7QV5H2pkQiy5MhlwAVoIEItOQiRinFa09xRUMpNHsZZR85iI8ukeVpxqpWLm2q5djlrK88O2RE7YQ47YzV2zeqswQQbs2f2wl6tJ+vNerc+fkdz1mynxOZgff4A9tSi0w==</latexit>

as •

<latexit sha1_base64="p4bomjorEuhKQN2NkUbJO2GkTvo=">AAACG3icbVC7TgJBFJ3FF+ILpbSZSEysyK4hUTuijSUm8khgQ+4OF5ww+8jMXSPZ4J8YW/0OO2Nr4Wf4B+4ihYCnOjnnPk6OFylpyLa/rNzK6tr6Rn6zsLW9s7tX3D9omjDWAhsiVKFue2BQyQAbJElhO9IIvqew5Y2uMr91j9rIMLilcYSuD8NADqQASqVesdT1ge4kJWAmj10vVgqpVyzbFXsKvkycGSmzGeq94ne3H4rYx4CEAmM6jh2Rm4AmKRROCt3YYARiBEPspDQAH42bTMNP+HFsgEIeoeZS8amIfzcS8I0Z+146mUU1i14m/ud1Yhqcu4kMopgwENkjkgqnj4zQMm0FeV9qJIIsOXIZcAEaiFBLDkKkYpzWNHcUlHKTh/Ek7chZbGSZNE8rTrVycVMt1y5nbeXZITtiJ8xhZ6zGrlmdNZhgY/bMXtir9WS9We/Wx+9ozprtlNgcrM8f9f+i0g==</latexit>

A

<latexit sha1_base64="aDBL+/LX88Z98tJQSEHtl+fGZhM=">AAACB3icbVDLTgJBEJzFF+IL9ehlIjHxRHYNiXpDvXiERB4JbEjv0OCE2Udmeo1kwwcYr/od3oxXP8PP8A/cRQ4C1qlS1d3VKS9S0pBtf1m5ldW19Y38ZmFre2d3r7h/0DRhrAU2RKhC3fbAoJIBNkiSwnakEXxPYcsb3WR+6wG1kWFwR+MIXR+GgRxIAZRK9atesWSX7Sn4MnFmpMRmqPWK391+KGIfAxIKjOk4dkRuApqkUDgpdGODEYgRDLGT0gB8NG4yfXTCT2IDFPIINZeKT0X8u5GAb8zY99JJH+jeLHqZ+J/XiWlw4SYyiGLCQGRBJBVOg4zQMm0AeV9qJILsc+Qy4AI0EKGWHIRIxTitZO4oKOUmj+NJ2pGz2MgyaZ6VnUr5sl4pVa9nbeXZETtmp8xh56zKblmNNZhgyJ7ZC3u1nqw36936+B3NWbOdQzYH6/MHzGCaHQ==</latexit>

• bs

<latexit sha1_base64="4ks2pV4i4k/fucpZFJYyAqX3Ue0=">AAACG3icbVC7TgJBFJ3FF+ILpbSZSEysyK4hUTuijSUm8khgQ+4OF5ww+8jMXSPZ4J8YW/0OO2Nr4Wf4B+4ihYCnOjnnPk6OFylpyLa/rNzK6tr6Rn6zsLW9s7tX3D9omjDWAhsiVKFue2BQyQAbJElhO9IIvqew5Y2uMr91j9rIMLilcYSuD8NADqQASqVesdT1YqWQHrs+0J2kxDOTXrFsV+wp+DJxZqTMZqj3it/dfihiHwMSCozpOHZEbgKapFA4KXRjgxGIEQyxk9IAfDRuMg0/4cexAQp5hJpLxaci/t1IwDdm7HvpZBbRLHqZ+J/XiWlw7iYyiGLCQGSPSCqcPjJCy7QV5H2pkQiy5MhlwAVoIEItOQiRinFa09xRUMpNHsZZR85iI8ukeVpxqpWLm2q5djlrK88O2RE7YQ47YzV2zeqswQQbs2f2wl6tJ+vNerc+fkdz1mynxOZgff4A9tSi0w==</latexit>

B

<latexit sha1_base64="L7FLYDfMedF3yFWYndC9a9GBP0I=">AAACB3icbVDLTgJBEJzFF+IL9ehlIjHxRHYNiXojePEIiTwS2JDeocEJs4/M9BrJhg8wXvU7vBmvfoaf4R+4ixwErFOlqrurU16kpCHb/rJya+sbm1v57cLO7t7+QfHwqGXCWAtsilCFuuOBQSUDbJIkhZ1II/iewrY3vsn89gNqI8PgjiYRuj6MAjmUAiiVGrV+sWSX7Rn4KnHmpMTmqPeL371BKGIfAxIKjOk6dkRuApqkUDgt9GKDEYgxjLCb0gB8NG4ye3TKz2IDFPIINZeKz0T8u5GAb8zE99JJH+jeLHuZ+J/XjWl45SYyiGLCQGRBJBXOgozQMm0A+UBqJILsc+Qy4AI0EKGWHIRIxTitZOEoKOUmj5Np2pGz3MgqaV2UnUr5ulEpVWvztvLshJ2yc+awS1Zlt6zOmkwwZM/shb1aT9ab9W59/I7mrPnOMVuA9fkDzgOaHg==</latexit>

• ab

<latexit sha1_base64="oLIYWDbWgHUB+E7/HvDiFaaLbH8=">AAACEHicbVC7TsNAEDyHd3gFKGlOREhUkY0iAV0EDSVIJEEkVrQ+NuGU89m6WyMiK3wEooXvoEO0/AGfwR9gBxdAmGo0s7uzmiBW0pLrfjilmdm5+YXFpfLyyuraemVjs2WjxAhsikhF5jIAi0pqbJIkhZexQQgDhe1geJL77Vs0Vkb6gkYx+iEMtOxLAZRJV90gUQrpHoJeperW3An4NPEKUmUFznqVz+51JJIQNQkF1nY8NyY/BUNSKByXu4nFGMQQBtjJqIYQrZ9OPh7z3cQCRTxGw6XiExF/bqQQWjsKg2wyBLqxf71c/M/rJNQ/9FOp44RQizyIpMJJkBVGZlUgv5YGiSD/HLnUXIABIjSSgxCZmGTd/DoKSvnp3WicdeT9bWSatPZrXr12dF6vNo6LthbZNtthe8xjB6zBTtkZazLBNHtkT+zZeXBenFfn7Xu05BQ7W+wXnPcviteeWw==</latexit>

ab

<latexit sha1_base64="/HDNfb/AUwjKYKsdh+IPQD8eQ7U=">AAACCHicbVDLSgNBEJyNrxhfUY9eBoPgKeyKoN6CXjxGMQ9IltA76cQhsw9mesWw5AfEq36HN/HqX/gZ/oGbdQ8msU5FVXdXU16kpCHb/rIKS8srq2vF9dLG5tb2Tnl3r2nCWAtsiFCFuu2BQSUDbJAkhe1II/iewpY3upr6rQfURobBHY0jdH0YBnIgBVAq3YLXK1fsqp2BLxInJxWWo94rf3f7oYh9DEgoMKbj2BG5CWiSQuGk1I0NRiBGMMROSgPw0bhJ9umEH8UGKOQRai4Vz0T8u5GAb8zY99JJH+jezHtT8T+vE9Pg3E1kEMWEgZgGkVSYBRmhZVoB8r7USATTz5HLgAvQQIRachAiFeO0k5mjoJSbPI4naUfOfCOLpHlSdU6rFzenldpl3laRHbBDdswcdsZq7JrVWYMJNmDP7IW9Wk/Wm/VuffyOFqx8Z5/NwPr8AcaZmqk=</latexit>

m

<latexit sha1_base64="XSdEmDxDoD/oesFiu/JCDpjTH88=">AAACB3icbVDLTgJBEJzFF+IL9ehlIjHxRHYNiXojevEIiYAJbEjv0OCE2Udmeo1kwwcYr/od3oxXP8PP8A/cxT0IWKdKVXdXp7xISUO2/WUVVlbX1jeKm6Wt7Z3dvfL+QduEsRbYEqEK9Z0HBpUMsEWSFN5FGsH3FHa88XXmdx5QGxkGtzSJ0PVhFMihFECp1PT75YpdtWfgy8TJSYXlaPTL371BKGIfAxIKjOk6dkRuApqkUDgt9WKDEYgxjLCb0gB8NG4ye3TKT2IDFPIINZeKz0T8u5GAb8zE99JJH+jeLHqZ+J/XjWl44SYyiGLCQGRBJBXOgozQMm0A+UBqJILsc+Qy4AI0EKGWHIRIxTitZO4oKOUmj5Np2pGz2MgyaZ9VnVr1slmr1K/ytorsiB2zU+awc1ZnN6zBWkwwZM/shb1aT9ab9W59/I4WrHznkM3B+vwBFHOaSQ==</latexit>

1818

S

<latexit sha1_base64="TN8hXS2Ikx5Axv128O6bLvECOMU=">AAACEHicbVDLSgNBEJz1GeMr6tHLYBA8hd0gqLegF48JmgckS+iddOKQ2QczvWJY8gXeRP/Fm3j1D/wVT+7GICaxTkVVN1WUFylpyLY/raXlldW19dxGfnNre2e3sLffMGGsBdZFqELd8sCgkgHWSZLCVqQRfE9h0xteZX7zHrWRYXBLowhdHwaB7EsBlEq1m26haJfsCfgicaakyKaodgtfnV4oYh8DEgqMaTt2RG4CmqRQOM53YoMRiCEMsJ3SAHw0bjIpOubHsQEKeYSaS8UnIv79SMA3ZuR76aUPdGfmvUz8z2vH1D93ExlEMWEgsiCSCidBRmiZLoC8JzUSQdYcuQy4AA1EqCUHIVIxTieZCVRA+JDW+U1Mx3Lmp1kkjXLJOS1d1MrFyuV0thw7ZEfshDnsjFXYNauyOhMM2SN7Zi/Wk/VqvVnvP6dL1vTngM3A+vgGVLedZA==</latexit>

as •

<latexit sha1_base64="p4bomjorEuhKQN2NkUbJO2GkTvo=">AAACG3icbVC7TgJBFJ3FF+ILpbSZSEysyK4hUTuijSUm8khgQ+4OF5ww+8jMXSPZ4J8YW/0OO2Nr4Wf4B+4ihYCnOjnnPk6OFylpyLa/rNzK6tr6Rn6zsLW9s7tX3D9omjDWAhsiVKFue2BQyQAbJElhO9IIvqew5Y2uMr91j9rIMLilcYSuD8NADqQASqVesdT1ge4kJWAmj10vVgqpVyzbFXsKvkycGSmzGeq94ne3H4rYx4CEAmM6jh2Rm4AmKRROCt3YYARiBEPspDQAH42bTMNP+HFsgEIeoeZS8amIfzcS8I0Z+146mUU1i14m/ud1Yhqcu4kMopgwENkjkgqnj4zQMm0FeV9qJIIsOXIZcAEaiFBLDkKkYpzWNHcUlHKTh/Ek7chZbGSZNE8rTrVycVMt1y5nbeXZITtiJ8xhZ6zGrlmdNZhgY/bMXtir9WS9We/Wx+9ozprtlNgcrM8f9f+i0g==</latexit>

• bs

<latexit sha1_base64="4ks2pV4i4k/fucpZFJYyAqX3Ue0=">AAACG3icbVC7TgJBFJ3FF+ILpbSZSEysyK4hUTuijSUm8khgQ+4OF5ww+8jMXSPZ4J8YW/0OO2Nr4Wf4B+4ihYCnOjnnPk6OFylpyLa/rNzK6tr6Rn6zsLW9s7tX3D9omjDWAhsiVKFue2BQyQAbJElhO9IIvqew5Y2uMr91j9rIMLilcYSuD8NADqQASqVesdT1YqWQHrs+0J2kxDOTXrFsV+wp+DJxZqTMZqj3it/dfihiHwMSCozpOHZEbgKapFA4KXRjgxGIEQyxk9IAfDRuMg0/4cexAQp5hJpLxaci/t1IwDdm7HvpZBbRLHqZ+J/XiWlw7iYyiGLCQGSPSCqcPjJCy7QV5H2pkQiy5MhlwAVoIEItOQiRinFa09xRUMpNHsZZR85iI8ukeVpxqpWLm2q5djlrK88O2RE7YQ47YzV2zeqswQQbs2f2wl6tJ+vNerc+fkdz1mynxOZgff4A9tSi0w==</latexit>

as •

<latexit sha1_base64="p4bomjorEuhKQN2NkUbJO2GkTvo=">AAACG3icbVC7TgJBFJ3FF+ILpbSZSEysyK4hUTuijSUm8khgQ+4OF5ww+8jMXSPZ4J8YW/0OO2Nr4Wf4B+4ihYCnOjnnPk6OFylpyLa/rNzK6tr6Rn6zsLW9s7tX3D9omjDWAhsiVKFue2BQyQAbJElhO9IIvqew5Y2uMr91j9rIMLilcYSuD8NADqQASqVesdT1ge4kJWAmj10vVgqpVyzbFXsKvkycGSmzGeq94ne3H4rYx4CEAmM6jh2Rm4AmKRROCt3YYARiBEPspDQAH42bTMNP+HFsgEIeoeZS8amIfzcS8I0Z+146mUU1i14m/ud1Yhqcu4kMopgwENkjkgqnj4zQMm0FeV9qJIIsOXIZcAEaiFBLDkKkYpzWNHcUlHKTh/Ek7chZbGSZNE8rTrVycVMt1y5nbeXZITtiJ8xhZ6zGrlmdNZhgY/bMXtir9WS9We/Wx+9ozprtlNgcrM8f9f+i0g==</latexit>

A

<latexit sha1_base64="aDBL+/LX88Z98tJQSEHtl+fGZhM=">AAACB3icbVDLTgJBEJzFF+IL9ehlIjHxRHYNiXpDvXiERB4JbEjv0OCE2Udmeo1kwwcYr/od3oxXP8PP8A/cRQ4C1qlS1d3VKS9S0pBtf1m5ldW19Y38ZmFre2d3r7h/0DRhrAU2RKhC3fbAoJIBNkiSwnakEXxPYcsb3WR+6wG1kWFwR+MIXR+GgRxIAZRK9atesWSX7Sn4MnFmpMRmqPWK391+KGIfAxIKjOk4dkRuApqkUDgpdGODEYgRDLGT0gB8NG4yfXTCT2IDFPIINZeKT0X8u5GAb8zY99JJH+jeLHqZ+J/XiWlw4SYyiGLCQGRBJBVOg4zQMm0AeV9qJILsc+Qy4AI0EKGWHIRIxTitZO4oKOUmj+NJ2pGz2MgyaZ6VnUr5sl4pVa9nbeXZETtmp8xh56zKblmNNZhgyJ7ZC3u1nqw36936+B3NWbOdQzYH6/MHzGCaHQ==</latexit>

• bs

<latexit sha1_base64="4ks2pV4i4k/fucpZFJYyAqX3Ue0=">AAACG3icbVC7TgJBFJ3FF+ILpbSZSEysyK4hUTuijSUm8khgQ+4OF5ww+8jMXSPZ4J8YW/0OO2Nr4Wf4B+4ihYCnOjnnPk6OFylpyLa/rNzK6tr6Rn6zsLW9s7tX3D9omjDWAhsiVKFue2BQyQAbJElhO9IIvqew5Y2uMr91j9rIMLilcYSuD8NADqQASqVesdT1YqWQHrs+0J2kxDOTXrFsV+wp+DJxZqTMZqj3it/dfihiHwMSCozpOHZEbgKapFA4KXRjgxGIEQyxk9IAfDRuMg0/4cexAQp5hJpLxaci/t1IwDdm7HvpZBbRLHqZ+J/XiWlw7iYyiGLCQGSPSCqcPjJCy7QV5H2pkQiy5MhlwAVoIEItOQiRinFa09xRUMpNHsZZR85iI8ukeVpxqpWLm2q5djlrK88O2RE7YQ47YzV2zeqswQQbs2f2wl6tJ+vNerc+fkdz1mynxOZgff4A9tSi0w==</latexit>

B

<latexit sha1_base64="L7FLYDfMedF3yFWYndC9a9GBP0I=">AAACB3icbVDLTgJBEJzFF+IL9ehlIjHxRHYNiXojePEIiTwS2JDeocEJs4/M9BrJhg8wXvU7vBmvfoaf4R+4ixwErFOlqrurU16kpCHb/rJya+sbm1v57cLO7t7+QfHwqGXCWAtsilCFuuOBQSUDbJIkhZ1II/iewrY3vsn89gNqI8PgjiYRuj6MAjmUAiiVGrV+sWSX7Rn4KnHmpMTmqPeL371BKGIfAxIKjOk6dkRuApqkUDgt9GKDEYgxjLCb0gB8NG4ye3TKz2IDFPIINZeKz0T8u5GAb8zE99JJH+jeLHuZ+J/XjWl45SYyiGLCQGRBJBXOgozQMm0A+UBqJILsc+Qy4AI0EKGWHIRIxTitZOEoKOUmj5Np2pGz3MgqaV2UnUr5ulEpVWvztvLshJ2yc+awS1Zlt6zOmkwwZM/shb1aT9ab9W59/I7mrPnOMVuA9fkDzgOaHg==</latexit>

• ab

<latexit sha1_base64="oLIYWDbWgHUB+E7/HvDiFaaLbH8=">AAACEHicbVC7TsNAEDyHd3gFKGlOREhUkY0iAV0EDSVIJEEkVrQ+NuGU89m6WyMiK3wEooXvoEO0/AGfwR9gBxdAmGo0s7uzmiBW0pLrfjilmdm5+YXFpfLyyuraemVjs2WjxAhsikhF5jIAi0pqbJIkhZexQQgDhe1geJL77Vs0Vkb6gkYx+iEMtOxLAZRJV90gUQrpHoJeperW3An4NPEKUmUFznqVz+51JJIQNQkF1nY8NyY/BUNSKByXu4nFGMQQBtjJqIYQrZ9OPh7z3cQCRTxGw6XiExF/bqQQWjsKg2wyBLqxf71c/M/rJNQ/9FOp44RQizyIpMJJkBVGZlUgv5YGiSD/HLnUXIABIjSSgxCZmGTd/DoKSvnp3WicdeT9bWSatPZrXr12dF6vNo6LthbZNtthe8xjB6zBTtkZazLBNHtkT+zZeXBenFfn7Xu05BQ7W+wXnPcviteeWw==</latexit>

ab •

<latexit sha1_base64="htB+JKgd3Sq4TFCHRUMvabicgxw=">AAACEHicbVC7TsNAEDyHd3gFKGlOREhUkY0iAV0EDSVIJEEkVrQ+NuGU89m6WyMiK3wEooXvoEO0/AGfwR9gBxdAmGo0s7uzmiBW0pLrfjilmdm5+YXFpfLyyuraemVjs2WjxAhsikhF5jIAi0pqbJIkhZexQQgDhe1geJL77Vs0Vkb6gkYx+iEMtOxLAZRJVxDcd4NEKaReperW3An4NPEKUmUFznqVz+51JJIQNQkF1nY8NyY/BUNSKByXu4nFGMQQBtjJqIYQrZ9OPh7z3cQCRTxGw6XiExF/bqQQWjsKg2wyBLqxf71c/M/rJNQ/9FOp44RQizyIpMJJkBVGZlUgv5YGiSD/HLnUXIABIjSSgxCZmGTd/DoKSvnp3WicdeT9bWSatPZrXr12dF6vNo6LthbZNtthe8xjB6zBTtkZazLBNHtkT+zZeXBenFfn7Xu05BQ7W+wXnPcvirmeWw==</latexit>

m

<latexit sha1_base64="XSdEmDxDoD/oesFiu/JCDpjTH88=">AAACB3icbVDLTgJBEJzFF+IL9ehlIjHxRHYNiXojevEIiYAJbEjv0OCE2Udmeo1kwwcYr/od3oxXP8PP8A/cxT0IWKdKVXdXp7xISUO2/WUVVlbX1jeKm6Wt7Z3dvfL+QduEsRbYEqEK9Z0HBpUMsEWSFN5FGsH3FHa88XXmdx5QGxkGtzSJ0PVhFMihFECp1PT75YpdtWfgy8TJSYXlaPTL371BKGIfAxIKjOk6dkRuApqkUDgt9WKDEYgxjLCb0gB8NG4ye3TKT2IDFPIINZeKz0T8u5GAb8zE99JJH+jeLHqZ+J/XjWl44SYyiGLCQGRBJBXOgozQMm0A+UBqJILsc+Qy4AI0EKGWHIRIxTitZO4oKOUmj5Np2pGz2MgyaZ9VnVr1slmr1K/ytorsiB2zU+awc1ZnN6zBWkwwZM/shb1aT9ab9W59/I4WrHznkM3B+vwBFHOaSQ==</latexit>

Name mobility: secrecy

5353

Name mobility

5454

Name mobility

5555

Name mobility

5656

Closing channels

5757

Closing channels

5858

Closing channels

Actor-based concurrency

wslides are courtesy of R. Bruni and F. Bonchi

3 / 1

33

Erlang: a concurrent programming language

http://www.erlang.org/

44

Erlang: origins
named after Danish mathematician A. K. Erlang

1986: first experimentation at Ericsson, Sweden
1989: internal use only
1990: sold as a product
1998: open source

Joe Armstrong, “Programming Erlang”, ch.1-5, 11-12

55

Features
declarative (functional, Prolog) programming

arbitrary size integers, tuples, lists, functions, higher-order

atoms everywhere

dynamically typed

open source

unfriendly syntax

variables are assigned only once

left-to-right evaluation, no pointers, no object-orientation

66

Features: concurrency
concurrent and distributed programming

asynchronous message passing
(no locks, no mutexes)

fault tolerance

hot swapping code

erlang processes are cheap

automatic memory allocation and garbage collection

can handle large telecom applications

Erl

7

88

Erlang: erl

interactive shell or interpreter, executing read-eval-print loop

programmers enter expressions / declarations one at a time

they are compiled / executed

erl is the Erlang VM emulator

99

erl expressions

typical interaction:

1> command .
value
2>

prompt user’s input

result don’t forget the dot!

next prompt

halt(). to exit the emulator

1010

Erlang modules
functions are organised in modules

one module for source file

filename is module name with suffix .erl

% filename hello.erl
-module(hello).
-export([hello/0]).

hello() -> io:format("Hello, world!~n").

a comment declarations end with a dot

module name function name argumentseparator

arity

function def

1111

erl: module loading

1> c(hello) .
{ok,hello}
2> hello:hello() .
Hello, world!
ok
3>

compile and load the module

return value

next prompt

invoke the function

if you edit hello.erl and do c(hello) again
the new version of the module replaces the old one

Erlang basics

12

1313

Function definition
separates function clauses with ;
last clause ends with .

variables start with upper-case letters X Head Tail
variables are local to function clauses

function definitions cannot be nested
non-exported functions are local to the module

pattern matching allowed

guards allowed (keyword when)

type-checking is done at runtime

1414

Atoms, tuples, lists
numbers: arbitrary size integers, floating point values
(cannot start with .)

atoms: start with lower-case character
(can be single-quoted if needed, don’t use camelCase)
true ok hello_world. ’this is an atom’

tuples: main data constructor
tagged tuples: the first element of the tuple is an atom
we can use pattern matching
{} {movie,”Matrix”} {movie,Title}

lists: can contain elements of any type
we can use pattern matching
[] [1,2,ok] [H|T] [X,Y,Z] [X,Y,Z| Tail]

1515

Funs

funs: anonymous functions (lambda expressions)
can have several arguments and clauses

fun () -> 42 end

fun (X) -> X+1 end

fun (X,Y) -> {X, fun (Z) -> Z+Y end} end

fun (F,X) -> F(X) end

1616

Type test & conversion

is_integer(X)
is_float(X)
is_number(X)
is_atom(X)
is_tuple(X)
is_list(X)
is_function(X)
is_pid(X)
…

atom_to_list(A)
list_to_atom(L)
tuple_to_list(T)
list_to_tuple(L)
…

Erlang concurrency

17

1818

Processes
every Erlang code is executed by a process
processes are implemented by the VM (not by OS threads)

multitasking is preemptive (VM switching and scheduling)

processes need very little memory

switching between processes is very fast

the VM can handle a large number of processes
on multiprocessor/multicore machines, processes can be
scheduled to run in parallel on separate CPUs/cores
using multiple schedulers

different processes may be reading the same program code
at the same time (no variable updates!)

1919

Pids
each process has a process identifier

Pid = spawn(module,function,arguments)

Pid = self()

new Erlang processes can be spawned to run functions

Pid = spawn(fun () -> … end)

Pid = spawn(fun f/0)

Pid = spawn(fun m:f/0)

the spawn operation returns immediately
(the return value is the pid of the process)

children pids are available to parent process,
not vice versa (unless passed)

2020

Communication
Messages can be sent to pids

Pid ! message

Processes can wait to receive (and select) some message

receive
 Pattern1 when Cond1 -> Exp1;
 Pattern2 when Cond2 -> Exp2;
 ...
 Patternk when Condk -> Expk
end

called bang

2121

Communication
Messages can be sent to pids

Pid ! {1,2,3}

Processes can wait to receive (and select) some message

receive
 {X} when X>0 -> X;
 {X,Y} when Y>X -> X+Y;
 {X,Y,Z} when Y>X andalso Z>Y -> X+Z;
end

called bang

First matching clause for first message,
if none, first matching clause for second message,
if none, ...
if none it blocks (all messages are kept)

2222

Communication
Messages can be sent to pids

Pid ! {1,2,3}

Processes can wait to receive (and select) some message

receive
 {X} when X>0 -> X;
 {X,Y} when Y>X -> X+Y;
 {X,Y,Z} when Y>X andalso Z>Y -> X+Z;
 _ -> 0
end

called bang

First matching clause for first message
(the last clause, called catch-all, will match anyway)

2323

Communication
Messages can be sent to pids

Pid ! {1,2,3}

Processes can wait to receive (and select) some message

receive
 {X} when X>0 -> X;
 {X,Y} when Y>X -> X+Y;
 {X,Y,Z} when Y>X andalso Z>Y -> X+Z;
 after 0 -> 0
end

called bang

First matching clause for first message,
if none, first matching clause for second message,
if none, ...
if none it evaluates to 0 (all messages are kept)timeout

2424

Message passing

Pid ! message

Pid

receive … end

2525

Message passing
messages are sent asynchronously
(the sender continues immediately)

any value can be sent as a message

each process has a message queue (mailbox)
no size limit, messages are kept until extracted

messages are ordered from oldest to newest in the mailbox

a message is received when it is extracted from the mailbox

the message that is extracted is not necessarily the oldest
(pattern matching can be used, if there is no match
the receiver suspends and keeps waiting)

2626

Reply
To reply a message, its sender must be known

its pid can be inserted in the message

Pid ! { Mypid , message }

now the receiver Pid can reply to Mypid

syntax for tuples

to
Mr. Pid

from Mypid

5858

erl session

99> c(recursion).
recursion.erl:2:2: Warning: export_all flag enabled - all functions
will be exported
{ok,recursion}
100> recursion:perms("abc").
["abc","acb","bac","bca","cab","cba"]
101> recursion:perms("abcdef").
["abcdef","abcdfe","abcedf","abcefd","abcfde","abcfed",
 "abdcef","abdcfe","abdecf","abdefc","abdfce","abdfec",
 "abecdf","abecfd","abedcf","abedfc","abefcd","abefdc",
 "abfcde","abfced","abfdce","abfdec","abfecd","abfedc",
 "acbdef","acbdfe","acbedf","acbefd",
 [...]|...]

5959

erl session

75

Principles for software composition 2019/20
06 - Erlang and CCS

[Ex. 1] Write a server in erlang to convert temperatures from Celsius degrees
to Fahrenheit degrees and vice versa, using the formula F = 1.8C + 32. The
server receives requests of the form (Pid , cs, C) or (Pid , ft, F) and replies
to Pid by sending messages in analogous format. The server can be stopped
by sending the message stop. All the other messages are ignored. Spawn
a copy of the server, send it some temperatures to convert, check out the
results and stop the server.

[Ex. 2] Write an erlang function copy that receives an integer n and if n is
positive it prints n copies of n (one per line). Write an erlang function that
receives a list of integers and spawn an instance of copy for each integer in
the list.

[Ex. 3] Define a CCS process Bn
k that represents an in/out bu↵er with

capacity n of which k positions are taken. Show that Bn
0 is strongly bisimilar

to n copies of B1
0 that run in parallel.

[Ex. 4] Write a guarded CCS process whose LTS has infinitely many states
without using parallel composition.

[Ex. 5] Prove that CCS strong bisimilarity is a congruence w.r.t. restriction,
i.e., that for all p, q, ↵:

p ' q) p\↵ ' q\↵

[Ex. 6] Prove that the CCS agents

p
def
= ↵.(↵.�.nil + ↵.(�.nil + �.nil)) and q

def
= ↵.(↵.�.nil + ↵.�.nil)

are not strong bisimilar.

[Ex. 7] Let us consider the guarded CCS processes

p
def
= rec x.(↵.x + �.x) q

def
= rec y.(↵.nil + �.y) r

def
= rec z.(�.nil + �.z)

1. Draw the LTSs of the processes p, q, r and s
def
= (p|q|r)\↵\�\�.

2. Show that s is strong bisimilar to the process t
def
= rec w.(⌧.w+⌧.⌧.nil).

[Ex. 8] Prove that the following property is valid for any agent p, where ⇡
is the weak bisimilarity:

p + ⌧.p ⇡ ⌧.p

7676

Ex. 1, temp converter
-module(ex1).
-export([convert/0]).

convert() ->
 receive
 {Pid,cs,C} -> Pid ! {self(),ft,(1.8 * C) + 32},
 convert();
 {Pid,ft,F} -> Pid ! {self(),cs,(F - 32) / 1.8},
 convert();
 stop -> true;
 _ -> convert()
 end.

7777

Ex. 1, temp converter
-module(ex1).
-export([convert/0]).

convert() ->
 receive
 {Pid,cs,C} -> Pid ! {self(),ft,(1.8 * C) + 32},
 convert();
 {Pid,ft,F} -> Pid ! {self(),cs,(F - 32) / 1.8},
 convert();
 stop -> true;
 _ -> convert()
 end.

7878

Ex. 1, temp converter
-module(ex1).
-export([convert/0]).

convert() ->
 receive
 {Pid,cs,C} -> Pid ! {self(),ft,(1.8 * C) + 32},
 convert();
 {Pid,ft,F} -> Pid ! {self(),cs,(F - 32) / 1.8},
 convert();
 stop -> true;
 _ -> convert()
 end.

7979

Ex. 1, temp converter
-module(ex1).
-export([convert/0]).

convert() ->
 receive
 {Pid,cs,C} -> Pid ! {self(),ft,(1.8 * C) + 32},
 convert();
 {Pid,ft,F} -> Pid ! {self(),cs,(F - 32) / 1.8},
 convert();
 stop -> true;
 _ -> convert()
 end.

8080

Ex. 1, temp converter
-module(ex1).
-export([convert/0]).

convert() ->
 receive
 {Pid,cs,C} -> Pid ! {self(),ft,(1.8 * C) + 32},
 convert();
 {Pid,ft,F} -> Pid ! {self(),cs,(F - 32) / 1.8},
 convert();
 stop -> true;
 _ -> convert()
 end.

8181

Ex. 1, temp converter
-module(ex1).
-export([convert/0]).

convert() ->
 receive
 {Pid,cs,C} -> Pid ! {self(),ft,(1.8 * C) + 32},
 convert();
 {Pid,ft,F} -> Pid ! {self(),cs,(F - 32) / 1.8},
 convert();
 stop -> true;
 _ -> convert()
 end.

8282

Ex. 1, temp converter
-module(ex1).
-export([convert/0]).

convert() ->
 receive
 {Pid,cs,C} -> Pid ! {self(),ft,(1.8 * C) + 32},
 convert();
 {Pid,ft,F} -> Pid ! {self(),cs,(F - 32) / 1.8},
 convert();
 stop -> true;
 _ -> convert()
 end.

8383

Ex. 1, temp converter
-module(ex1).
-export([convert/0]).

convert() ->
 receive
 {Pid,cs,C} -> Pid ! {self(),ft,(1.8 * C) + 32},
 convert();
 {Pid,ft,F} -> Pid ! {self(),cs,(F - 32) / 1.8},
 convert();
 stop -> true;
 _ -> convert()
 end.

8484

Eshell V10.2.1 (abort with ^G)
1> c(ex1).
{ok,ex1}
2> Conv = spawn(ex1,convert,[]).
<0.84.0>
3> Conv ! {self(),cs,23}.
{<0.77.0>,cs,23}
4> receive
4> {Conv,ft,F} -> io:format("23 celsius = ~p fahrenheit~n",[F])
4> end.
23 celsius = 73.4 fahrenheit
ok
5> Conv ! {self(),ft,74}.
{<0.77.0>,ft,74}
6> receive
6> {Conv,cs,C} -> io:format("74 fahrenheit = ~p celsius~n",[C])
6> end.
74 fahrenheit = 23.333333333333332 celsius
ok
7> Conv ! stop.
stop
8>

Ex. 1, temp converter

8585

Eshell V10.2.1 (abort with ^G)
1> c(ex1).
{ok,ex1}
2> Conv = spawn(ex1,convert,[]).
<0.84.0>
3> Conv ! {self(),cs,23}.
{<0.77.0>,cs,23}
4> receive
4> {Conv,ft,F} -> io:format("23 celsius = ~p fahrenheit~n",[F])
4> end.
23 celsius = 73.4 fahrenheit
ok
5> Conv ! {self(),ft,74}.
{<0.77.0>,ft,74}
6> receive
6> {Conv,cs,C} -> io:format("74 fahrenheit = ~p celsius~n",[C])
6> end.
74 fahrenheit = 23.333333333333332 celsius
ok
7> Conv ! stop.
stop
8>

Ex. 1, temp converter

8686

Eshell V10.2.1 (abort with ^G)
1> c(ex1).
{ok,ex1}
2> Conv = spawn(ex1,convert,[]).
<0.84.0>
3> Conv ! {self(),cs,23}.
{<0.77.0>,cs,23}
4> receive
4> {Conv,ft,F} -> io:format("23 celsius = ~p fahrenheit~n",[F])
4> end.
23 celsius = 73.4 fahrenheit
ok
5> Conv ! {self(),ft,74}.
{<0.77.0>,ft,74}
6> receive
6> {Conv,cs,C} -> io:format("74 fahrenheit = ~p celsius~n",[C])
6> end.
74 fahrenheit = 23.333333333333332 celsius
ok
7> Conv ! stop.
stop
8>

Ex. 1, temp converter

8787

Eshell V10.2.1 (abort with ^G)
1> c(ex1).
{ok,ex1}
2> Conv = spawn(ex1,convert,[]).
<0.84.0>
3> Conv ! {self(),cs,23}.
{<0.77.0>,cs,23}
4> receive
4> {Conv,ft,F} -> io:format("23 celsius = ~p fahrenheit~n",[F])
4> end.
23 celsius = 73.4 fahrenheit
ok
5> Conv ! {self(),ft,74}.
{<0.77.0>,ft,74}
6> receive
6> {Conv,cs,C} -> io:format("74 fahrenheit = ~p celsius~n",[C])
6> end.
74 fahrenheit = 23.333333333333332 celsius
ok
7> Conv ! stop.
stop
8>

Ex. 1, temp converter

91

Principles for software composition 2019/20
06 - Erlang and CCS

[Ex. 1] Write a server in erlang to convert temperatures from Celsius degrees
to Fahrenheit degrees and vice versa, using the formula F = 1.8C + 32. The
server receives requests of the form (Pid , cs, C) or (Pid , ft, F) and replies
to Pid by sending messages in analogous format. The server can be stopped
by sending the message stop. All the other messages are ignored. Spawn
a copy of the server, send it some temperatures to convert, check out the
results and stop the server.

[Ex. 2] Write an erlang function copy that receives an integer n and if n is
positive it prints n copies of n (one per line). Write an erlang function that
receives a list of integers and spawn an instance of copy for each integer in
the list.

[Ex. 3] Define a CCS process Bn
k that represents an in/out bu↵er with

capacity n of which k positions are taken. Show that Bn
0 is strongly bisimilar

to n copies of B1
0 that run in parallel.

[Ex. 4] Write a guarded CCS process whose LTS has infinitely many states
without using parallel composition.

[Ex. 5] Prove that CCS strong bisimilarity is a congruence w.r.t. restriction,
i.e., that for all p, q, ↵:

p ' q) p\↵ ' q\↵

[Ex. 6] Prove that the CCS agents

p
def
= ↵.(↵.�.nil + ↵.(�.nil + �.nil)) and q

def
= ↵.(↵.�.nil + ↵.�.nil)

are not strong bisimilar.

[Ex. 7] Let us consider the guarded CCS processes

p
def
= rec x.(↵.x + �.x) q

def
= rec y.(↵.nil + �.y) r

def
= rec z.(�.nil + �.z)

1. Draw the LTSs of the processes p, q, r and s
def
= (p|q|r)\↵\�\�.

2. Show that s is strong bisimilar to the process t
def
= rec w.(⌧.w+⌧.⌧.nil).

[Ex. 8] Prove that the following property is valid for any agent p, where ⇡
is the weak bisimilarity:

p + ⌧.p ⇡ ⌧.p

9292

Ex. 2, copy
-module(ex2).
-export([copy/1,listCopy/1]).

copy(N) when N > 0 -> copy(N,N);
copy(_) -> true.

copy(N,M) when N > 0 -> io:format("~p~n",[M]),
 copy(N-1,M);
copy(_,_) -> true.

listCopy(L) -> [spawn(ex2,copy,[N]) || N <- L].

9393

Ex. 2, copy
-module(ex2).
-export([copy/1,listCopy/1]).

copy(N) when N > 0 -> copy(N,N);
copy(_) -> true.

copy(N,M) when N > 0 -> io:format("~p~n",[M]),
 copy(N-1,M);
copy(_,_) -> true.

listCopy(L) -> [spawn(ex2,copy,[N]) || N <- L].

9494

Ex. 2, copy
-module(ex2).
-export([copy/1,listCopy/1]).

copy(N) when N > 0 -> copy(N,N);
copy(_) -> true.

copy(N,M) when N > 0 -> io:format("~p~n",[M]),
 copy(N-1,M);
copy(_,_) -> true.

listCopy(L) -> [spawn(ex2,copy,[N]) || N <- L].

9595

Ex. 2, copy
-module(ex2).
-export([copy/1,listCopy/1]).

copy(N) when N > 0 -> copy(N,N);
copy(_) -> true.

copy(N,M) when N > 0 -> io:format("~p~n",[M]),
 copy(N-1,M);
copy(_,_) -> true.

listCopy(L) -> [spawn(ex2,copy,[N]) || N <- L].

9696

Ex. 2, copy
-module(ex2).
-export([copy/1,listCopy/1]).

copy(N) when N > 0 -> copy(N,N);
copy(_) -> true.

copy(N,M) when N > 0 -> io:format("~p~n",[M]),
 copy(N-1,M);
copy(_,_) -> true.

listCopy(L) -> [spawn(ex2,copy,[N]) || N <- L].

9797

Ex. 2, copy
-module(ex2).
-export([copy/1,listCopy/1]).

copy(N) when N > 0 -> copy(N,N);
copy(_) -> true.

copy(N,M) when N > 0 -> io:format("~p~n",[M]),
 copy(N-1,M);
copy(_,_) -> true.

listCopy(L) -> [spawn(ex2,copy,[N]) || N <- L].

9898

Ex. 2, copy
-module(ex2).
-export([copy/1,listCopy/1]).

copy(N) when N > 0 -> copy(N,N);
copy(_) -> true.

copy(N,M) when N > 0 -> io:format("~p~n",[M]),
 copy(N-1,M);
copy(_,_) -> true.

listCopy(L) -> [spawn(ex2,copy,[N]) || N <- L].

9999

Ex. 2, copy
-module(ex2).
-export([copy/1,listCopy/1]).

copy(N) when N > 0 -> copy(N,N);
copy(_) -> true.

copy(N,M) when N > 0 -> io:format("~p~n",[M]),
 copy(N-1,M);
copy(_,_) -> true.

listCopy(L) -> [spawn(ex2,copy,[N]) || N <- L].

100100

Ex. 2, copy
-module(ex2).
-export([copy/1,listCopy/1]).

copy(N) when N > 0 -> copy(N,N);
copy(_) -> true.

copy(N,M) when N > 0 -> io:format("~p~n",[M]),
 copy(N-1,M);
copy(_,_) -> true.

listCopy(L) -> [spawn(ex2,copy,[N]) || N <- L].

101101

Ex. 2, copy
-module(ex2).
-export([copy/1,listCopy/1]).

copy(N) when N > 0 -> copy(N,N);
copy(_) -> true.

copy(N,M) when N > 0 -> io:format("~p~n",[M]),
 copy(N-1,M);
copy(_,_) -> true.

listCopy(L) -> [spawn(ex2,copy,[N]) || N <- L].

102102

Ex. 2, copy
Eshell V10.2.1 (abort with ^G)
1> c(ex2).
{ok,ex2}
2> ex2:listCopy(lists:seq(1,5)).
1
2
3
4
5
[<0.84.0>,<0.85.0>,<0.86.0>,<0.87.0>,<0.88.0>]
2
3
4
5
3
4
5
4
5
5
3>

103103

Ex. 2, copy
Eshell V10.2.1 (abort with ^G)
1> c(ex2).
{ok,ex2}
2> ex2:listCopy(lists:seq(1,5)).
1
2
3
4
5
[<0.84.0>,<0.85.0>,<0.86.0>,<0.87.0>,<0.88.0>]
2
3
4
5
3
4
5
4
5
5
3>

