
Principles of Parallel and Concurrent

Programming

Synchronization and Mutual Exclusion

Rocco De Nicola

January 2026

GSSI - L’Aquila and IIT CNR - Pisa

Concurrent Processing Mode

Atomic Actions, States and Histories

I A (sequential or concurrent) program consists of atomic statements causing
well defined, atomic, state changes depending on the computer architecture.

I An execution of a sequential program , i.e. a process is a sequence of atomic
actions also called events inducing a sequence of consecutive states.

I The state of a process can only be observed from the outside between two
atomic actions.

I An execution of a concurrent program consists of several processes/threads
running physically in parallel (multiprocessing) or virtually in parallel
(multitasking).

I The trace (history) of a concurrent system/program is one interleaving of the
traces of its processes/threads into one, single trace.

Atomicity and Interaction Rocco De Nicola 1/46

Process Histories

The sequence of states makes up a process history. A history is a trace of ONE
execution:

s0
a1−→ s1

a2−→ . . .
an−→ sn

and transitions are the consequences of atomic actions ai that induce a state
change.

Atomic Actions

I Atomic actions are indivisible sequence of state transitions made atomically

I Fine-grained atomic actions are machine instructions (read, write, swap, etc.)
with atomicity guaranteed by HW

I Coarse-grained atomic actions are a sequence of fine-grained atomic actions
executed indivisibly (atomically). Internal state transitions are not visible
from “outside”.

I <statements> denotes a list of statements to be executed atomically.

Atomicity and Interaction Rocco De Nicola 2/46

Interleaving Semantics of Concurrent Execution

The concurrent execution of several processes can be viewed as the interleaving of
histories of the processes, i.e., the interleaving of sequences of atomic actions of
different processes.

Individual histories:

P1: s0
a1−→ s1

a2−→ . . .
an−→ sn

P2: p0
b1−→ p1

b2−→ . . .
bn−→ pn

P3: r0
c1−→ r1

c2−→ . . .
cn−→ rn

The parallel execution of P1 , P2 e P3 yields many traces, eg.:

I p0||q0||r0
a1−→ s1||q0||r0

b1−→ s1||q1||r0
b2−→ s1||q2||r0

c1−→ . . .

I p0||q0||r0
b1−→ s0||q1||r0

c1−→ s0||q1||r1
b2−→ s0||q2||r0

c2−→ . . .

I . . .

That represent the concurrent histories of P1 , P2 and P3.

Atomicity and Interaction Rocco De Nicola 3/46

Hardware assumptions

I Values of basic types, e.g., int, are stored in memory locations, e.g., words,
that are read and written as atomic actions;

I Values of program variables are manipulated by loading them into registers
(load), modifying the register value (execute) and storing the results back
into memory (store);

I each process has its own set of registers

real registers in a multiprocessing implementation
logical registers in a multiprogramming implementation, where register

values are saved and restored when switching processes

I when evaluating a complex expression, e.g., z = x ∗ (y + 1), intermediate
results are stored in registers or in memory private to the executing process,
e.g., on a private stack.

Atomicity and Interaction Rocco De Nicola 4/46

Special machine instructions

In addition to reads and writes of single memory locations, most modern CPUs
provide additional special indivisible (atomic) instructions (in the single-CPU case),
e.g. (where x is a variable and r is a register.):

I Exchange instruction

I SWAP(int x, int y) = <z = x , x = y, y = z> (x ←→ y)

I Increment and Decrement instructions:

I INC(int x) = <x = x + 1; r = x>
I DEC(int x) = <x = x - 1; r = x>

I Test-and-Set instruction used to write to a memory location and test and
return its old value as a single atomic (i.e. non-interruptible) operation:

function TestAndSet(boolean lock)

boolean <temp = lock; lock = true; return temp>

Atomicity and Interaction Rocco De Nicola 5/46

Find the Maximum I

2G1915. Lecture 2: Processes and Synchronization 19

Example of Synchronization:
Find the Maximum

• Given array a[1:n] of positive integers. Find the maximum value m
(! j : 1 " j " n : m # a[j]) $ (% j : 1 " j " n : m = a[j])

– When program terminates, m is at least as large as every element of a
– m is one of elements of a

• Sequential program:
int m = 0;

for [i = 0 to n-1]

if (a[i] > m) m = a[i];

• How to parallelize? – Examining all elements in parallel
• Parallel program without synchronization:

int m = 0;

co [i = 0 to n-1]

if (a[i] > m) m = a[i]; oc

– Program is incorrect because of the race condition
– Synchronization is needed

2G1915. Lecture 2: Processes and Synchronization 20

Example (cont’d): Concurrent Program

• First attempt to synchronize: execute cond. updates atomically
int m = 0;

co [i = 0 to n-1]

if (a[i] > m) m = a[i]; oc

– Not efficient (overconstrained): all the updates are serialized just like in
the sequential program but executed in arbitrary order.

• Observations:
– Read and test can be executed in parallel for each i
– Updates of m require atomicity (mutual exclusion) for serialization
– Can use second test in critical section to avoid races

Atomicity and Interaction Rocco De Nicola 6/46

Find the Maximum II

2G1915. Lecture 2: Processes and Synchronization 19

Example of Synchronization:
Find the Maximum

• Given array a[1:n] of positive integers. Find the maximum value m
(! j : 1 " j " n : m # a[j]) $ (% j : 1 " j " n : m = a[j])

– When program terminates, m is at least as large as every element of a
– m is one of elements of a

• Sequential program:
int m = 0;

for [i = 0 to n-1]

if (a[i] > m) m = a[i];

• How to parallelize? – Examining all elements in parallel
• Parallel program without synchronization:

int m = 0;

co [i = 0 to n-1]

if (a[i] > m) m = a[i]; oc

– Program is incorrect because of the race condition
– Synchronization is needed

2G1915. Lecture 2: Processes and Synchronization 20

Example (cont’d): Concurrent Program

• First attempt to synchronize: execute cond. updates atomically
int m = 0;

co [i = 0 to n-1]

if (a[i] > m) m = a[i]; oc

– Not efficient (overconstrained): all the updates are serialized just like in
the sequential program but executed in arbitrary order.

• Observations:
– Read and test can be executed in parallel for each i
– Updates of m require atomicity (mutual exclusion) for serialization
– Can use second test in critical section to avoid races

Atomicity and Interaction Rocco De Nicola 7/46

Find the Maximum III

2G1915. Lecture 2: Processes and Synchronization 21

Example (cont’d):
Solution for Concurrent Program

• Read and test in parallel without mutual exclusion. Those who passed the
test, execute conditional update atomically (with mutual exclusion)

int m = 0;

co [i = 0 to n-1]

if (a[i] > m)

if (a[i] > m) m = a[i]; oc

• Lessons learned
– Synchronization is required whenever processes read and write shared

variables (to preserve dependencies)
– Atomicity helps to provide mutual exclusion
– Test followed by an atomic test-and-update is a useful combination for

conditional updates
• Helps to avoid races among concurrent conditional updates that depend on the

same condition

2G1915. Lecture 2: Processes and Synchronization 22

Properties of a Program

• A property of a program is an attribute of ALL histories of a
program, e.g., correctness.

• Two kinds of properties:
– Safety properties

• A safety property is one in which the program never enters a “bad” state

– Liveness properties
• A liveness property is one in which the program eventually enters a

“good” (desirable) state

Atomicity and Interaction Rocco De Nicola 8/46

Asynchronous process execution

Asynchrony

In multiprocessing systems the processes usually have little or no control over the
way their atomic actions are interleaved.

Advantage:

Applications programmer can ignore the problems of timesharing the processes

Disadvantage:

Since processes run asynchronously, we can not make any assumption on their
relative speed, about which one starts first, when they will be suspended etc.

Important Consideration

Each program statement or machine instruction ultimately reduces to a sequence
of atomic actions on the shared memory and the effect of executing a set of atomic
actions in parallel is equivalent to executing them in some arbitrary serial order.

Atomicity and Interaction Rocco De Nicola 9/46

Concurrent Execution and Interleaving

Consider a multiprogramming implementation of a concurrent program consisting
of two processes:

Concurrent execution
!
Consider a multiprogramming implementation of a concurrent program
consisting of two processes:
!

!"#$%&&'('
!

!"#$%&&')'
!

time
!

*+%,-./ in
Java); or
!
! completion of an I/O operation or clock tick to the processor.
!

© Brian Logan 2007

G52CON Lecture 3: Synchronisation

17

The switching between processes occurs voluntarily or in response to interrupts.
The processor executes a sequence of instructions which is an interleaving of the
instruction sequences from each process.

Interleaving
!
The processor executes a sequence of instructions which is an !"#$%&$'(!")
of the instruction sequences from each process:
!

time
!

Process switching does not affect the order in which instructions are
executed by each process.
!

© Brian Logan 2007

G52CON Lecture 3: Synchronisation

18

Process switching does not affect the order in which instructions are executed by
each process.

Atomicity and Interaction Rocco De Nicola 10/46

Nondeterminism of Concurrent Execution

Different interleavings (histories) can be observed on different concurrent
executions.

I A concurrent program of n processes each of m atomic actions can produce
(n ×m)!/(m!)n different histories.
If n = 3, m = 2 we have 90 different histories.

I (n ∗m)!/(m!)n is obtained considering that (n ∗m)! represents the possible
sequences obtained by permuting(n ∗m) atomic actions and that from this
number we need to remove all the sequences obtained by permuting the
sequences of the actions of the individual processes.

I In general, if we have n processes that execute m1,m2, . . .mn, actions we
have that the number of possible histories is :

(
n∑

i=1

mi)!/
n∏

i=1

(mi)!

Atomicity and Interaction Rocco De Nicola 11/46

Example of Nondeterminism

Given the program

int y = 0; z = 0;

co x = y + z; || y = 1; z = 2; oc}

let us consider the possible runs that lead to four different final values of variable x:

Trace 1: x = y{0} + z{0}; y = 1; z = 2;

final value x = 0

Trace 2: y = 1; x = y{1} + z{0}; z = 2;

final value x =1

Trace 3: y := 1; z := 2; x := y{1} + z{2};

final value x = 3

Trace 4: load y{0} to R1; y := 1; z := 2;

add z{2} to R1{0}; store R1 to x;

final value x = 2

Atomicity and Interaction Rocco De Nicola 12/46

Synchronization

Synchronization is a mechanism to delay processes to

I Reduce the entire set of possible histories to those which are desirable/correct.

I Preserve (true) dependences between processes

I Avoid race conditions, if any.

Condition synchronization:

Delays a process until a certain condition is true.

Example:

If process A produces data and process B prints them, B has to wait until A has
produced some data before starting to print.

Atomicity and Interaction Rocco De Nicola 13/46

Interference and Mutual Exclusion

Interference

If instructions from different processes are arbitrarily interleaved, any interleaving
which is not explicitly prohibited is allowed. Some interleavings might have
unwanted results due to unwanted interference on read and write shared variables
of processes.

Mutual exclusion

To avoid interference, we need to ensure that no two processes access a shared
variable at the same time by marking parts of code as critical and requiring that no
two processes execute it at the same time (critical section).

Let CS and CS’ be time intervals in which two different processes execute the
critical section, then Mutual exclusion means that for each such pair:

CS −→ CS’ or CS’ −→ CS.

Atomicity and Interaction Rocco De Nicola 14/46

Critical sections

A critical section is a section of code belonging to a process in a concurrent
program that:

I accesses a shared resource, e.g a variable, a communication channel, a file,
etc.;

I for correct behaviour of the program only one process may access the shared
resource at a time.

A critical section in which at most one process at a time may be in.
Critical sections
!

A !"#$#!%&'()!$#*+ is a section of
code belonging to a process in a
!concurrent program that:
!

a shared variable, commu-
! nication channel, file etc.; and
!

 program only !"# process may
! access the shared resource at a
!time.
!

,"#$#!%&'()!$#*+: the stick figures
represent processes. The box is a
critical section in which at most one
process at a time my be in.
!!"#$%&"': given by the protocols for
opening and closing the door to the
critical section.
!© Gabriela Ochoa 20011

G52CON Lecture 3: Synchronisation

4
 Brian Logan 2007

!

Our problem

Provide the protocols for opening and closing the door to the critical section, to
ensure that a process waits in front of its critical section when this is occupied by
others.

Critical sections Rocco De Nicola 15/46

Archetypical mutual exclusion

Any program consisting of n processes for which mutual exclusion is required
between critical sections belonging to just one class can be written:

Archetypical mutual exclusion
!

Any program consisting of ! processes for which mutual exclusion is
!required between critical sections belonging to just one class can be written:
!
!!"#$%&'((")"
!

!!"#$%&'(("*"""+++"
!

!!"#$%&'(("!"
!#!#$%,"

!
#!#$&,"
!

#!#$!,"
!-./0'12$3'4"5"

!
-./0'12$3'4"5"
!

-./0'12$3'4"5"
!'(#$%,"

!
'(#$&,"
!

'(#$!,"
!()*%,"

!
()*&,"
!

()*!,"
!6"

!
6"
!

6"
!

where #!#$! denotes any (non-critical) initialisation, '(#$! denotes
a critical section, ()*! denotes the (non-critical) remainder of the
program, and " !.
!

© Brian Logan 2007
!

G52CON Lecture 6: Algorithms for Mutual Exclusion!

"#$#$%&$!

'!

where initi denotes any (non-critical) initialisation, criti denotes a critical section,
remi denotes the (non-critical) remainder of the program, with i = 1, 2, ...n.

Critical sections Rocco De Nicola 16/46

Mutual exclusion via interrupts

On a mono-processor, coarse grained atomic actions (hence also critical sections)
can be implemented at the hardware level by disabling interrupts. But disabling
interrupts has many disadvantages:

I it is possible only in privileged mode (what would happen if was possible in
user mode?);

I it excludes all other processes, and thus reduces concurrency;

I it does not work in multiprocessing implementations (disabling interrupts is
local to one processor)

Disabling interrupts is not a very useful from the point of view of an application
programmer and is only useful in specific situations like:

1. developing operating systems;

2. writing software for embedded systems;

3. using simple (single-user) processors

Critical sections Rocco De Nicola 17/46

Basic mutual exclusion

Atomic machine instructions can be used to solve some very simple mutual
exclusion problems directly, e.g.:

Single-Word Readers and Writers

If many processes read and/or write to a shared variable and this is stored in a
single word, then the memory unit ensures mutual exclusion for all accesses to the
variable.

Shared Counter

Several processes each increment a shared counter. If the counter can be stored in
a single word, inc (if available!) can be used to update the counter, ensuring
mutual exclusion.

Critical sections Rocco De Nicola 18/46

Problems with (fine-grained) atomic actions

Relying on fine-grained atomic actions is not very valuable for the applications
programmer:

I atomic actions do not work for multiprocessor implementations of
concurrency unless one can lock memory

I the set of atomic actions (special instructions) varies from machine to
machine

I It cannot be assumed that a compiler will generate a specific sequence of
machine instructions from a given high-level statement

I the range of things one can do with a single machine instruction is limited
(no critical section with more than one instruction)

Solution:

Atomic actions can be used to implement, on specific platforms, higher-level
synchronisation primitives and protocols.

Critical sections Rocco De Nicola 19/46

Mutual exclusion protocols

To solve the mutual exclusion problem, we adopt a standard Computer Science
approach by relying on specific protocols:

I Designed to be used by concurrent processes to achieve mutual exclusion and
avoid interference

I Consisting of a sequence of instructions to be executed before entering (entry
protocol) and after leaving (exit protocol) the critical section

I Defined using standard sequential programming primitives or some common
special instructions.

Fine-grained atomic actions are used to implement higher-level coarse grained
synchronisation primitives and protocols.

Critical sections Rocco De Nicola 20/46

General Structure of a Mutual Exclusion Protocol

There are many ways to implement such a protocol. We assume that each of the n
processes have the following form:

General form of a solution
!
We assume that each of the ! processes have the following form,

"
!
!!"#$%&'(("!

!"!#!)"
!*+,-'./$0'1"2"
! !!"'3/$4"5$%/%&%-

$%!#!)"
!!!"'6,/"5$%/%&%-
%&'!)"
!7"

!
© Brian Logan 2007
!

G52CON Lecture 6: Algorithms for Mutual Exclusion!

"#$#$%&$!

&&!
Necessary properties for any solution of the CS problem
I Mutual Exclusion: at most one process at a time is executing its critical

section

I Deadlock Freedom: if no process is in its critical section and some processes
want to enter their critical sections, one succeeds (No Livelock)

I Eventual Entry: a process that is attempting to enter its critical section will
eventually succeed (No Starvation)

Critical sections Rocco De Nicola 21/46

A first solution with await

The await statement can be used for achieving synchronisation; it is a conditional
conceptual corse grained atomic action

<await (B) S;>

The process executing this instruction blocks until B becomes true then atomically
executes S.

I B is a boolean expression specifying the waiting condition

I S is a sequence of sequential statements that is guaranteed to terminate

I B is guaranteed to be true when execution of S begins, no internal state of S
is visible to other process

(Under specific circumstances) it can be implemented as:

<while (not B) do Skip od; S>

This is called a spin loop, because the while statement has an empty body, and
repeatedly checks B until it becomes true.

Critical sections Rocco De Nicola 22/46

Implementing await with a Spin Loop

The statement <await (B) S;> can be implemented as <while (not B) do

Skip od; S> only under the following circumstances:

I B is a side-effect-free boolean expression

I S does not modify any variable appearing in B

I S is sequential, non-blocking, and guaranteed to terminate

I Execution of S is atomic: no intermediate state of S is visible to other
processes

I The scheduler is fair, so B will eventually be re-evaluated

I Busy waiting is acceptable (short waiting time or no blocking primitives
available)

Otherwise, the spin-loop implementation is not equivalent to await.

Critical sections Rocco De Nicola 23/46

Critical section: A solution using 2 variables

To guarantee the mutual exclusion property we need a way to indicate whether a
process is in or out of its critical section.

We develop a solution for two processes P1 and P2

I Let in1 and in2 be Boolean variables that are initially false

I When P1 is in its critical section we set in1 = true

I When P2 is in its critical section we set in2 = true

I The bad state we want to avoid is the one in which both in1 and in2 are true

Critical sections Rocco De Nicola 24/46

Critical section problem: 1st solutionCritical section problem: solution using 2 variables
!
!!"#$%&'(("!"#
!

!!"#$%&'(("!$#
!

%&%'")"
!

%&%'$)"
!*+,-'./$0'1"2"

!
*+,-'./$0'1"2"

!34*4,/".5,671",689/$0':"

!
34*4,/".5,681",679/$0':"

!()%'")"
!

()%'$)"
!,68"9";4-('"!!"'<,/"

!
,67"9";4-('"!!"'<,/"

!)*+")"
!

)*+$)"
!="

!
="

!
>%%-",68"9";4-('?",67"9";4-(')
@@"ABCDEF"G.,68"H",671"

!

© Brian Logan 2007
!

G52CON Lecture 6: Algorithms for Mutual Exclusion!

"#$#$%&$!

&'!

The solution has the following properties:

I Mutual Exclusion: yes!

I Absence of Deadlock: yes!

I Eventual Entry: not guaranteed!

I Additional Assumption Needed: Eventual Exit and Fair CPU scheduling.

Critical sections Rocco De Nicola 25/46

Critical section problem: 1st solution - a variant

I The previous solution used two variables to record the status of the two
process.

I There are only two interesting states: a process is in critical section or none
is. One variable is sufficient to specify this!.

Critical section problem: solution using 1 variable
!
!!"#$%&'((")*+"
!

!!"#$%&'((")*,"
!

!"!#$-"
!

!"!#%-"
!./01'23$4'5"6"

!
!!"'73$8"
!

./01'23$4'5"6"
!9:.:03"2;1%&<5"1%&<=3$4'->"

!
9:.:03"2;1%&<5"1%&<=3$4'->"
!&'!#$-"

!
&'!#%-"
!1%&<"="?:1('-"!!"'@03"

!
1%&<"="?:1('"!!"'@03"
!'()$-"

!
'()%-"
!A"

!
A"
! There are only two interesting

!B%%1"1%&<"="?:1('-"
!

states: some process is in
!CC"1%&<"=="207+"D"07,5"

!
!"#!$#%&'()!$#*+'or none is.
!One variable is enough.
!

© Brian Logan 2007
!

G52CON Lecture 6: Algorithms for Mutual Exclusion!

"#$#$%&$!

$%!

I Works also for n-processes.

I Still uses the coarse grained primitive < await ... >

Critical sections Rocco De Nicola 26/46

Critical section problem: using Test and Set

The atomic (possibly fine-grained) Test and Set (TS) instruction can be used to
implement the entry protocol.

Critical Section using Test and Set
!

!!"#$%&'(("!)"*+,),-."
!
"#"$%/"
!01)2'*3$4'."56"'-3$7"8$%3%&%2"
! 01)2'"*9:*2%&;..""
(;)8"!!(8)-"4-3)2"2%&;")("<&=4)$'>/"

2%&;"?"@<2('/"6"'A)3"8$%3%&%2
&'(%/"
!B

" C%%2"2%&;"?"@<2('/"

!

C%%2"9:*D%%2"2%&;."5"
! ,D%%2")-)3)<2"?"2%&;"
! 2%&;"?"3$4'/

" $'34$-")-)3)<2/E
B"
!Note: this solution called a
!"#$%&'(), because the
!process keep spinning
while waiting for the lock
!to be cleared
!

© Brian Logan 2007,
Gabriela Ochoa 2011
!

G52CON Lecture 6: Algorithms for Mutual Exclusion!

)&"$%!"
!

"#$#$%&$!

$$!

I The await statements are replaced by while-loops that do not terminate until
lock is false, and TS returns false

I This solution is referred as a spin lock because the process keep spinning
while waiting for the lock to be cleared.

Critical sections Rocco De Nicola 27/46

Properties of the Test and Set Solution

I Mutual Exclusion: YES. if two processes try to enter their critical sections,
only one succeeds in changing the value of lock from false to true.

I Absence of Deadlock: YES. If any number of processes are in their entry
protocols, and no process is inside a critical section, lock is false and one of
the processes will enter

I Eventual Entry: NOT guaranteed. Could be guaranteed if the CPU
scheduling policy is strongly fair and it is guaranteed that any process that
enters its critical section eventually exits.

Strong Fairness

A strongly fair scheduling policy guarantees that if a process is infinitely often
enabled to execute an action, it will eventually do it.

Weak Fairness

A weakly fair scheduling policy guarantees that if a process is permanently enabled
to execute an action, it will eventually do it.

Critical sections Rocco De Nicola 28/46

0verhead of Spin Lock
!"#$%#&'()*(+,-.(/)01+(

2(
(

2(

3(4$-&.(5)6&.(7889(
(

:27;!<(5#0=>$#(?@(A#B&,%)$#+(C(
(

I Time spent spinning is necessary to ensure mutual exclusion but it wastes
CPU time: B cannot do useful work while A is in its critical section

I If the critical sections are large relative to the rest of the program, a
concurrent program will be slowed down

I When many processes are contending access a large amount of CPU could be
wasted

Critical sections Rocco De Nicola 29/46

Test and Test and Set

A spin-lock implementation of the entry protocol that reduces concurrent use of a
“demanding” atomic operation.

Concurrent simple checks of lock, then, and only if lock is false, other TS checks
are performed to enable only one process to set lock to true.

bool lock=false; /* shared lock */

process CS [i=1 to n] {

while (true) { /* entry protocol */

while (lock) skip; /* spin while lock set */

while (TS(lock)) { /* try to grab the lock */

while (lock) skip; /* spin again if fail */

}

critical section;

lock=false; /* exit protocol */

noncritical section;

} }

Critical sections Rocco De Nicola 30/46

Towards a live solution

Solving the critical section problem without special atomic instructions (TS), and
without special (strongly fair) schedulers but using turn variable to let process to
control each other progress.

shared variable Int turn = 1;

Process P1: Process P2:

Init1; Init2;

while(true){ while(true){

while(turn=2){SKIP}; while(turn=1){SKIP};

Crit1; Crit2;

turn=2; turn=1;

rem1; } rem2; }

WRONG: Mutual exclusion works, but processes must strictly alternate their turn.
If one of them idles in the non-critical section, the other wanting to enter
unnecessarily waits.

Critical sections Rocco De Nicola 31/46

Petersons’ solution

Peterson’s algorithm puts together the ideas of the two previous faulty solutions:

I Enforces mutual exclusion

I Uses only simple shared variables and no special instructions such as
Test-and-Set

I Uses two flags variables: c1 for process P1, c2 for process P2 . The value of 1
of a flag indicates that the owner process wants to enter the critical section.

I A variable turn holds the ID of the process whose turn it is

I Entrance to the critical section is granted for process P1 if P2 does not want
to enter its critical section or if P2 has given priority to P1 by setting turn to
1.

Critical sections Rocco De Nicola 32/46

Peterson’s Coarse-Grained solution

bool in1=false, in2=false; int last = 1

process CS1 {

while (true) {

in1=true; last=1; /* entry protocol */

<await (!in2 or last==2);> /* entry protocol */

critical section;

in1=false; /* exit protocol */

noncritical section; } }

process CS2 {

while (true) {

in2=true; last=2; /* entry protocol */

<await (!in1 or last==1);> /* entry protocol */

critical section;

in2=false; /* exit protocol */

noncritical section; } }

Critical sections Rocco De Nicola 33/46

Correctness of the solution

Main properties:

Mutual exclusion: Is guaranteed by the atomic test of in1 and last (and of
in2 and last) from the fact that last is a boolean.

No Livelock: Here a key rôle is played by the shared variable last and is used
to “break the tie”.

Eventual Entry: Also this property is guaranteed by last because it permits
keeping track of the process that last was in its critical section

Generalization to n processes

The generalization to a generic number of processes is possible, but the solution is
rather elaborate. Later we will report the generalizarion of the fine-grained version.

Critical sections Rocco De Nicola 34/46

Petersons’ Fine-Grained solution

shared bool in1=false, in2=false;

shared int last = 1 /* we could have last = 2 */

process CS1

while (true)

{in1=true; last=1; while (in2 and last == 1) {skip};

critical section;

in1= false;

noncritical section }

process CS2

while (true) {

{in2=true; last=2; while (in1 and last==2) {skip};

critical section;

in2=false;

noncritical section }

Critical sections Rocco De Nicola 35/46

Petersons’ Fine-Grained solution - Correcteness

No need to evaluate atomically the delay condition because, in principle the two
corresponding instructions of CS1:

(*) in1=true; last=1; <await (!in2 or last==2);>

(**) in1=true; last=1; while (in2 and last==1) skip;

1. could yield different outcomes if the tests on in2 and last are not executed
atomically: the value of in2 could be false but it could become true before
the evaluation of last, because in the mean time CS2 could have entered his
critical section.

2. In this case CS1 could be allowed to enter the critical section, while CS2 is
still inside.

3. However,

I CS2 before trying to enter has certainly set last=2,
I in1 has been set to true and has not been changed (only CS1 can

change it!),
I Hence, CS2 is blocked and cannot enter.

Critical sections Rocco De Nicola 36/46

Peterson’s for n-processes

The generalization of Peterson’s algorithm to n-processes, CS[0] to CS[n-1],
relies on the same basic idea of the version for two processes

I It uses arrays in[0..n-1] and ”last[0..n-1]”

I in[i] indicates which stage ”CS[i]” is executing

I last[j] indicates which thread last began stage j

Entry section contains an outer FOR loop (j) with n − 1 stages

The inner FOR loop (k) in CS[i] checks every other thread

I Waits for every other thread with a higher or equal number

I Once another thread enters stage j or all processes ahead of CS[i] have
exited, CS[i] can proceed to next stage

This algorithm guarantees mutual exclusion, livelock-freeness, and ensures eventual
entry

Critical sections Rocco De Nicola 37/46

Peterson’s for n-processes

Critical sections Rocco De Nicola 38/46

Ticket Algorithm

This algorithm works for any number of processes and satisfies the the three
required properties for a solution of the critical section problem. It is much simpler
than Peterson’s Algorithm.

shared int number=1, next=1, turn[1:n]=([n] 0)

process CS[i=1 to n] {

while (true) {

turn[i]=FA(number, 1); /* entry protocol */

while (turn[i] !=next) skip;

critical section;

next = next +1; /* exit protocol */

noncritical section;

} }

Unfortunately it needs the Fetch and Add atomic operation that might nor be
available on all processors.

Critical sections Rocco De Nicola 39/46

Coarse-Grained Bakery algorithm

Yet another algorithm!

First the coarse grained variant:

int turn[1:n]=([n] 0)

process CS[i=1 to n] {

while (true) {

< turn[i]=max(turn[1:n]) + 1; >

for [j=1 to n st j != i]

< await (turn[j]==0 or turn[i] < turn[j]);>

critical section;

turn[i] = 0;

noncritical section;

}

}

Critical sections Rocco De Nicola 40/46

Fine-Grained Bakery algorithm

Now, the fine grained variant:

shared int turn[1:n]=([n] 0)

process CS[i=1 to n] {

while (true) {

turn[i]=1; turn[i]=max(turn[1:n]) + 1;

for [j=1 to n st j != i]

while (turn[j]!=0 and

(turn[j],j) =< (turn[i],i)) skip;

critical section;

turn[i] = 0;

noncritical section;

} }

Lexicographic Ordering

(a, b) < (c, d) iff (a < c) OR (a = c AND b < d)

Critical sections Rocco De Nicola 41/46

Barrier Syncronisation

Barrier Syncronisation is used to coordinate groups of processes especially when
using UMA . Each process from the group at the end of its computation is
suspended until all the processes in the group have reached a specific point called
barrier.

A simple solution with co inside while

while(true) {

co [i=1 to n]

code to implement task i;

oc }

This has the disadvantage of creating n processes each iteration.

One of the process to be synchronized

process Worker[i=1 to n] {

while(true) {

code to implement task i;

wait for all n processes to complete } }

Critical sections Rocco De Nicola 42/46

Possible approaches to Barrier Syncronisation

I Shared Counter

I Coordinating Process

I Symmetric Barriers

Shared Counter

shared int count = 0;

process Worker[i = 1 to n] {

while (something) {

do some work;

<count = count + 1;>

<await (count == n);> } }

<count = count + 1;> and <await(count==n);>

are rendered as

FA(count, 1); and while (count != n) skip;

Critical sections Rocco De Nicola 43/46

Reusable Barrier

Wrong Solution

shared int count = 0;

process Worker[i = 1 to n] {

while (something) {

do some work;

<count = count + 1;>

<await (count == n); count = 0;> } }

A process can increment count and proceed to the test only after another process
as set the counter to 0.

Critical sections Rocco De Nicola 44/46

Reusable Barrier

Correct Solution: Sense Reversing Barrier

shared int count = 0; shared boolean sense = false;

process Worker[i = 1 to n] {

private boolean mySense = !sense; ## one per thread

while (something) {

do some work;

< count = count + 1;

if (count == n) { count = 0; sense = mySense; }

>

while (sense != mySense); ## wait

mySense = !mySense; } }

The flag mySense permits determining when a process can start again its
execution.

Critical sections Rocco De Nicola 45/46

Process Coordinator

int arrive[1:n] = ([n] 0), continue[1:n] = ([n] 0);

process Worker[i=1 to n] {

while (true) {

do task i;

arrive[i] = 1;

<await (continue[i] == 1);>

continue[i] = 0; }

process Coordinator {

while (true) {

for [int i=1 to n] {

<await (arrive[i] == 1);>

arrive[i] == 0; }

for [int i=1 to n] continue[i] = 1; } }

arrive and continue are flag variables.

Critical sections Rocco De Nicola 46/46

	Atomicity, Synchronization and Mutual Exclusion
	Critical sections

