
P
ri
nc
ip
le
s
of

P
ar
al
le
l
an
d
D
is
tr
ib
ut
ed

P
ro
gr
am

m
in
g

L
in
gu
is
ti
c
P
ri
m
it
iv
es

fo
r

D
is
tr
ib
ut
ed

S
ys
te
m
s

R
o

cc
o

D
e

N
ic

ol
a

Ja
n
u
ar
y
2
0
2
6

G
S

S
I

-
L

’A
qu

ila
an

d
II

T
C

N
R

-
P

is
a

Common Architectures

Message Passing Rocco De Nicola 1/42

Interaction in absence of shared memory

Shared Variables require Shared Memory

So far we have considered synchronisation mechanisms based on shared variables
that can be executed on hardware in which processors share memory.

Not all architectures guarantee shared memory

There are multiprocessor architectures or networked (distributed) architectures that
offer no memory to share.

Message passing

Programs interact by sending and receiving messages

I Processes can be located in different computers connected by a
communication network with no need of shared memory

I Mutual exclusion is not an issue in message passing protocols

I Message passing is also used when processes are intended to run on a single
computer

Message Passing Rocco De Nicola 2/42

Syncronization and Naming

Important dimensions

I What form of synchronisation is required

I What form of process naming is involved in message passing

Synchronization of the sender

I Synchronous send: Send and wait for the message to be received (fax)

I Asynchronous send: Send and continue working (e-mail, SMS)

I Rendez-Vous / Remote invocation: send and wait for reply (phone call)

Naming or how do sender and receiver refer to each other

I Direct symmetric (A sends to B and B receives from A)

I Direct asymmetric (A sends to B and B receives from anybody)

I Indirect (A sends to C and B receives from C)

Message Passing Rocco De Nicola 3/42

Synchronization

Synchronisation constructs are based upon explicit communication between
sending processes and receiving processes.

We have different alternatives:

1. Syncronous Communication: the sender does not send the message (or does
not continue) if it has no guarantee that somebody receives it simple
Rendez-Vous. E.g., CSP, Occam

2. Asyncronous Communication: the sender assumes that someone will receive
his message and continues. E.g., Unix sockets, Java.net

3. Extended Rendez-vous: There is a specific protocol to be executed: The
sender asks for availability of the receiver and sends then message; it proceeds
only after specific confirmations of reception. E.g., RPC, Rendez-Vous

Message Passing Rocco De Nicola 4/42

Message Passing Models

Synchronous message passing

I blocking semantics of both, sender and receiver

I Send operations complete after the matching receive is posted and data are
sent

I Receive operations complete after data has been received from the matching
send

I Channels can be implemented without buffering

Asynchronous message passing

I non-blocking send and blocking receive

I Send is asynchronous w.r.t. Receive

I After Receive completes, the buffer may be reused

I Channels are unbounded FIFO queues of messages

Message Passing Rocco De Nicola 5/42

Naming

1. Direct Symmetric Communication: Explicit identification of sender and
receiver

SEND message TO process-id

RECEIVE message FROM process-id

2. Direct Asymmetric Communication: Receiver might not be interested about
whom sent but only in the message itself.

SEND message TO process-id

RECEIVE message

3. Indirect Communication: Neither the sender nor the receiver are interested in
knowing partners’ names

SEND message TO mailbox

RECEIVE message FROM mailbox

4. Channel Based Communication: Partners are selected according to the
channels they tune with. Channels are used to send and receive msgs.

SEND v on ch || RECEIVE x on ch

Message Passing Rocco De Nicola 6/42

Asynchronous message passing

Channel declaration

A Channel is unbounded queue of messages and is declared by:

chan name(id1: type1; ...; idN: typeN);

Channels Terminology

I Mailbox: a channel that have several process sending and several process
receiving;

I Port: a channel that has exactly one receiver, it may have several senders

I Link: a channel with just one sender and one receiver

Message Passing Rocco De Nicola 7/42

Asynchronous message passing

Sending

send name(expr1, ..., exprN)

I types and number of fields must match with channel decl.

I the effect is to evaluate the expressions, to produce a message M, and
atomically to append M to the end of the named channel

I send is nonblocking(asynchronous) (queue is unbounded)

Receiving

receive name(var1, ..., varN)

I variables types and number must match with channel decl.

I the effect is to wait for a message on the named channel, atomically remove
first message (at the front of the queue) and put the fields of the message
into the variables.

I Receive is a blocking primitive since it might cause delay

Message Passing Rocco De Nicola 8/42

Synchronous vs Asynchronous Message Passing

Advantages of Synchrony

I There is a bound on the size of communications channels

I At most one message a time queued up on any channel

I The sending process can continue and send another message only after the
message is received.

Disadvantages of Synchrony

I Concurrency is reduced. When two processes communicate, at least one of
them will have to block

I Programs are more prone to deadlock. The programmer has to be careful
that all send and receive statements match up.

Asynchronous vs. Synchronous channels

I send and sync-send, are often interchangeable

I The trade-off is between having more concurrency and bounded
communication buffers

I Most programmers prefer asynchronous message passing

Message Passing Rocco De Nicola 9/42

CSP: Communicating Sequential Processes

CSP

I A simple programming language designed for multiprocessor machines

I Its key feature is its reliance on non-buffered message passing with explicit
naming of source and destination processes

I CSP uses guarded commands to let processes wait for messages coming from
different sources.

History

I Interest began in 1965 because of faster, more powerful computers
(Edinburgh Multiple Access System) and Simula-67

I Started work by T. Hoare in 1975 – published in 1978

I Expanded (transformed) into a process algebra in 1985

CSP Rocco De Nicola 10/42

CSP: Communicating Sequential Processes

Explicit naming

I process issuing a send() specifies the name of the process to which the
message is sent

I A process issuing a receive() specifies the name of the process from which it
expects a message

Indirect naming

I Most message passing architectures include an intermediary entity (port,
mailbox, queue, socket, . . .)

I A process issuing a send() specifies the entity (e.g. the port number) to
which the message is sent

I A process issuing a receive() specifies the entity on which expects the
message and waits for the the first message that arrives there

CSP Rocco De Nicola 11/42

CSP: Communication Statements

CSP processes P e Q exchange message by following the patterns below

I process P { ...; Q!chan(expr); ...}

permits P to send Q the value of expression expr using channel chan

I process Q { ...; P?chan(var); ... }

permits Q to receive from P a value to associate to var using channel chan.

In general we have that

Q!chan(expr): is an output statement that evaluates expr and sends the result
to Q using channell chan, and blocks until the value is not received.

P?chan(var): is an input statement that blocks the executing process until a
message is not received from P and bound to var to be used for later
computations.

CSP Rocco De Nicola 12/42

CSP: Guarded Commands

Basic CSP instruction have the following form:

B; C -> S;

where we have that

B is a boolean expression that can be omitted when constantly true

C is a communication command, i.e. input or output commands;

S is the sequence of instruction to be executed after the premises hold.

The pair B; C is named guard and B is a boolean guard while C is a
communication guard. A generic pair has the following possible behaviour:
A generic pair of guards may give rise to the following behaviours:

I succeeds when B is true and C can be executed

I fails if B is false

I suspends if B is true but C cannot be executed

CSP Rocco De Nicola 13/42

CSP: Conditional and Repetitive Commands

Guarded commands can be used within:

If-then commands

if B1; C1 -> S1;

[]

.....

[]

Bn; Cn -> Sn;

fi

while commands

do B1; C1 -> S1;

[]

.....

[]

Bn; Cn -> Sn;

od

CSP Rocco De Nicola 14/42

GCD in CSP

process GCD {

int id, x, y;

do true ->

Client[*]?args(id, x, y); # input a "call"

repeat the following until x == y

do x > y -> x = x - y;

[]

x < y -> y = y - x;

od

Client[id]!result(x); # return the result

od

}

Process i

... GCD!args(i,v1,v2); GCD?result(r); ...

CSP Rocco De Nicola 15/42

n-position Buffer in CSP

process Copyn { # n character buffer

char buffer[n];

int front = 0, rear = 0, count = 0;

do count < n; Left?buffer[rear] ->

count = count+1; rear = (rear+1) mod n;

[]

count > 0; Right!buffer[front] ->

count = count-1; front = (front+1) mod n;

od }

CSP Rocco De Nicola 16/42

Exercises

I Semaphore in CSP

I Five Philosophers in CSP

I Consider asynchronous CSP and try the exercise above

I . . .

CSP Rocco De Nicola 17/42

Remote invocation

In distributed systems, a process may need to invoke computation located on a
remote machine. The goal is to make remote interactions appear as close as
possible to local ones, while:

I hiding communication details,

I preserving a clear programming model.

Remote invocation provides a two way communication channel from the caller to
the process servicing the call and back and combines aspects of monitors and
synchronous message passing:

I as with monitors interaction is via public procedures

I as with synchronous send, calling a procedure delays the caller

Two classical abstractions are:

I Remote Procedure Call (RPC)

I Remote Method Invocation (RMI)

RPC and Rendez Vous Rocco De Nicola 18/42

Remote Procedure Call (RPC)

RPC extends the notion of a procedure call to a distributed setting.

I The remote entity exports a set of procedures (functions).

I The caller invokes a procedure as if it were local.

I Arguments and return values are passed by value (marshalling).

I Interfaces are typically specified using an IDL (Interface Definition Language).

I RPC systems are often language-neutral.

Typical view: client-server interaction via stateless function calls.

RPC and Rendez Vous Rocco De Nicola 19/42

Remote Method Invocation (RMI)

RMI extends the notion of a method call on an object to a distributed setting.

I The remote entity is a remote object.

I Clients invoke methods on that object.

I Object identity is preserved across the network.

I Parameters may be passed:

I by value, or
I by reference (remote object references).

I RMI is usually language-specific and integrated with the OO type system.

Typical example: Java RMI.

RPC and Rendez Vous Rocco De Nicola 20/42

RPC

RPC permits to a program running on a host to start the execution of a program
running on another host. The connection is set up automatically and the
programmer is not in charge of setting up the necessary links.

There are two processes involved

I the caller or client

I the called or server.

Each RPC is executed as a distinguished process on server.

Communication is synchronous, and the client suspends till he gets the answer
from the server.

1. The client calls the procedure on the server

2. The server does the job

3. The client waits for the result.

RPC and Rendez Vous Rocco De Nicola 21/42

RPC

Client Server

.

. WAIT

.

1. Call

. 2. Receive call

WAIT 3. execute

. 4. send result

5. receive result

. WAIT

.

.

The client calls the servers in the following way:

call opname(actual identifiers) # (arguments, result)

RPC and Rendez Vous Rocco De Nicola 22/42

Modules and Procedures

Modules

module mname

headers of exported operations; \# exported interfaces

body

variable declarations;

initialization code;

body of exported procedures;

local procedures

background processes;

end mname

Procedures

proc opname(formals) returns result

declarations of local variables;

statements for proc body

end

RPC and Rendez Vous Rocco De Nicola 23/42

Procedure Calls

Client Side:

The client invokes a local stub for the remote procedure that:

1. accepts the parameters and builds up a message with the appropriate data to
be sent to remote server (marshalling);

2. sends a message and waits for the answer from the stub on the server or
remote stub;

3. extracts the results from the answer (un-marshalling) and gives them to the
caller.

Server Side:

The server refers to the remote stub of the procedure that is located on the same
host of the server and that:

1. receives the message from the client’s local stub and sets up the (local) call
to the desired;

2. makes the call and receives the results

3. prepares the answers and sends it back to the stub of the client.

RPC and Rendez Vous Rocco De Nicola 24/42

An Example: A time server with RPC

module TimeServer

op get_time() returns int; # retrieve time of day

op delay(int interval); # delay interval ticks body

int tod = 0; # the time of day

sem m = 1; # mutual exclusion sem.

sem d[n] = ([n] 0); # private delay sem.

queue of (int waketime, int process_id) napQ;

when m == 1, tod < waketime for delayed processes

proc get_time() returns time {

time = tod; }

proc delay(interval) { # assume interval > 0

int waketime = tod + interval;

P(m);

insert (waketime, myid) at appropriate place on napQ;

V(m);

P(d[myid]); } # wait to be awakened

RPC and Rendez Vous Rocco De Nicola 25/42

An Example ctd.

..... CONTINUING

module TimeServer

.......

process Clock {

start hardware timer;

while (true) {

wait for interrupt, then restart hardware timer;

tod = tod+1;

P(m);

while (tod >= smallest waketime on napQ) {

remove (waketime, id) from napQ;

V(d[id]); # awaken process id

}

V(m); }

}

end TimeServer

RPC and Rendez Vous Rocco De Nicola 26/42

Rendez-Vous

The basic idea of Rendez-Vous is that of an active process and a client that
occasionally requires services to this process that, if available, performs the
operation requested by the customer, then it continues its activities.

Compared to RPC, the Rendez-Vous does not allow concurrent execution of
procedures and avoids the potential problems in this committed.

Also for the Rendez-Vous we need:

1. synchronization between a client and a server;

2. the execution of operations by the server;

3. returning the results to the client.

Every remote call is served by the same server process and at any given time there
is a single server process active. If the server is not available, the caller is blocked
until the call is accepted. Anyway it waits until the results provided.

RPC and Rendez Vous Rocco De Nicola 27/42

Rendez-Vous

in

op1(formal-s1) and B1 by e1 -> S1;

[]

....

[]

opn(formal-sn) and Bn by en -> Sn;

ni

Guards are structured as follows:

opi is the name of the operation to be called; it represents the meeting point of
the Rendez-Vous (operation);

Bi is the condition that determines the synchronization; this is possible only if the
condition is true(synchronization condition);

ei is an expression used to resolve nondeterminism when more than one guard is
successful (scheduling expression).

RPC and Rendez Vous Rocco De Nicola 28/42

Rendez-Vous

Node A Node B

Client Server

. .

. .

1. call op. .

2. receives on a in command

WAIT 3. executes one alternative

4. sends results and end

5. receives res. .

. .

. .

RPC and Rendez Vous Rocco De Nicola 29/42

An Example: A bounded buffer with Rendez-Vous

module BoundedBuffer

op deposit(typeT), fetch(result typeT);

body process Buffer {

typeT buf[n];

int front = 0, rear = 0, count = 0;

while (true)

in

deposit(item) and count < n ->

buf[rear] = item;

rear = (rear+1) mod n; count = count+1;

[]

fetch(item) and count > 0 ->

item = buf[front];

front = (front+1) mod n; count = count-1;

ni }

end BoundedBuffer

RPC and Rendez Vous Rocco De Nicola 30/42

The Linda Model

Processes coordinate indirectly via a shared tuple space

Generative Programming Rocco De Nicola 31/42

Tuples, Templates, and Matching

Tuples

A tuple contains only actual fields:

(”foo”, 15, true)

Templates

A template may contain formal fields (variables):

(”foo”, 15, !u)

Pattern Matching

I Formal fields match any value of the same type

I Actual fields must be identical

I Example:
(”foo”, 15, true) matches (!s, 15, !b)

Generative Programming Rocco De Nicola 32/42

Linda Operations

OUT(exp1, . . . ,expn)

Evaluates expressions exp1, . . . , expn and produces a tuple t that atomically adds
to the tuple space. All fields evaluated by the outing process

IN(T)

Either finds and removes a matching tuple or blocks until a tuple t in the tuple
space matches the pattern T. After matching it assigns to the variables in T the
values in t according to the match. Tuple t is atomically removed from the tuple
space.

RD(P)

It is similar to IN(T) except that the matched tuple t is left in the tuple space

Generative Programming Rocco De Nicola 33/42

Linda Operations (Advanced)

EVAL(exp1,. . . ,expn)

Concurrently evaluates separately the expressions exp1, . . . , expn and produces a
tuple t that is atomically added to the tuple space. Spawns a ”live tuple” that
evolves into a normal tuple; the caller does not wait.

INP(T)

Non-blocking version of IN. Returns false if no matching tuple is found.

RDP(T)

Non-blocking version of RD. Returns false if no matching tuple is found.

Generative Programming Rocco De Nicola 34/42

Why Linda is Generative

Generative Communication

In Linda, communication is performed by generating data in a shared space, rather
than by sending messages between processes.

I OUT and EVAL create tuples that persist independently of the producing
process

I Tuples exist autonomously in the tuple space until explicitly removed

I Producers and consumers are:

I decoupled in time
I decoupled in space
I decoupled in synchronization

Key Consequence

Coordination emerges from the generation and consumption of shared data, not
from direct process interaction.

Generative Programming Rocco De Nicola 35/42

Coordinating Parallel Processes

Sequentialization

Two parallel processes:

P = P1; P2

Q = Q1; Q2

Ensure that, when P and Q are run in parallel, Q2 executes only after P1:

P = P1; out(go); P2

Q = Q1; in(go); Q2

Semaphores

sem s = N

for(int x=0; x<N; x++) OUT("s");

P(s); IN("s");

V(s); OUT("s");

Generative Programming Rocco De Nicola 36/42

Linda vs. CSP

Dimension Linda CSP
Comm. model Generative (tuple space) Message passing
Interaction style Indirect Direct
Synchronization Decoupled Synchronous rendezvous
Coupling Time and space decoupled Strongly coupled
Comm. medium Shared associative space Explicit channels
Data persistence Tuples persist until consumed Messages are transient
Blocking behavior Optional (IN / INP) Mandatory on send/receive
Coord. paradigm Data-driven Control-driven
Formal nature Coordination language Process algebra

Key Difference

Linda coordinates processes by generating shared data, while CSP coordinates
them through synchronous interaction.

Generative Programming Rocco De Nicola 37/42

Kernel Language for Agent Interaction and Mobility

Process Calculus Flavored

I Small set of basic combinator;

I Clean operational semantics.

Linda based communication model

I Asynchronous communication;

I Shared tuple spaces;

I Pattern Matching

Explicit use of localities

I Multiple distributed tuple spaces;

I Code and Process mobility.

Generative Programming Rocco De Nicola 38/42

From Linda and Process Algebras to Klaim

Explicit Localities to model distribution

I Physical Locality (sites)

I Logical Locality (names for sites)

I A distinct name self (or here) indicates the site a process is on.

Allocation environment to associate sites to logical localities

I This avoids the programmers to know the exact physical structure.

Process Algebras Operators to compose programs

I Sequentialization

I Parallel composition

I Creation of new names

Generative Programming Rocco De Nicola 39/42

Klaim Nodes

I Locality

I Processes

I Tuple Space

I Allocation Environment

Generative Programming Rocco De Nicola 40/42

Klaim Nets

Generative Programming Rocco De Nicola 41/42

	Message Passing
	CSP
	RPC and Rendez Vous
	Generative Programming

