
Principles of Concurrent
and

Distributed Programming

Emilio Tuosto

Academic Year 2025/2026

January 2026

1 / 23

Concurrency in Java

2 / 23

Processes vs. Threads

Multitasking

Many activities at once none of which “is aware” of the others (e.g., time slicing)

Processes

Running programs with their own execution environment containing basic run-time resources
e.g. the processes’ address space.

Threads

Sequential flows of control within a process (a process can consist of many concurrent
threads)

Threads are also known as lightweight processes because creating a new thread
requires fewer resources than creating a new process. Threads “lives” within a process
and can share the process’s resources (e.g., memory, files). In general multi-threaded
applications have a “main” thread which can create new threads.

3 / 23

Context switching

A (simplified) view of how processes interleave:

Borrowed from https://maxnilz.com/docs/006-arch/001-cpu-basics/

4 / 23

https://maxnilz.com/docs/006-arch/001-cpu-basics/

Programming with threads

From [Eck02]

Concurrent programming is like stepping into an entirely new world and learning a new
programming language, or at least a new set of language concepts. With the appearance
of thread support in most microcomputer operating systems, extensions for threads have also
been appearing in programming languages or libraries. In all cases, thread programming:

Seems mysterious and requires a shift in the way you think about programming

Looks similar to thread support in other languages, so when you understand threads,
you understand a common tongue.

[...] threads are tricky.

5 / 23

Concurrency and Java OO

Some documentation

https://docs.oracle.com/javase/tutorial/essential/concurrency/index.html

There is no general approach to concurrent programming.

Some rule of thumb

Java’s “style” suggests

to individuate active and passive objects

an active object is basically an object representing a thread
a passive object represents a resource that can be concurrently accessed by active objects

Reason about how objects “interacts”

how does active objects’ execution interleave?
how do active objects access shared resources?

Acquire/release policy

in which order active objects acquire shared resources?
under which conditions shared resources can be invoked?
do active objects release all the acquired resources when they are not any longer needed?

6 / 23

https://docs.oracle.com/javase/tutorial/essential/concurrency/index.html

Threads in Java

Runnable: interface (method run() to be implemented)
Threads: class (implements Runnable, run() is just empty)

Constructors
Thread()
Thread(Runnable target)
Thread(Runnable target, String name)
Thread(String name)
... (see the Java thread API)

start, sleep, yield
interrupt

“When something has a Runnable interface, it simply means that it has a run() method, but
there’s nothing special about that –it doesn’t produce any innate threading abilities, like
those of a class inherited from Thread.” [Eck02]
To create and run Java thread from a Runnable object:

create the Runnable object
use the special Thread constructors with runnable objects
run the thread by invoking its start() method (which performs some initialisations and
then calls the run() method)

7 / 23

http://java.sun.com/javase/6/docs/api/index.html?java/util/concurrent/package-summary.html

Some examples

A simple scenario

Write a program that

decides if staff is worth a promotion according to their state of service

prints a report about the decision

Let’s consider some solutions

introducing some Java primitives for threads

and showing how tricky concurrency can be

Don’t do this at home!

PromotionConcurrent.java: a first attempt

PromotionMoreConcurrent.java: an improved version

IoC.java: pausing threads

8 / 23

code/java/promotion/promotionconcurrent.html
code/java/promotion/promotionmoreconcurrent.html
code/java/promotion/ioc.html

Some examples

A simple scenario

Write a program that

decides if staff is worth a promotion according to their state of service

prints a report about the decision

Let’s consider some solutions

introducing some Java primitives for threads

and showing how tricky concurrency can be

Don’t do this at home!

PromotionConcurrent.java: a first attempt

PromotionMoreConcurrent.java: an improved version

IoC.java: pausing threads

8 / 23

code/java/promotion/promotionconcurrent.html
code/java/promotion/promotionmoreconcurrent.html
code/java/promotion/ioc.html

Controlling threads

interrupt(): interrupts the thread on which it is invoked

yield(): Occasionally, a thread can decide to “give a hint to the thread scheduling
mechanism” ([Eck02]) that it is keen to pass the control to another thread.
In Java this is done by invoking the yield() method from run.

join(): when invoked on a thread object, the invoking thread waits for the first thread to
complete before proceeding (there is also a version with timeout). join() must be withing a
try-catch statement because an interrupt() signal can abort the calling thread.

isAlive(): returns ‘true’ if the thread is running.

9 / 23

Mutual exclusion in Java

The mechanism that is offered by Java is method synchronisation

Synchronised Methods can prevent thread interference and memory consistency errors

Synchronisation based on (implicit) locks

The synchronized modifier can be used in method declarations or for determining critical
sections.

A method declared synchronized cannot be invoked while another synchronised method
is executing

(hence) If more than 2 threads try to invoke a synchronised method, only one of them
actually access the object, while the other is blocked

synchronized(obj){stm}: acquires the lock on obj, executes stm and releases the lock;
stm is the critical section on the shared resource obj

10 / 23

Semaphores in java

public class Semaphore {
private int counter = 0;
private int threshold = 0;
public Semaphore(int counter) { this.counter = counter; }

public synchronized void P() {
while(this.counter <= threshold) {

try {
this.wait();

} catch (InterruptedException e) {
e.printStackTrace();

}
}
this.counter−−;

}

public synchronized void V() {
this.counter++;
if (this.counter − 1 == threshold)

// this.notifyAll();
this.notify();

}
}

11 / 23

Monitors in Java

It is important to remind that waiting threads must be notified before releasing the shared
object

public final void wait() throws InterruptedException

The thread is suspended and it is put on the object waiting list

public final void wait(long timeout) throws InterruptedException

The thread is suspended until another wakes it up or until the time is elapsed

public final void notify()

Choses and Wakes up a single thread among those waiting on the object monitor.
Which thread is chosen depends on the implementation of the JVM
This method should only be called by the “owner thread”, namely the one which is

executing a synchronized statement that synchronizes on the object
executing the body of a synchronized statement that synchronizes on the object

Throws: IllegalMonitorStateException - if the current thread does not own the object

public final void notifyAll()

Like notify, but awakes all the waiting threads

12 / 23

Remote Method
Invocation

in
Java

https://docs.oracle.

com/en/java/javase/2

4/docs/specs/rmi/int

ro.html

13 / 23

https://docs.oracle.com/en/java/javase/24/docs/specs/rmi/intro.html
https://docs.oracle.com/en/java/javase/24/docs/specs/rmi/intro.html
https://docs.oracle.com/en/java/javase/24/docs/specs/rmi/intro.html
https://docs.oracle.com/en/java/javase/24/docs/specs/rmi/intro.html

RPC vs RMI

Remote Method Invocation (RMI) is the Java correspondent of RPC.

Instead of remote procedure calls, RMI implements remote method calls (i.e., calls of
methods of remote objects)

a key difference between RPC and Java RMI is that the latter allows Java objects to
communicate, while the former provides, in general, a communication middleware for
programs written in different languages

RPC can be seen as a very primitive form of message oriented middleware and is data
oriented. Java RMI, on the contrary, you can communicate objects, namely data &
behaviour!

Remark

Observe that Java RMI allows objects running in a JVM to invoke methods of (Java) objects
running in a different JVM

14 / 23

Distributed Objects: some terminology

Distributed object : an object whose methods can be remotely invoked. A distributed
object is provided, or exported by the object server .

Remote method : a public method of a distributed object.

Object registry : is the equivalent of the RPC name server. Namely, it is used by object
servers to register their services and by object clients to look up for service references.

Client/server proxy : is the equivalent of client/server stubs in RPC. Object clients call a
remote method appear direct at the programmer level. However,

on the client host, the client proxy interacts with the software providing runtime support for
the distributed object system
the runtime support transmits the actual call to the remote host (it also marshals the
parameter to be transmitted)
similarly, on the object server side, the runtime support for the distributed object system
handles the incoming messages (and their unmarshalling), and forwards the call to the
server proxy

15 / 23

Java RMI: the first step

In Java:

remote objects are those objects extending the java.rmi.Remote remote interface .
Basically, interfaces plays the role of ID, hence the IDL of Java RMI is java.rmi.Remote

the object server

implements a remote interface
generates stub and skeleton
register a distributed object implementing the interface

An object client accesses the object by invoking the remote methods associated with the
objects using syntax provided for remote method invocations

Remark

Within RMI, remote objects are treated differently from non-remote objects. For instance,
what RMI actually passes when a remote object reference r obj is sent to a remote object is a
remote stub for r obj. The stub acts as the local proxy for r obj so that the caller is
unaffected and calls r obj via its stub.

16 / 23

Java RMI: the second step

Applications relying on distributed object must:

Locate remote objects

by passing remote object references or
by using the object registry

Communicate with remote objects

Load class bytecodes for objects passed around: since RMI allows a caller to pass objects
within calls to remote methods, RMI yields the necessary mechanisms for loading an
object’s code and for transmitting its data.

Remark

One of the central features of RMI is the possibility of dinamically downloading bytecodes of
the class of an object when it is not defined in the caller’s JVM. Basically, the types and the
behavior of an object can be transmitted to possibly remote JVMs. RMI guarantees that
the behavior of objects remains unchanged when they are sent to another JVM and allows
new types to be introduced into a remote virtual machine, so that an
application can be dynamically extended .

17 / 23

Creating Distributed Applications Using RMI

Using RMI to develop a distributed application requires you to follow these general steps:
1

Design and implement the distributed application components
2

Compile sources and generate stubs
3

Make classes network accessible: In this step you make everything–the class files
associated with the remote interfaces, stubs, and other classes that need to be
downloaded to clients–accessible via a Web server.

4
Start the application: Starting the application means to run:

1 the RMI remote object registry
2 the server
3 the client

18 / 23

1. Design and implement the distributed application components

First, give an initial architecture for your application (this might require some revision at a
later stage) and determine which components are local objects and remote objects .
This phase consists of:

remote interfaces definition : this specifies the remote methods When designing remote
interfaces you have to determine any local objects that will be used as parameters and
return values for these methods

remote objects implementation : generally, remote objects have to implement several
remote interfaces (of course, the remote object class may implements other non-remote
interfaces and define methods available only locally). Any local classes used in remote
method invocations (as parameters or return values) must be implemented.

clients implementation : clients invoking remote objects can be implemented at any time
after the definition of remote interfaces or after deployment of remote objects.

19 / 23

2. Compile sources and generate stubs

This phase has two steps:

use javac to compile the server classes (those implementing remote interfaces) and the
client classes

use rmic compiler in order to create stubs for remote objects.

Remark

The Java rmic compiler generates the stubs, namely, the programmer does not have to
program client and server proxies and low lever programming detail.

20 / 23

Java remote interface

In a remote interface each method signature must throw RemoteException Other than
this, a remote interface has the same syntax as any other Java interface.

RemoteException exception is raised if errors occur when processing remote method call.
The exception is must be caught by the caller.

RemoteException can be caused

by exceptions that may occur during communications (e.g., access or connection failures)
by problems in remote method invocations (e.g., errors resulting from object, stub, or
skeleton not being found)

An example:
import java.rmi.∗;

public interface ARemoteInterface extends Remote {
String aRemoteMethod1(...) throws RemoteException;
int aRemoteMethod2(...) throws RemoteException;

}

21 / 23

An example: the compute engine

The compute engine is a protocol to execute tasks on a remote engine. This protocol is based on interfaces
supported by the compute engine and by the objects that are submitted to the compute engine.
The remotely accessible part is the compute engine itself, whose remote interface has a single method:
import java.rmi.Remote;
import java.rmi.RemoteException;
/∗
∗ The 2 lines above can be replaced by
∗ import java.rmi.∗;
∗/
public interface Compute extends Remote {

public Object executeTask(Task t)
throws RemoteException;

}
By extending java.rmi.Remote, the interface Compute allows its method to be called from any JVM. Any
object implementing Compute becomes a remote object.
Notice that executeTask

takes a Task

can return any Object

throws RemoteException

22 / 23

An example: the compute engine (2)

An interface for Task objects must be defined.
import java.io.Serializable;

public interface Task extends Serializable {

public Object execute();

}
Different kinds of tasks can be run by a Compute object provide that they implementat Task. It is possible to
add further methods (or data) needed for the computation of the task.

Exercise
execute is not required to throw RemoteException. Why?

Remark
The Task interface extends the java.io.Serializable interface to let the RMI middleware serialise objects so that
they can be transported from a JVM to another.
Implementing Serializable marks the class as being capable of conversion into a self-describing byte stream that
can be used to reconstruct an exact copy of the serialized object when the object is read back from the stream.

This implies that local objects are passed by-value while remote objects are passed by-reference .

23 / 23

[Eck02] Bruce Eckel. Thinking in Java, 4rd Edition.
Prentice-Hall, December 2002. Chapter 13. The beta version of the 3rd edition is
available at
http://www.javaclue.org/pub/java/ebooks/tij/tij-3rd-ed.pdf.

23 / 23

http://www.javaclue.org/pub/java/ebooks/tij/tij-3rd-ed.pdf

