esid - YND LI| pue ejinby, 7 - |SSH

90 Asenuer
B|ODI (] 0200y
swa1sAg pa1nquisi(]
10} S9AIHIWILIH 211SINSUlT
SulwweiSoid
pa1nquisi(] pue [9||eded 4o ssjdiduLig

vooni
s3alanits E _
Ad3IDNVAQVY 404

TOOHDS

IMT |t Common Architectures

H d rd ware Figures from (Andrews, 2000)

Chapter 1

Concurrent programming [Interconnection network |
models exist as an abstraction
above hardware and memory
architectures

Level 2 cache
Level 1 cache

Multicomputer - separate
memories (Physically close to each

Single processor other)

IS

R .’ 1a.d
gadag’

Qua 7 =S
— 6 9 4 L;;g‘M
§aaG § §BYe

Interconnection network

=
el
§

Network o or cluster of

Multiprocessor - shared memory
workstations

Message Pa Rocco De Nicola 1/42

SCHOOL

IMT |t Interaction in absence of shared memory

Shared Variables require Shared Memory

So far we have considered synchronisation mechanisms based on shared variables
that can be executed on hardware in which processors share memory.

Not all architectures guarantee shared memory

There are multiprocessor architectures or networked (distributed) architectures that
offer no memory to share.

Message passing

Programs interact by sending and receiving messages

» Processes can be located in different computers connected by a
communication network with no need of shared memory

» Mutual exclusion is not an issue in message passing protocols

» Message passing is also used when processes are intended to run on a single
computer

Message Passing Rocco De Nicola 2/42

SCHOOL

IMT e Syncronization and Naming

Important dimensions

What form of synchronisation is required

What form of process naming is involved in message passing

Synchronization of the sender
» Synchronous send: Send and wait for the message to be received (fax)
» Asynchronous send: Send and continue working (e-mail, SMS)

» Rendez-Vous / Remote invocation: send and wait for reply (phone call)

Naming or how do sender and receiver refer to each other
» Direct symmetric (A sends to B and B receives from A)

» Direct asymmetric (A sends to B and B receives from anybody)

» Indirect (A sends to C and B receives from C)

Message Passing Rocco De Nicola 3/42

SCHOOL
FOR ADVANCED

IMT e Synchronization

Synchronisation constructs are based upon explicit communication between
sending processes and receiving processes.

We have different alternatives:

1. Syncronous Communication: the sender does not send the message (or does
not continue) if it has no guarantee that somebody receives it simple
Rendez-Vous. E.g., CSP, Occam

2. Asyncronous Communication: the sender assumes that someone will receive
his message and continues. E.g., Unix sockets, Java.net

3. Extended Rendez-vous: There is a specific protocol to be executed: The
sender asks for availability of the receiver and sends then message; it proceeds
only after specific confirmations of reception. E.g., RPC, Rendez-Vous

Message Passing Rocco De Nicola 4/42

IMT] ™ Message Passing Models

Synchronous message passing
» blocking semantics of both, sender and receiver

» Send operations complete after the matching receive is posted and data are
sent

» Receive operations complete after data has been received from the matching
send

» Channels can be implemented without buffering

Asynchronous message passing
» non-blocking send and blocking receive
» Send is asynchronous w.r.t. Receive
» After Receive completes, the buffer may be reused

» Channels are unbounded FIFO queues of messages

Message Passing Rocco De Nicola 5/42

Message Passing

SCHOOL
FOR ADVANCED

STUDIES N am I ng

LUCCA

. Direct Symmetric Communication: Explicit identification of sender and
receiver

SEND message TO process-id
RECEIVE message FROM process-id

. Direct Asymmetric Communication: Receiver might not be interested about
whom sent but only in the message itself.

SEND message TO process-id
RECEIVE message
. Indirect Communication: Neither the sender nor the receiver are interested in

knowing partners’ names

SEND message TO mailbox
RECEIVE message FROM mailbox

. Channel Based Communication: Partners are selected according to the
channels they tune with. Channels are used to send and receive msgs.
SEND v on ch | RECEIVE x on ch

Rocco De Nicola 6/42

SCHOOL

IMT | Asynchronous message passing

LUCCA

Channel declaration
A Channel is unbounded queue of messages and is declared by:

chan name(idl: typel; ...; idN: typeN);

Channels Terminology
» Mailbox: a channel that have several process sending and several process
receiving;

» Port: a channel that has exactly one receiver, it may have several senders

» Link: a channel with just one sender and one receiver

Message Passing Rocco De Nicola 7/42

IMT | Asynchronous message passing

Sending

send name (exprl, ..., exprN)
» types and number of fields must match with channel decl.

P the effect is to evaluate the expressions, to produce a message M, and
atomically to append M to the end of the named channel

» send is nonblocking(asynchronous) (queue is unbounded)

Receiving
receive name(varl, ..., varN)
» variables types and number must match with channel decl.

the effect is to wait for a message on the named channel, atomically remove

first message (at the front of the queue) and put the fields of the message
into the variables.

» Receive is a blocking primitive since it might cause delay

Message Passing Rocco De Nicola 8/42

IMTIE5™" Synchronous vs Asynchronous Message Passing

Advantages of Synchrony
» There is a bound on the size of communications channels
» At most one message a time queued up on any channel

» The sending process can continue and send another message only after the
message is received.

Disadvantages of Synchrony

» Concurrency is reduced. When two processes communicate, at least one of
them will have to block

» Programs are more prone to deadlock. The programmer has to be careful
that all send and receive statements match up.

Asynchronous vs. Synchronous channels
» send and sync-send, are often interchangeable

» The trade-off is between having more concurrency and bounded
communication buffers

» Most programmers prefer asynchronous message passing

Message Passing Rocco De Nicola 9/42

IMT

SCHOOL
FOR ADVANCED
STUDIES

IV oo CSP: Communicating Sequential Processes

CSP
>

>

>

A simple programming language designed for multiprocessor machines

Its key feature is its reliance on non-buffered message passing with explicit
naming of source and destination processes

CSP uses guarded commands to let processes wait for messages coming from
different sources.

Histo
>

ry

Interest began in 1965 because of faster, more powerful computers
(Edinburgh Multiple Access System) and Simula-67

» Started work by T. Hoare in 1975 — published in 1978

>

Expanded (transformed) into a process algebra in 1985

CspP

Rocco De Nicola 10/42

SCHOOL

IMT] o™ CSP: Communicating Sequential Processes

Explicit naming

> process issuing a send() specifies the name of the process to which the
message is sent

> A process issuing a receive() specifies the name of the process from which it
expects a message

Indirect naming

> Most message passing architectures include an intermediary entity (port,
mailbox, queue, socket, ...)

> A process issuing a send() specifies the entity (e.g. the port number) to
which the message is sent

> A process issuing a receive() specifies the entity on which expects the
message and waits for the the first message that arrives there

CspP Rocco De Nicola 11/42

SCHOOL

IMT | CSP: Communication Statements

CSP processes P e Q exchange message by following the patterns below

» process P { ...; Q!chan(expr); ...}
permits P to send Q the value of expression expr using channel chan

» process Q { ...; P?chan(var); ... }
permits Q to receive from P a value to associate to var using channel chan.
In general we have that

Q!chan(expr): is an output statement that evaluates expr and sends the result
to Q using channell chan, and blocks until the value is not received.

P?chan(var): is an input statement that blocks the executing process until a
message is not received from P and bound to var to be used for later
computations.

CspP Rocco De Nicola 12/42

SCHOOL

IMT | CSP: Guarded Commands

Basic CSP instruction have the following form:
B; C -> S;
where we have that
B is a boolean expression that can be omitted when constantly true
C is a communication command, i.e. input or output commands;
S is the sequence of instruction to be executed after the premises hold.

The pair B; C is named guard and B is a boolean guard while C is a

communication guard. A generic pair has the following possible behaviour:

A generic pair of guards may give rise to the following behaviours:
» succeeds when B is true and C can be executed
» fails if B is false

» suspends if B is true but C cannot be executed

CspP Rocco De Nicola

13/42

SCHOOL
IMT FOR ADVANCED
STUDIES

LUCCA

CSP: Conditional and Repetitive Commands
Guarded commands can be used within:

If-then commands
if B1; C1 -> S1;

fi

while commands

do Bilg Cl => §ilg

[]
(1
Bn; Cn -> Sn;
od
csP

Rocco De Nicola 14/42

SCHOOL

IMT]egise™ GCD in CSP

process GCD {
int id, x, y;
do true ->
Client[*]7args(id, x, y); # input a "call"
repeat the following until x ==y
dox>y ->x=x-7Y;

(]
Xx <y ->y =y - X;
od
Client[id] !'result(x); # return the result
od
}
Process i

. GCD'!args(i,vl,v2); GCD?result(r);

CspP Rocco De Nicola 15/42

SCHOOL

IMT] o™ n-position Buffer in CSP

process Copyn { # n character buffer
char buffer[n];
int front = 0, rear = 0, count = O;
do count < n; Left?buffer[rear] ->
count = count+l; rear = (rear+1) mod n;
(]
count > 0; Right!buffer[front] ->
count = count-1; front = (front+1) mod n;
od }

CspP Rocco De Nicola

16/42

SCHOOL

IMT STUDIES) ExerCiseS

» Semaphore in CSP
» Five Philosophers in CSP
» Consider asynchronous CSP and try the exercise above

|

CspP Rocco De Nicola

17/42

SCHOOL
FOR ADVANCED

IMT |t Remote invocation

In distributed systems, a process may need to invoke computation located on a
remote machine. The goal is to make remote interactions appear as close as
possible to local ones, while:

» hiding communication details,

» preserving a clear programming model.

Remote invocation provides a two way communication channel from the caller to
the process servicing the call and back and combines aspects of monitors and
synchronous message passing:

» as with monitors interaction is via public procedures

» as with synchronous send, calling a procedure delays the caller

Two classical abstractions are:
» Remote Procedure Call (RPC)
» Remote Method Invocation (RMI)

RPC and Rendez Vous Rocco De Nicola 18/42

SCHOOL

IMT ™ Remote Procedure Call (RPC)

RPC extends the notion of a procedure call to a distributed setting.
» The remote entity exports a set of procedures (functions).
» The caller invokes a procedure as if it were local.
» Arguments and return values are passed by value (marshalling).
> Interfaces are typically specified using an IDL (Interface Definition Language).
» RPC systems are often language-neutral.

Typical view: client-server interaction via stateless function calls.

RPC and Rendez Vous Rocco De Nicola 19/42

IMT ™ Remote Method Invocation (RMI)

RMI extends the notion of a method call on an object to a distributed setting.
» The remote entity is a remote object.
» Clients invoke methods on that object.
» Object identity is preserved across the network.
» Parameters may be passed:

» by value, or
> by reference (remote object references).

» RMI is usually language-specific and integrated with the OO type system.

Typical example: Java RMI.

RPC and Rendez Vous Rocco De Nicola 20/42

SCHOOL

IMT | swoies ™ RPC

LUCCA

RPC permits to a program running on a host to start the execution of a program
running on another host. The connection is set up automatically and the
programmer is not in charge of setting up the necessary links.

There are two processes involved
» the caller or client
» the called or server.

Each RPC is executed as a distinguished process on server.

Communication is synchronous, and the client suspends till he gets the answer
from the server.

1. The client calls the procedure on the server
2. The server does the job

3. The client waits for the result.

RPC and Rendez Vous Rocco De Nicola 21/42

SCHOOL
IMT FOR ADVANCED
STUDIES R P C

LUCCA

Client Server
WAIT
1. Call

. 2. Receive call
WAIT

w

execute

. 4. send result
5. receive result
WAIT

The client calls the servers in the following way:

call opname(actual identifiers) # (arguments, result)

RPC and Rendez Vous Rocco De Nicola 22/42

SCHOO!

IMT | Modules and Procedures

Modules

module mname
headers of exported operations; \# exported interfaces
body
variable declarations;
initialization code;
body of exported procedures;
local procedures
background processes;
end mname

Procedures

proc opname(formals) returns result
declarations of local variables;
statements for proc body

end

RPC and Rendez Vous Rocco De Nicola 23/42

IMT | Procedure Calls

Client Side:
The client invokes a local stub for the remote procedure that:

1. accepts the parameters and builds up a message with the appropriate data to
be sent to remote server (marshalling);

2. sends a message and waits for the answer from the stub on the server or
remote stub;

3. extracts the results from the answer (un-marshalling) and gives them to the
caller.

Server Side:

The server refers to the remote stub of the procedure that is located on the same
host of the server and that:

1. receives the message from the client's local stub and sets up the (local) call
to the desired;

2. makes the call and receives the results

3. prepares the answers and sends it back to the stub of the client.

RPC and Rendez Vous Rocco De Nicola 24/42

IMT] o™ An Example: A time server with RPC

module TimeServer
op get_time() returns int; # retrieve time of day

op delay(int interval); # delay interval ticks body
int tod = O; # the time of day

semm = 1; # mutual exclusion sem.

sem d[n] = ([n] 0); # private delay sem.

queue of (int waketime, int process_id) napQ;

when m == 1, tod < waketime for delayed processes
proc get_time() returns time {
time = tod; }
proc delay(interval) { # assume interval > O
int waketime = tod + interval,;
P(m);
insert (waketime, myid) at appropriate place on napQ;
V(m);
P(d[myidl); 1} # wait to be awakened

RPC and Rendez Vous Rocco De Nicola 25/42

IMT | An Example ctd.

process Clock {

start hardware timer;

while (true) {

wait for interrupt, then restart hardware timer;

tod = tod+1;

P(m);

while (tod >= smallest waketime on napQ) {
remove (waketime, id) from napQ;
v(d[id]); # awaken process id

}

V(m); }

}

end TimeServer

RPC and Rendez Vous Rocco De Nicola 26/42

SCHOOL
FOR ADVANCED

IMT |t Rendez-Vous

The basic idea of Rendez-Vous is that of an active process and a client that
occasionally requires services to this process that, if available, performs the
operation requested by the customer, then it continues its activities.

Compared to RPC, the Rendez-Vous does not allow concurrent execution of
procedures and avoids the potential problems in this committed.

Also for the Rendez-Vous we need:
1. synchronization between a client and a server;
2. the execution of operations by the server;
3. returning the results to the client.

Every remote call is served by the same server process and at any given time there
is a single server process active. If the server is not available, the caller is blocked
until the call is accepted. Anyway it waits until the results provided.

RPC and Rendez Vous Rocco De Nicola 27/42

SCHOOL

IMT FOR ADVANCED
STUDIES

Rendez-Vous
in
opl(formal-s1) and Bl by el -> Si;
(]
(]

opn(formal-sn) and Bn by en -> Sn;
ni
Guards are structured as follows:

opi is the name of the operation to be called; it represents the meeting point of
the Rendez-Vous (operation);

Bi is the condition that determines the synchronization; this is possible only if the
condition is true(synchronization condition);

ei is an expression used to resolve nondeterminism when more than one guard is
successful (scheduling expression).

RPC and Rendez Vous Rocco De Nicola 28/42

SCHOOL

IMT FOR ADVANCED
STUDIES

Rendez-Vous
Node A Node B
Client Server
1. call op.

2. receives on a in command
WAIT 3. executes one alternative
4. sends results and end
5. receives res.

RPC and Rendez Vous Rocco De Nicola 29/42

IMT]525™" An Example: A bounded buffer with Rendez-Vous

module BoundedBuffer
op deposit(typeT), fetch(result typeT);
body process Buffer {
typeT buf[n];
int front = 0, rear = 0, count = 0;
while (true)
in
deposit(item) and count < n ->
buf [rear] = item;
rear = (rear+1) mod n; count = count+1;
(]
fetch(item) and count > 0 —>
item = buf[front];
front = (front+1l) mod n; count = count-1;
ni }
end BoundedBuffer

RPC and Rendez Vous Rocco De Nicola 30/42

SCHOOL

IMT | The Linda Model

out(t) in(T)
Tuple Space
eval(T) e
Processes coordinate indirectly via a shared tuple space J

Generative Programming Rocco De Nicola

SCHOOL

IMT g™ Tuples, Templates, and Matching

Tuples
A tuple contains only actual fields:

(" foo", 15, true)

Templates

A template may contain formal fields (variables):

(" foo” 15, 1)

Pattern Matching
» Formal fields match any value of the same type
» Actual fields must be identical

» Example:

(" foo", 15, true) matches (!s, 15, !b)

Generative Programming Rocco De Nicola

SCHOOL

IMT | Linda Operations

OUT (expl, ... expn)

Evaluates expressions expl, ..., expn and produces a tuple t that atomically adds
to the tuple space. All fields evaluated by the outing process

IN(T)

Either finds and removes a matching tuple or blocks until a tuple t in the tuple
space matches the pattern T. After matching it assigns to the variables in T the
values in t according to the match. Tuple t is atomically removed from the tuple
space.

RD(P)
It is similar to IN(T) except that the matched tuple t is left in the tuple space

Generative Programming Rocco De Nicola

SCHOOL

IMT ™ Linda Operations (Advanced)

EVAL(expl,. .. expn)

Concurrently evaluates separately the expressions expl, ..., expn and produces a
tuple t that is atomically added to the tuple space. Spawns a "live tuple” that
evolves into a normal tuple; the caller does not wait.

INP(T)
Non-blocking version of IN. Returns false if no matching tuple is found.

RDP (T)
Non-blocking version of RD. Returns false if no matching tuple is found.

Generative Programming Rocco De Nicola 34/42

SCHOOL

IMT e Why Linda is Generative

Generative Communication
In Linda, communication is performed by generating data in a shared space, rather
than by sending messages between processes.

» OUT and EVAL create tuples that persist independently of the producing
process

» Tuples exist autonomously in the tuple space until explicitly removed

» Producers and consumers are:

» decoupled in time
» decoupled in space
» decoupled in synchronization

Key Consequence
Coordination emerges from the generation and consumption of shared data, not
from direct process interaction.

Generative Programming Rocco De Nicola

SCHOOL

IMT] o™ Coordinating Parallel Processes

Sequentialization

Two parallel processes:

P = P1; P2
Q =Q1; Q2

Ensure that, when P and Q are run in parallel, Q2 executes only after P1:

P = P1; out(go); P2
Q = Q1; in(go); Q2

Semaphores

sem s = N
for(int x=0; x<N; x++) 0OUT("s");

P(s); IN("s");
V(s); OUR@SIDE

Generative Programming Rocco De Nicola

SCHOOL

IMT FOR ADVANCED
STUDIES

LUCCA

Linda vs. CSP

Dimension Linda CSP

Comm. model Generative (tuple space) Message passing
Interaction style Indirect Direct
Synchronization Decoupled Synchronous rendezvous

Coupling

Comm. medium
Data persistence
Blocking behavior
Coord. paradigm
Formal nature

Key Difference

Time and space decoupled
Shared associative space
Tuples persist until consumed
Optional (IN / INP)
Data-driven
Coordination language

Strongly coupled
Explicit channels
Messages are transient
Mandatory on send/receive
Control-driven
Process algebra

Linda coordinates processes by generating shared data, while CSP coordinates
them through synchronous interaction.

Generative Programming

Rocco De Nicola

SCHOOL

IMT EORADVANCED
LceA” Kernel Language for Agent Interaction and Mobility

Process Calculus Flavored
» Small set of basic combinator;

» Clean operational semantics.

Linda based communication model
» Asynchronous communication;
» Shared tuple spaces;

» Pattern Matching

Explicit use of localities
» Multiple distributed tuple spaces;

» Code and Process mobility.

Generative Programming Rocco De Nicola

SCHOO!

IMT] o™ From Linda and Process Algebras to Klaim

Explicit Localities to model distribution
» Physical Locality (sites)
» [ogical Locality (names for sites)

> A distinct name self (or here) indicates the site a process is on.

Allocation environment to associate sites to logical localities

» This avoids the programmers to know the exact physical structure.

Process Algebras Operators to compose programs
» Sequentialization

» Parallel composition

» Creation of new names

Generative Programming Rocco De Nicola

SCHOOL

IMT STUDIES Klalm NOdeS

LUCCA

» Locality
» Processes
» Tuple Space

» Allocation Environment

S

newloc(v)

read(t)©/

Yy SO
evaI(P)@:‘:’j Lout(r)@f \}(t)

Rocco De Nicola

Generative Programming

SCHOOL

IMT | Klaim Nets

52

out(t)@/

\ S3
5

v

Generative Programming Rocco De Nicola

	Message Passing
	CSP
	RPC and Rendez Vous
	Generative Programming

