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Semaphores

Semaphore S is a (non-negative) integer variable that takes a value greater than 0
and is accessed only through two standard atomic operations:

I P(S) also called wait(S)

I V(S) also called signal(S)

After a semaphore has been declared and initialized, it can be manipulated only
using the atomic P and V operations

- P(S): if (S > 0) then S = S -1;

else suspend (wait) the process that called P(S)

- V(S): if some process p is suspended by a previous P(S)

then resume p, else s = s +1

The definition of V(S) does not specify which process is woken up if more than
one process has been suspended on S.
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Semaphores as Abstract Data Types

A semaphore can be modeled as an abstract data type (ADT) defined by:
I a set of permissible values;

I a set of permissible operations.

Unlike standard ADTs, semaphore operations P and V must be executed as atomic
actions.

Implementing Semaphores

I Atomicity of P and V can be achieved using:
1. Software algorithms (Peterson’s, Ticket, Bakery)
2. Special hardware instructions (e.g., Test-and-Set)
3. Interrupt disabling

I Waiting strategies for processes blocked on a semaphore:

1. Busy waiting - simple but inefficient
2. Blocking - the process sleeps without consuming CPU cycles
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Using Semaphores

Semaphores for mutual exclusion and condition synchronisation

I Semaphores can be used to implement straightforwardly entry and exit
protocols of critical sections

I Semaphores can also be used to implement more efficient solutions to the
condition synchronisation problem

P and V as atomic actions

I P and V operations are atomic and mutually exclusive (reading and writing
the semaphore value is itself a critical section)

I If semaphore S = 1, and two processes simultaneously attempt to execute
P(S) only one of them succeeds, the other is suspended until a V(S) is
executed.

I Semaphore operations on distinct semaphores need not be mutually exclusive.
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Mutual exclusion using a binary semaphore

Binary Semaphores

- P(S): if (S = 1) then S = 0;

else suspend (wait) the process that called P(S)

- V(S): if some process p is suspended by a previous P(S)

then resume p, else S = 1

Mutual exclusion with a binary semaphore
Shared binary semaphore S = 1;

P-i : initi; while(true) { P(S); criti; V(s); remi; }

Properties of the semaphore solution

I Guarantees Mutual Exclusion

I Avoids Livelock

I Guarantees Eventual Entry only if fair semaphores are used

I Works well for n processes

I is simpler than Peterson’s algorithm

I may avoid busy waiting
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Fairness and Semaphores

Queuing Policies

The definitions of P and V do not specify how blocked processes are queued or
scheduled. Consider the following policies:

I FIFO: Processes blocked on S are stored in a First-In, First-Out queue. When
a V(S) operation is executed, the process at the head of the queue is
unblocked.

I RANDOM: Processes blocked on S are stored in a unordered set. When a
V(S) operation is executed, one blocked process is selected at random.

Example

Consider a concurrent program with n processes and a critical section. Suppose
processes B and C are blocked on semaphore S . If process A executes V(S) and
unblocks B, when will C be unblocked?

1. FIFO: C will be unblocked by the next V(S)

2. RANDOM: it depends on whether new processes arrive and on the random
selection.
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Fairness and Semaphores

Fair vs. Unfair Semaphores

I The FIFO rule is an example of a fair semaphore: regardless of the number of
blocked processes, every process that waits will eventually be unblocked,
provided that a sufficient number of V(S) operations are executed.

I The RANDOM rule is an example of an unfair semaphore: a process may
remain blocked forever, even if an infinite number of V(S) operations are
executed.

Impact on Program Properties

The properties of a concurrent program may depend on the semaphore
implementation.

I If n > 2, processes may suffer indefinite postponement (starvation) when
unfair semaphores are used.

I If n = 1 or n = 2, starvation cannot occur under either rule (why?).

I For any value of n, starvation does not occur when fair semaphores are used.

Linguistic Primitives Rocco De Nicola 6/40



Split Binary Semaphores

Binary Semaphores

Binary semaphores can only hold values 0 or 1; they can be used as signalling flags.

Split Binary Semaphores

Split binary semaphores are a pair of binary semaphores where the value of one is
the opposite of the value of the other.

Producer-Consumer Problem

I Two types of processes some produce elements other consume them.

I Communication between consumer-producer processes is done through a
shared buffer (a circular queue of data elements).

I Processes can access the buffer concurrently.

I Consumers are blocked if no element is available

I Producers are blocked if the buffer is full
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Producer-Consumer Problem

Producer-Consumer are ubiquitous in computing systems
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Many variants of the Producer-Consumer problem

1. Single Producer - Single Consumer

2. Multiple producers - Single consumer

3. Single producer - Multiple consumers

4. Multiple producers - Multiple consumers

N.B. Also capacity of the buffer might vary
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Producer-Consumer Problem: 1 position buffer

Using split binary semaphores

shared typeT buf; /* a buffer of some type T*/

sem empty=1, full=0;

process Producer [i=1 to M] {

while (true) { ...

/* produce data to deposit it in buffer */

P(empty);

buf = data;

V(full); } }

process Consumer [j=1 to N] {

while (true) {

/* fetch result to consume */

P(full);

result = buf;

V(empty); ... } }
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Producer-Consumer: Most General Problem

typeT buf[n]; /* an array of some type T */

shared int front=0; rear=0;

sem empty=n, full=0; /* n-2 <= empty+full <=n */

sem mutexD=1, mutexF=1; /* mutex for deposit and fetch */

process Producer [i=1 to M] {

while (true) { ... /* produce then deposit */

P(empty); P(mutexD);

buf[rear]=data; rear=(rear+1)mod n

V(mutexD); V (full); } }

process Consumer [j=1 to N] {

while (true) { /* fetch result then consume it */

P(full); P(mutexF);

result=buf[front];front=(front+1)modn;

V(mutexF); V(empty); ... } }
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Semaphores can be dangerous

Advantages

Semaphores provide a simple yet powerful synchronization primitive: they are
conceptually simple, efficient, and versatile.

Risks

Semaphores provide “too much” flexibility:

I Correct use of a semaphore cannot be determined from the part of code
where it occurs; potentially the whole program need be considered

I Forgetting or misplacing a wait or signal operation compromises correctness.
It is easy to introduce deadlocks into programs

I The same primitives are used for different purposes (mutual exclusion,
condition synchronization) causing errors.
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Semaphores can be dangerous

A possible deadlock

sem S = 1,

Q = 1

Process P0: ... P(S); P(Q); ... V(S); V(Q) ...;

P1: ... P(Q); P(S); ... V(Q); V(S) ...;

co P0 || P1 oc

Wishes

We would like an approach that enables programmers to apply synchronization in a
more structured manner.
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Monitors: definition and key properties

A monitor is a language-level synchronization construct (often a class/module)
that packages:

I private state (monitor variables),

I operations (monitor procedures) as the only access points to that state,

I optional initialization code.

Crucial guarantee: at most one thread/process executes inside a monitor at a time
(mutual exclusion is enforced by the runtime/compiler, not by the programmer).

Condition synchronization (waiting for predicates over the state) is provided via
condition variables (e.g., wait, signal).

Monitors were introduced and popularized in the 1970s (notably by Brinch Hansen and
Tony Hoare).
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Monitors: what they solve

The problem

Concurrent components must coordinate access to shared state/resources without:

I data races (unsafe interleavings),

I ad-hoc locking (hard to reason about),

I scattering synchronization logic across the codebase.

The monitor approach

I Put all shared state behind a single, well-defined interface.

I Enforce mutual exclusion automatically.

I Express coordination policies locally using condition variables.
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Monitors as arbiters of shared resources

A monitor can be used as an arbiter for a shared resource in two common designs:

I Monitor includes the resource
Preferred when the critical section is short and operations are fast (e.g.,
in-memory bounded buffer).

I Monitor controls access to an external resource
Useful when operations are long-running or blocking (e.g., disk I/O, printer,
network service). The monitor mainly coordinates admission/order.

Monitor is often used to control access to 

shared resource   

monitor 

& 

resource monitor resource 

thread thread thread thread 

monitor includes  

the resource: 

monitor controls access 

to the resource: 

Resource access is 

fast,  like buffer in 

main memory 

Resource access needs lot of time time,  

like accessing disk etc.  

5 
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Monitors in a concurrency architecture

Software architecture pattern

I Active components: processes/threads that execute control flow.

I Passive components: monitors as shared objects providing synchronized
services.

I Design rule: all shared state/resources are protected by (or mediated
through) monitors.

I Interactions between active components occur only via monitor operations.

Monitor components (as an abstract data type)

A monitor can be viewed as an ADT with built-in synchronization:

I Private variables representing the resource/state (invariant maintained here).

I Monitor procedures forming the public interface (atomic w.r.t. other
procedures).

I Condition variables for waiting/signaling on state predicates.

I Initialization code establishing the invariant initially.
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Monitors
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The initialization component contains 
the code that is used exactly once 
when the monitor is created 
 
The private data section contains all 
private data, including private 
procedures, that can only be 
used within the monitor. Thus, these 
private items are not visible from 
outside of the monitor 
 
The monitor procedures are 
procedures that can be called from 
outside of the monitor 
 
The monitor entry queue contains all 
processes that called monitor 
procedures but have not been granted 
permissions 
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Monitor procedures

Monitor procedures manipulate the values of the private monitor variables:

I Only names of monitor procedures are visible outside the monitor

I The only way a process can read or change the value of a private monitor
variable is by calling a monitor procedure

I The private monitor variables are shared by all the monitor procedures

I Monitors’ procedures may also have their own local variables; each procedure
call gets its own copy of these

I Statements within a procedure (or initialisation code) have no access to
variables declared outside the monitor (unless passed as arguments to a
monitor procedure)
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Synchronization in Monitors

Locks

Every instance of a monitor has a unique binary semaphore (lock) a.k.a the entry
lock or the monitor lock that guarantees that monitor procedures are executed
with mutual exclusion.

Mutual Exclusion

A process must get the entry lock before entering a monitor procedure. If the lock
is taken, the process waits on the entry queue until the lock is freed. The lock is
released when a monitor procedure terminates.

Condition synchronization

I A monitor may have condition variables to wait for conditions;

I A process can wait on a condition variable inside the monitor (N.B.: before
waiting it releases the monitor lock);

I Another process can signal (notify) the condition var to resume the waiting
processes.
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Condition variables

Operations on Condition Variables

Condition variables provide a safe signaling mechanism for blocking/resuming
processes in a monitor. A condition variable consists of a queue blocked and three
(atomic) operations:

I wait releases the lock on the monitor, blocks the executing thread and
appends it to blocked

I signal has no effect if blocked is empty; otherwise it unblocks a thread, but
can have other side effects that depend on the signaling discipline used

I empty returns true if blocked is empty, false otherwise

Visibility of Condition Variables

I Condition variables are not visible outside the monitor, they can only be
accessed via special monitor operations within monitor procedures

I like semaphores, their values cannot be tested or assigned directly, even by
the monitor procedures
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A condition variable indicates an event 
and has no value 
 
 More precisely, one cannot store a 
value into nor retrieve a value from a 
condition variable 
 
 If a process must wait for an event to 
occur, that process waits on the 
corresponding condition variable 
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Signaling disciplines

Signaling to waiting-processes

When a process signals on a condition variable, it still executes inside the monitor.
As only one process may execute within a monitor at any time, an unblocked
process cannot enter the monitor immediately.

Signaling Policies

There are two main choices for continuation, that are expressed in signaling
disciplines that determine the future behavior of processes inside the monitor.

I the signaling process continues, and the signaled process is moved to the
entry of the monitor - Signal and Continue

I the signaling process leaves the monitor, and lets the signaled process
continue - Signal and Wait
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Signal and Continue

1. The signaling process continues

2. The signaled process is moved to the entry queue of the monitor

16 

Signaling disciplines: Signal and Continue (2) 

entry.blocked 

c1.blocked 

cn.blocked 

. . .  

entry.wait entry.signal 

c1.signal 

c1.wait 

Monitor 
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Signal and Wait

1. The signaling process is moved to the entry queue of the monitor

2. The signaled process continues (the monitor’s lock is silently passed on)
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Signaling disciplines: Signal and Wait (2) 

entry.blocked 

c1.blocked 

cn.blocked 

. . .  

entry.wait entry.signal 

c1.signal 

c1.wait 

Monitor 

Linguistic Primitives Rocco De Nicola 24/40



Signal and Continue vs. Signal and Wait

I If a thread executes a ’Signal and Wait’ the signal command indicates that a
certain condition is true and this condition will be true for the signaled process

I In the case for ’Signal and Continue’, the signal is only a ”hint” that a
condition might be true now, other threads might enter the monitor
beforehand and make the condition false

In monitors with a Signal-and-Continue also an operation

Signal-All

is offered, to wake all waiting processes. This is equivalent to

while not blocked.empty do signal end

The Signal-All command is typically inefficient. Very often, for many threads the
signaled condition will not be true any more.
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Other signaling disciplines

Urgent Signal and Urgent Wait

I Urgent Signal and Continue: special case of Signal and Continue, where a
thread unblocked by a signal operation is given priority over threads already
waiting in the entry queue of the monitor

I Signal and Urgent Wait: special case of Signal and Wait, where a signaler is
given priority over threads already waiting in the entry queue of the monitor.

Urgent Entry

These signaling disciplines are implemented in different ways

1. a new queue for urgent entries can be introduced which has priority over the
standard entry queue.

2. The queued process is inserted in the first place of the standard entry queue
rather than in the last one
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Summary: signaling disciplines

We can classify three sets of processes:

I S: Signaling Processes

I U: Processes unblocked on the queue of the condition

I B: Processes blocked on the entry queue of the monitor

If we write X > Y to mean that threads in set X have priority over threads in set
Y , then we can express the signaling disciplines concisely as follows:

1. Signal and Continue: S > U = B

2. Urgent Signal and Continue: S > U > B

3. Signal and Wait: U > S = B

4. Signal and Urgent Wait: U > S > B
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wait() and signal() vs P() andV()

Wait() and Signal() are different from P() and V() for semaphores. The key
difference is that Signal() on a condition variable is not remembered in the way
V() on a semaphore is. If no threads are waiting, then Signal() is lost or forgotten,
whereas a V() will allow a subsequent P() to proceed.

Wait C the process is always put to wait

Signal C the executing process awakens a waiting process, which resumption to
execute depends on the monitor scheduling rules (SW,SC,..) no effect if no
process is waiting

P (= Sem.wait) the executing process waits only if Sem = 0 and decrements the
semaphore value if Sem > 0

V (= Sem.signal) the executing process awakens a waiting process (which may
resume execution immediately) and increments the semaphore value if no
process is waiting
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Implementing Semaphores with Monitors

monitor Semaphore {

int s=1; ## Invariant s>=0

cond pos; # signaled when s>0

procedure Psem() {

while (s==0) wait(pos);

s=s-1; }

procedure Vsem() {

s=s+1;

signal(pos); } }

This works fine with both SW and SC policies, but only SW guarantees a FIFO
implementation. With SC we have that, after Vsem, the awaken process is inserted
in the entry queue and could be overtaken by another processes that has executed
a Psem and is waiting to enter in the monitor.
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Implementing FIFO Semaphores with Monitors

monitor FIFOSemaphore {

int s=0; ## s>=0

cond pos; # signaled when s>0

procedure Psem() {

if (s==0)

wait(pos);

else s=s-1; }

procedure Vsem() {

if (empty(pos))

s=s+1;

else signal(pos); } }

Now both SW and SC guarantee FIFO implementations. The signaling process
wakes-up one of the waiting processes without incrementing the semaphore. This
technique is known as passing the condition.
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Implementing Monitors with Semaphores

Shared Variables:

sem mutex = 1; condsem = 0, int condcount = 0;

monitor entry: P(mutex);

monitor exit: V(mutex);

wait("condition")

begin

condcount:=condcount+1;

V(mutex); /* freeing the monitor */

P(condsem); /* going asleep*/

condcount:=condcount-1; /* on waking up */

end;

signal("condition")

begin

if condcount>0 then V(condsem) /*waking up a proc */

else V(mutex); /* freeing the monitor */

end;
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Producers-Consumers

monitor Bounded-Buffer {

typeT buf[n]; # an array of some type T

int front=0, # index of first full slot

rear=0, # index of first empty slot

count = 0; # number of full slots

# rear == (front + count) mod n

cond not-full, # signaled when count<n

not-empty; # signaled when count>0

procedure deposit (typeT data) {

while (count==n) wait(not-full);

buf[rear]=data; rear=(rear+1)mod n; count:= count++;

signal(not-empty);}

procedure fetch (typeT @result) {

while (count==0) wait(not-empty);

result=buf[front];front=(front+1)mod n; count--;

signal(not-full); } }
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The readers-writers problem

The Problem

Consider shared data accessible by two kinds of processes:

I Readers: Processes that may execute concurrently with other readers, but
need to exclude writers

I Writers: Processes that have to exclude both readers and other writers

Motivation

I Ensure data consistency under read and write accesses

I Relevant for databases, shared files, web pages, . . .

Solution

The aim is to provide an algorithm such that

I guarantees that access requirements are observed

I is starvation-free
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Towards a solution

I We cannot use monitors in the classical way, i.e. encapsulating the shared
data inside the monitor. Since all monitor routines execute under mutual
exclusion, we couldn’t have multiple readers

I We use the monitor only to coordinate access; shared data accesses are
wrapped by calls to monitor routines that guarentee the access to protected
data.

Readers

request-read

read-access to shared data
release-read

Writers

request-write

write-access to shared data
release-write
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Readers-Writers

monitor RW-Controller

int nr=0, nw=0; ## (nr == 0 OR nw == 0) AND nw <= 1

cond oktoread, # signaled when nw==0

cond oktowrite; # signaled when nr==0 and nw==0

procedure request-read() {

while (nw>0) wait(oktoread);

nr=nr+1; }

procedure release-read() {

nr=nr-1;

if (nr==0)signal(oktowrite); # awaken one writer }

procedure request-write() {

while (nr>0 OR nw>0) wait(oktowrite);

nw=nw+1; }

procedure release-write() {

nw=nw-1;

signal(oktowrite); \# awaken one writer and

signal-all(oktoread) \# all readers } }
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Questions

1. Does this work correctly?

2. Does correctness depend on the signalling rules?

3. Is this solution fair? i.e. neither readers nor writers can monopolize the
database access
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Dining Philosophers

1. n philosophers are seated around a circular table

2. There is one chopstick between each two philosophers

3. A philosopher must pick up its two nearest chopsticks in order to eat

4. A philosopher must pick up first one chopstick, then the second one

Devise an algorithm for allocating resources among philosophers in a manner that
is deadlock-free, and starvation-free
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Dining Philosophers

A solution with semaphores

Philosopher i:

while(true) {

# obtain the two chopsticks to the immediate right and left

P(chopstick[i]); P(chopstick[(i+1)%5];

# eat

/# release both chopsticks

V(chopstick[(i+1)%5]; V(chopstick[i]; }

There could be a deadlock! Why?
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Dining Philosophers

A solution with monitors

monitor DiningPhilosophers

int chopsticks[5] = { 2, 2, 2, 2, 2 };

Condition c_available[5];

proc start_eating (int i ) {

if(chopsticks[i] != 2) wait(c_available[i]);

chopsticks[(i - 1)%5]--; chopsticks[(i + 1)%5]--}

proc stop_eating (int i) {

chopsticks[(i - 1)%5]++; chopsticks[(i + 1)%5]++;

if(chopsticks[(i - 1)%5] == 2)

signal(c_available[(i - 1)%5]);

if(chopsticks[(i + 1)%5] == 2)

signal(c_available[(i + 1)%5]; }

Some philosophers could starve! Why?
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Summing Up

Benefits of monitors

I Structured approach: programmers do not have to remember to accompany a
wait with a signal etc.

I Separation of concerns: mutual exclusion comes for free, while condition
variables can be used for condition synchronization.

Problems of monitors

I Performance issues: trade-off between programmer support and performance

I Signaling disciplines are a source of confusion: Signal and Continue
problematic as condition can change before a waiting process enters the
monitor

I Nested monitor calls: Consider that routine r1 of monitor M1 makes a call to
routine r2 of monitor M2. If routine r2 contains a wait operation, should
mutual exclusion be released for both M1 and M2, or only for M2? . . . and
the like.
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