
Principles of Parallel and Concurrent

Programming

Introduction to Concurrency and Parallelism

Rocco De Nicola

January 2026

GSSI - L’Aquila and IIT CNR - Pisa

Covered Topics

I Concurrent Programming Styles: Iterative vs Recursive Parallelism

I Mutual exclusion and critical sections: Algorithms for guaranteeing mutual
exclusion and implementing critical sections

I Linguistic constructs for concurrent programming: Semaphores and Monitors

I Indirect and Direct Communication: Shared Memory vs Message Passing.

I Linguistic constructs for distributed programming: Rendez-Vous e Remote
Procedure Calls.

I Controlled Communication: Shared tuple spaces and pattern matching.

Introduction Rocco De Nicola 1/51

Reading Material

Lectures and slides are based on the two books below.

I Maurice Herlihy & Nir Shavit: The Art of Multiprocessor Programming,
Morgan Kaufmann, 2008

I Gregory Andrews: Multithreaded Parallel and Distributed Programming,
Addison Wesley, 2000

It might be useful studying also

I Mordechai Ben-Ari: Principles of Concurrent and Distributed Programming,
Addison Wesley, 2006

Introduction Rocco De Nicola 2/51

Moore’s Law versus Clock Speed

Gordon Moore, the co-founder of Intel in 1965 predicted:

I The number of transistors on an integrated circuit would double each year
(later revised to doubling every 18 months).

I This laid the groundwork for another prediction: that doubling the number of
transistors would also double the performance of CPUs every 18 months.

Robert Dennard (IBM) in 1974 explained why this was possible.

I As transistors shrink, voltage and current scale down proportionally.

I Power density stays approximately constant, while clock frequency can
increase.

I Result: higher single-core performance without higher power.

In the mid-2000s, Dennard scaling broke down. Voltage stopped scaling, leakage
power increased, and power density began to rise sharply. This created the power
wall: frequency scaling and increasingly complex single cores became impractical.

Introduction Rocco De Nicola 3/51

Moore’s Law

Introduction Rocco De Nicola 4/51

The death of Moore’s Law

Introduction Rocco De Nicola 5/51

Moore’s Law versus Clock Speed

Moore’s Law and Performances:

I The number of transistors that can be placed on a chip doubles every two
years.

I Performance do not grow consistently, because of:

I Heating: As chip geometries shrink and clock frequencies rise, leakage
current increases, leading to excessive power consumption and heat.

I Memory Wall: Memory access times haven’t kept up with increasing
clock frequencies.

I Transmission Delays: Due to limitations in the means of producing
inductance within solid state devices, delays in signal transmission grow
as feature sizes shrink.

Introduction Rocco De Nicola 6/51

Moore’s Law and Dennard’s Scaling

I Moore’s law continues to deliver more transistors, but they are used to
replicate cores rather than speed up one core. Performance gains depend on
parallelism and energy efficiency.

I Performance growth does not come from higher clock frequency but primarily
from

I Parallelism
I Energy efficiency
I Specialization and system-level design: GPUs, TPUs, AI accelerators

I Moore’s law slows, but useful performance per watt continues to improve.

A new law:

Parallelism (number of CPUs on a single board) doubles every two years !

Introduction Rocco De Nicola 7/51

Computer Core Types and LLM

I Large Language Models (LLM) need

I efficient linear algebra (matrix multiplication, dot products, . . . ,
I high memory bandwidth (billions of parameters),
I efficient core interconnections (to share intermediate results efficiently),
I low-precision arithmetic (not many numerical computation).

I LLM rely on specialized hardware cores designed for high-throughput matrix
and tensor operations, rather than traditional general-purpose CPU cores.

I The hardware design balances massive parallelism, high memory bandwidth,
and energy efficiency to handle billions of parameters.

I GPUs (Graphics Processing Units) - Originally for graphics, now
optimized for SIMD-style operations

I TPUs (Tensor Processing Units) - Designed for deep learning workloads.
I AI accelerators - Specialized cores for tensor operations.

Introduction Rocco De Nicola 8/51

Concurrency is Everywhere

The end of Moore’s law has had a major impact on the practice of programming:

I BEFORE: CPUs got faster without significant architectural changes

I one could program as usual, and wait for the program to run faster
I concurrent programming was a niche skill (for operating systems,

databases, . . .)

I NOW: CPUs do not get faster but add more and more parallel cores

I It is necessary to program with concurrency in mind, otherwise programs
remain slow

I concurrent programming is pervasive

I Very different systems all require concurrent programming:

I desktop PCs, smart phones, video-games consoles, embedded systems,
Raspberry Pi, cloud computing, . . .

Introduction Rocco De Nicola 9/51

Symmetric Multiprocessing Architecture

caches

bus

shared memory

processors

I One address space, shared by all processors.

I Uniform Memory Access (UMA): cpus have all memories equidistant from all
processors.

I OpenMP is an API (a set of compiler directives, library routines, and
environment variables) that can be used to specify shared memory parallelism
for programming in C, C++ and Fortran.

Introduction Rocco De Nicola 10/51

Non-Uniform Memory Access Architecture

I NUMA (N for non) architectures are such that performance varies with data
location.

I NUMA is sometimes confusingly called Distributed Shared Memory
architecture: the memory is physically distributed but logically shared.

I MPI (Message Passing Interface) is a specification of an API for programming
on such architectures.

Introduction Rocco De Nicola 11/51

Multicomputer Architecture

I The same diagram as for NUMA shared memory! The difference is the lack
of any hardware integration between cache/memory system and the
interconnect cpus.

I Each processor only accesses its own physical address space.

I Information is shared by explicit, co-operative message passing.

I No memory consistency issues.

Introduction Rocco De Nicola 12/51

Sequential vs Concurrent Computations

memory

object object

thread

memory

object object

threads

Introduction Rocco De Nicola 13/51

Basic Concurrency Model

Our basic assumptions

I multiple threads

I single shared memory

I objects live in memory

I unpredictable asynchronous delays

Jargon: hardware → processors, software → threads

Road Map

We focus first on principles of multiprocessor programming:

I We start with idealized models.

I We look at simplistic, fundamental problems.

I Correctness is emphasized over pragmatism.

Our motto
Principled understanding is the foundation of effective practice.

Introduction Rocco De Nicola 14/51

Basic Concurrency Model

Our basic assumptions

I multiple threads

I single shared memory

I objects live in memory

I unpredictable asynchronous delays

Jargon: hardware → processors, software → threads

Road Map

We focus first on principles of multiprocessor programming:

I We start with idealized models.

I We look at simplistic, fundamental problems.

I Correctness is emphasized over pragmatism.

Leonardo Da Vinci
Chi s’innamora di pratica senza scienza è come il nocchiere che entra in naviglio
senza timone o bussola, che mai ha certezza dove si vada.

Introduction Rocco De Nicola 15/51

Amdahl’s Law

With n processors that can run in parallel what is the speed up we can achieve?

1 thread sequential execution time

n threads parallel execution time

Amdahl’s law shows that the impact of introducing parallelism in a program is
limited by the fraction p that can be parallelized.
Given a job, that is executed on n processors

I Let p ∈ [0, 1] be the fraction of the job that can be parallelized (over n
processors).

I Let sequential execution of the job take 1 time unit.

Then the speedup is:

1

(1− p) + p
n

Introduction Rocco De Nicola 16/51

Amdahl’s Law: Examples

n = 10

p = 0.6 gives speedup of 1
0.4+ 0.6

10

= 2.2

p = 0.9 gives speedup of 1
0.1+ 0.9

10

= 5.3

p = 0.99 gives speedup of 1
0.01+ 0.99

10

= 9.2

Conclusion:
To make efficient use of multiprocessors, it is important to

I minimize sequential parts, and

I reduce idle time in which threads (processors) wait.

Introduction Rocco De Nicola 17/51

Amdahl’s Law: Examples

n = 10

p = 0.6 gives speedup of 1
0.4+ 0.6

10

= 2.2

p = 0.9 gives speedup of 1
0.1+ 0.9

10

= 5.3

p = 0.99 gives speedup of 1
0.01+ 0.99

10

= 9.2

Conclusion:
To make efficient use of multiprocessors, it is important to

I minimize sequential parts, and

I reduce idle time in which threads (processors) wait.

Introduction Rocco De Nicola 17/51

Amdahl’s Law: examples

Introduction Rocco De Nicola 18/51

Our Basic Assumptions

I The CPU time is shared between several programs by time-slicing

I The Operating Systems controls and schedules processes.

I If a time slice period has expired or the process blocks for some reason (e.g.
I/O operation, blocking synchronization operation), the CPU is assigned to
another process and a context switch is performed.

Context Switch

Process switching suspends the current process and restore a new process:

1. Save the current process state to the memory;

2. Add the process to the tail of the ready queue or to the tail of a wait queue;

3. Pick a process from the head of the ready queue;

4. Restore the process state and make it running.

Introduction Rocco De Nicola 19/51

A parallelization problem and 5 attempts

Write a program that terminates if and only if the total function f has a (positive
or negative) zero and proceeds indefinitely otherwise.

Assume to have a program that looks for positive zero:

S1 =

found := false; x := 0;

while (not found)

do x:= x+1; found := (f(x) = 0) od

From this we can build the program looking for a negative zero.

S2 =

found := false; y := 0;

while (not found)

do y:= y-1; found := (f(y) = 0) od

Introduction Rocco De Nicola 20/51

Attempt 1

An obvious solution would be running S1 and S2 in parallel:

S1 || S2

If f has a positive zero and not a negative one, and S1 terminates before S2 starts,
the latter sets found to false and starts looking indefinitely for the nonexisting zero.

The problem is due to the fact that found is initialized to false twice.

LESSON 1

USING SHARED VARIABLES MAY LEAD TO PROBLEM

Introduction Rocco De Nicola 21/51

Attempt 2

Let us consider a solution that initializes found only once.

found := false; (R1 || R2) where

R1 = x := 0; while (not found)

do x:= x+1; found := (f(x) = 0) od

R2 = y := 0 while (not found)

do y:= y-1; found := (f(y) = 0) od

If f has (again) only a positive zero assume that:

1. R2 proceeds just up to the while body (after the do) and is preempted

2. R1 computes till a zero is found

3. R2 gets the CPU back

When R2 restarts it executes the while body and may set found to false with found
:= (f(y) = 0). The program then would not terminate because it would look for a
non existing negative zero.

Introduction Rocco De Nicola 22/51

Attempt 2 ctd

The problem is due to the fact that found is set to false (by means of found :=
f(y) = 0) after it has already got the value true.

LESSON 2

NO ASSUMPTION ABOUT THE MOMENT A PROGRAM IS INTERRUPTED
CAN BE MADE (It can only be programmed).

Introduction Rocco De Nicola 23/51

Attempt 3

Let us see what happens if we do not perform ”unnecessary” assignments and only
assign true when we find a x or a y such that f(x) = 0 or f(y) = 0.

found := false; (T1 || T2) where

T1 = x := 0; while not found

do x:= x+1; if f(x) = 0 then found := true fi od

T2 = y := 0; while not found

do y:= y-1; if f(y) = 0 then found := true fi od

Assume that f has only a positive zero and that T2 gets the CPU to keep it until it
terminates. Since this will never happen, T1 will never get the chance to find its
zero.

Introduction Rocco De Nicola 24/51

Attempt 3 - ctd

This problem is due to the considered scheduler of the CPU, to avoid problems we
would need a non fair scheduler; but this is a too strong assumption.

LESSON 3

NO ASSUMPTION CAN BE MADE ON THE SCHEDULING POLICY OF THE
CPU.

Introduction Rocco De Nicola 25/51

Attempt 4

To avoid assumptions on the scheduler, we could think of adding control to the
programs and let them ”pass the baton” once they have got their ”chance” to
execute for a while.

turn:= 1; found := false; (P1 || P2) where

P1 = x := 0; while not found do wait turn:= 1 then

turn:= 2; x:= x+1; if f(x) = 0 then found := true fi od

P2 = y := 0; while not found do wait turn:= 2 then

turn:= 1; y:= y-1; if f(y) = 0 then found := true fi od

If P1 finds a zero and stops when P2 has already set turn:= 1, P2 would be
blocked by the wait command because nobody can change the value of turn.

Introduction Rocco De Nicola 26/51

Attempt 4 - ctd.

The program does not terminate because of the waiting of an impossible event.

LESSON 4

ON TERMINATION CARE IS NEEDED FOR OTHER PROCESSES.

Introduction Rocco De Nicola 27/51

A CORRECT Solution!

Pass (again) the baton before terminating.

turn:= 1; found := false; (P1; turn:= 2 || P2; turn:= 1)

where

P1 = x := 0; while not found do

wait turn:= 1 then

turn:= 2; x:= x+1;

if f(x) = 0 then found := true fi

od

P2 = y := 0; while not found do

wait turn:= 2 then

turn:= 1; y:= y-1;

if f(y) = 0 then found := true fi

od

Introduction Rocco De Nicola 28/51

Multithreaded Programming

Different Kinds of Multithreading Programming

1. Parallel Programming

2. Concurrent Programming

3. Distributed Programming

Multithreaded Programming Rocco De Nicola 29/51

Multithreaded Programming

Different Kinds of MultithreadingProgramming

1. Parallel Programming

2. Concurrent Programming

3. Distributed Programming

1. Parallel Programming

I Challenge: Solve a specific problem in which some parts can be executed in
parallel.

I Motivation: Higher performance computing, i.e. solving a problem faster
or/and solve a larger problem

I Assumption: Some form of parallel HW is available for exploitation.

Multithreaded Programming Rocco De Nicola 30/51

Multithreaded Programming

2. Concurrent Programming

I Challenge: Design a protocol to share a resource between independent tasks.

I Motivations: Maximize throughput of the resource or minimize waiting times
of individual tasks, or some compromise of these.

I Assumption: Independent tasks compete asynchronously for the resources
(CPU, memory) that are available.

3. Distributed Programming

I Challenge: Design protocols to maintain the consistency of a distributed
system distributed over a network

I Motivation: Keep the system operational in presence of changes and faults.

I Assumption: The system has no central hub, i.e. its time and state are
relativistic and it is based on unreliable machines and connections.

Multithreaded Programming Rocco De Nicola 31/51

The co Notation

We introduce some simple notation (the so called co-notation). It is not a real
programming language, but a concise way of expressing what we will need to
express in real languages. It indicates creation of a set of activities, for the
duration of the enclosed block, with synchronization across all activities at the end
of the block. This is sometimes called fork-join parallelism.
The parallel activities are separated by //, comments preceded by ##

co

a=1; // b=2; // c=3; ## all in parallel.

oc

We will also use co statements with indices.
co [i = 0 to n-1] {

a[i] = a[i] + 1; ## all in parallel.

oc }

Multithreaded Programming Rocco De Nicola 32/51

The co notation

Things get more interesting when the statements within a co access the same
location.

co

a=1; // a=2; // a=3; ## What is a afterwards?

oc

To resolve this, we need to define our memory consistency model. For our toy
language examples we assume sequential memory consistency (SC).

SC - Sequential Memory Consistency Model

A program executed with an SC model will produce a result which is consistent
with the following rules:

1. ordering of atomic actions (particularly reads and writes to memory) from a
single thread have to occur in normal program order

2. atomic actions from different threads are interleaved arbitrarily (i.e. in an
unpredictable sequential order)

Multithreaded Programming Rocco De Nicola 33/51

Sequential Memory Consistency Model

SC executions are like a random switch, allowing processes to access memory one
at a time. This does not mean that instructions are executed sequentially. It
means that the result must be the same as if they were executed sequentially.

What is a after the execution of
co

a=1; // a=2; // a=3; ## all in parallel.

oc

It can result in 1, 2 or 3. Why?

What is the value of b after the execution of
a=0;

co

a=1; // a=2; // b=a+a; ## all in parallel.

oc

If reads and writes of single variables are atomic and each access to value is a read
while each assignment is a write, in the example, b could be 0, 1, 2, 3, or 4.

Multithreaded Programming Rocco De Nicola 34/51

Atomic Actions

The simple example we have just seen can illustrate the complications introduced
for real languages, compilers and architectures.
A sensible compiler would implement b=a+a with one read of a, so the outcomes
which produce an odd value for b would never happen. We cannot rely on such
unknown factors.

It is therefore useful to have means for specifying that certain blocks of code are to
be treated as atomic. In our notation, statements enclosed in < > must appear to
be atomic, i.e. they must appear to execute as a single indivisible step with no
visible intermediate states.

a=0;

co

a=1; // a=2; // <b=a+a;>

oc

Now the only outcomes for b are 0, 2 or 4.

Multithreaded Programming Rocco De Nicola 35/51

Atomic Actions and Interleavings

As another example, consider this attempt to increment the count twice
co

count++; // count++;

oc

where each statement corresponds to a sequence of three actions:
read-modify-write or LOAD - EXECUTE - STORE.

Even with sequential consistency, there are twenty possible interleavings, of which
only two match the intended semantics.

co <count++>; // <count++>; oc

Exercise

Consider this attempt to reverse the contents of an array in parallel. Can you see
what might go wrong?

co [i = 0 to n-1] {a[i] = a[n-i-1]; } oc

Multithreaded Programming Rocco De Nicola 36/51

Atomic Actions and Interleavings

As another example, consider this attempt to increment the count twice
co

count++; // count++;

oc

where each statement corresponds to a sequence of three actions:
read-modify-write or LOAD - EXECUTE - STORE.

Even with sequential consistency, there are twenty possible interleavings, of which
only two match the intended semantics.

co <count++>; // <count++>; oc

Exercise

Consider this attempt to reverse the contents of an array in parallel. Can you see
what might go wrong?

co [i = 0 to n-1] {a[i] = a[n-i-1]; } oc

Multithreaded Programming Rocco De Nicola 36/51

The "await” Notation

The await notation < await (B) S > allows us to indicate that S must appear to
be delayed until B is true, and must be executed within the same atomic action as
the successful check of B, i.e. behaving like

while (true) { < if (B) {S; break;} > }

For example, the code below results in x having a value of 25, because of the
semantics of await and sequential consistency.

a=0; flag=0;

co

{a=25; flag=1;}

//

<await (flag==1) x=a;>

oc

Multithreaded Programming Rocco De Nicola 37/51

Four Steps in Creating a Parallel Program

2G1915. Lecture 1: Introduction. Parallel programming concepts, models and paradigms 25

Four Steps in Creating a Parallel Program
(1) Decomposition; (2) Assignment; (3) Orchestration; (3) Mapping

– Done by programmer or system software (compiler, runtime, ...).
– The programmer does it explicitly

P0

Tasks Processes Processors

P1

P2 P3

p0 p1

p2 p3

p0 p1

p2 p3

Partitioning

Sequential
computation

Parallel
program

A
s
s
i
g
n
m
e
n
t

D
e
c
o
m
p
o
s
i
t
i
o
n

M
a
p
p
i
n
g

O
r
c
h
e
s
t
r
a
t
i
o
n

2G1915. Lecture 1: Introduction. Parallel programming concepts, models and paradigms 26

1. Decomposition
• Break up computation into tasks to be divided among

processes
• Tasks may become available dynamically
• Number of available tasks may vary with time
• Number of tasks available at a time is upper bound on achievable

speedup
– i.e. identify concurrency and decide level at which to exploit it

• Goal: Enough tasks to keep processes busy, but not too many
• Simple way to identify concurrency in a sequential program

is to look at loop iterations
– dependence analysis; if not enough concurrency (loops are

sequential), then look further: examine fundamental dependences,
ignoring loop structure

Multithreaded Programming Rocco De Nicola 38/51

Parallelization

Starting from a sequential program it is possible to execute subparts in parallel if
they are independent.

Read and Write Sets

Read set: the set of variables that an operation uses but does not change

Write set: the set of variables that an operation does changes and possibly uses.

Actions Independence

Two actions are independent if the write set of each of them is disjoint from the
union of the read and write set of the other:

1. writeset(op1) ∩ (writeset(op2) ∪ readset(op2)) = ∅
2. writeset(op2) ∩ (writeset(op1) ∪ readset(op1)) = ∅

Multithreaded Programming Rocco De Nicola 39/51

Parallel Programming Paradigms

1. Iterative parallelism

2. Recursive parallelism

3. Producers-consumers pipelines

4. Clients and servers

5. Interacting peers

Multithreaded Programming Rocco De Nicola 40/51

Iterative Parallelism

9/29/08 T-106.5600 Concurrent Programming 9

Parallel Matrix Multiplication

•! For each element cij of the product matrix c the task is to compute the sum of the
products of the elements on row ai and column bj :

 cij = sumfor all k (aik * b kj)

•! A set of tasks can be executed independently, if: no variable written by a task is not
read or written by any other task.

•! The compution of each cij is independent enabling several alternatives:

•! one sequential excution

•! the rows or colums of c are computed in n parallel executions

•! all elements of c are computed in n2 in parallel excutions

Note: Actually here n is either 3 or 4 and n2 = 12 .

n

c
o
l
u
m

r o w i x

c a b

=

j

An example for a vector machine.

I For each element cij of the product matrix c the task is to compute the sum
of the products of the elements on row ai and column bj : cij =

∑
k(aik ∗ bkj)

I A set of tasks can be executed independently, if: no variable written by a task
is read or written by any other task.

I The computation of each cij is independent and there are several alternatives
for actually performing it:

1. execute 1 sequential run
2. compute rows or columns of c with n parallel runs
3. compute all elements of c with n2 parallel runs

Multithreaded Programming Rocco De Nicola 41/51

Iterative Parallelism

I An iterative program uses loops to examine data and compute results.

I Some loops can be parallelized to execute concurrently independent iterations.

Matrix multiplication C = A× B

2G1915. Lecture 1: Introduction. Parallel programming concepts, models and paradigms 33

Parallel Programming Paradigms
(Basic Application Patterns)

1. Iterative parallelism
2. Recursive parallelism
3. Producers and consumers (pipelines), a.k.a. dataflow
4. Clients and servers
5. Interacting peers

2G1915. Lecture 1: Introduction. Parallel programming concepts, models and paradigms 34

1. Iterative Parallelism
• Parallelism of independent iterations.
• An iterative program uses loops to examine data and compute

results. Some loops can be parallelized.
• Example: Matrix multiplication C = A · B

– Sequential version:
Double a[n,n], b[n,n], c[n,n];

for [i=0 to n-1] {

for [j=0 to n-1 {

c[i,j]=0.0;

for [k=0 to n-1]

c[i,j]= c[i,j]+a[i,k]*b[k,j];

}

}

– Parallel version (by rows):
Double a[n,n], b[n,n], c[n,n];

co [i=0 to n-1] {

for [j=0 to n-1 {

c[i,j]=0.0;

for [k=0 to n-1]

c[i,j]= c[i,j]+a[i,k]*b[k,j];

}

} oc;

– Replace for with co
– n threads in co are executed concurrently for different values of i
– in parallel by elements: co [i=0 to n-1, j=0, n-1]

I Replace for with co

I n threads in co are executed concurrently for different i

Multithreaded Programming Rocco De Nicola 42/51

Iterative Parallelism

I It is interesting to consider the case we have P processors and have, e.g., to
manipulate matrices n × n, with n ≥ P.

I Assuming that n is a multiple of P we design a program with P processes,
each of which manages a group of rows in C.

24 Capitolo 1 – Introduzione

Lo stesso effetto può essere ottenuto prevedendo un processo per ciascuna riga ed un
processo per ciascuna colonna.

co [i = 0 to n-l] {# rows in parallel
co [j = 0 to n-l] {# columns in parallel

c[i,j] = 0.0;
for [k = 0 to n-l]

c[i,j] = c[i,j] + a[i,k]*b[k,j]; } }

parallelismo iterativo (4)
Invece di co è possibile utilizzare il costrutto process che ne gioca lo stesso ruolo.

process row[i = 0 to n-l] {# rows in parallel
for [j = 0 to n-l] {

c[i,j] = 0.0;
for [k = 0 to n-l]

c[i,j] = c[i,j] + a[i,k]*b[k,j]; } }

In questo caso è però necessario controllare esplicitamente che le istruzioni che seguono
questo blocco accedano alla matrice risultato solo quando essa è pronta.

È interessante considerare il caso in cui si abbiano a disposizione P processori e si debbano
manipolare matrici di dimensione n × n, con n ≥ P. Qui si ammette di avere meno di n
processori ed assegna la gestione di un gruppo di righe di c a ciascuno dei processi P.

process worker[w = 1 to P] { # strips in parallel
int first = (w-1)* n/P; # first row of strip
int last = first + n/P - 1; # last row of strip
for [i = first to last] {

for [j = 0 to n-1] {
c[i,j] = 0.0;
for [k = 0 to n-1]

c[i,j] = c[i,j] + a[i,k]*b[k,j];
}

}
}

Parallelismo Ricorsivo

Consideriamo ora un altro esempio che prevede il calcolo per approssimare l’integrale di una
funzione continua da un punto a ad un punto b.

Una prima approssimazione consiste nel calcolare l’area del trapezio che ha come altezza
il segmento <a,b>, e ha basi <a, f(a)> e <b, f(b)>, in questo caso l’area sarebbe data da
((f(a)+f(b))*(b-a))/2. Utilizzando questa tecnica si può dividere il trapezio in tanti trapezi
più piccoli, calcolare le loro aree per poi sommarle. Il programma relativo è riportato di sotto.

Quadratura Sequenziale Iterativa

Multithreaded Programming Rocco De Nicola 43/51

Recursive Parallelism

Parallelism of independent recursive calls

I When a procedure calls itself more than once in its body.

I The different calls can be executed in concurrent threads

An example: adaptive quadrature

Split a data region (e.g. list, interval) into several sub-regions to be processed
recursively using the same algorithm.

2G1915. Lecture 1: Introduction. Parallel programming concepts, models and paradigms 35

2. Recursive Parallelism

• Parallelism of independent recursive calls
– Assume, a recursive procedure calls itself more than once

in its body.
– If the calls are independent, they can be executed in

concurrent threads
• Examples: Quick sort, adaptive quadrature

– “Divide and conquer” (domain decomposition)
• Split a data region (e.g. list, interval) into several sub-regions to be

processed recursively using the same algorithm

2G1915. Lecture 1: Introduction. Parallel programming concepts, models and paradigms 36

Example: The Quadrature Problem

• Compute an approximation of the integral of a continuous
function ƒ(x) on the interval from a to b

• Sequential iterative quadrature program
– using the trapezoidal method:

double fl = f(a), fr, area = 0.0;

double dx = (b-a)/ni;

for [x = (a + dx) to b by dx] {

fr = f(x);

area = area + (fl + fr) * dx / 2;

fl = fr;

}

y

xa b

f(x)

y

xa b

f(x)

Compute an approximation of the integral of a continuous function f(x) on the
interval from a to b.

Multithreaded Programming Rocco De Nicola 44/51

The Quadrature Problem

I Sequential iterative quadrature program:

2G1915. Lecture 1: Introduction. Parallel programming concepts, models and paradigms 35

2. Recursive Parallelism

• Parallelism of independent recursive calls
– Assume, a recursive procedure calls itself more than once

in its body.
– If the calls are independent, they can be executed in

concurrent threads
• Examples: Quick sort, adaptive quadrature

– “Divide and conquer” (domain decomposition)
• Split a data region (e.g. list, interval) into several sub-regions to be

processed recursively using the same algorithm

2G1915. Lecture 1: Introduction. Parallel programming concepts, models and paradigms 36

Example: The Quadrature Problem

• Compute an approximation of the integral of a continuous
function ƒ(x) on the interval from a to b

• Sequential iterative quadrature program
– using the trapezoidal method:

double fl = f(a), fr, area = 0.0;

double dx = (b-a)/ni;

for [x = (a + dx) to b by dx] {

fr = f(x);

area = area + (fl + fr) * dx / 2;

fl = fr;

}

y

xa b

f(x)

y

xa b

f(x)

I This program can be parallelized to be executed by ni processes. Their
intermediate results have finally to be added.

I Unfortunately this approach does not guarantee that the desired
approximation of the result is obtained.

Multithreaded Programming Rocco De Nicola 45/51

Recursive Adaptive Quadrature Procedure

2G1915. Lecture 1: Introduction. Parallel programming concepts, models and paradigms 37

Recursive Adaptive Quadrature Procedure

• If | (larea + rarea) - area | > e, repeat computations for each of the
intervals [a, m] and [m,b] in a similar way until the difference between
consecutive approximations is within a given e

(a) First approximation (area) (b) Second approximation
(larea + rarea)

y

xa b

f(x)

f(a) + f(b)
2 (b-a)area =

y

xa b

f(x)

f(a) + f(m)
2 (m-a)larea =

m=(b-a)/2

f(m) + f(b)
2 (b-m)rarea =

2G1915. Lecture 1: Introduction. Parallel programming concepts, models and paradigms 38

Recursive Adaptive Quadrature Procedure
• Sequential procedure:

double quad(double l,r,fl,fr,area) {

double m = (l+r)/2;

double fm = f(m);

double larea = (fl+fm)*(m-l)/2;

double rarea = (fm+fr)*(r-m)/2;

if (abs((larea+rarea)-area) > e) {

larea = quad(l,m,fl,fm,larea);

rarea = quad(m,r,fm,fr,rarea);

}

return (larea+rarea);

}

• Two recursive calls are independent and can be executed in parallel
• Usage:

area = quad(a,b,f(a),f(b),(f(a)+f(b))*(b-a)/2)

• Parallel procedure:

double quad(double l,r,fl,fr,area) {

double m = (l+r)/2;

double fm = f(m);

double larea = (fl+fm)*(m-l)/2;

double rarea = (fm+fr)*(r-m)/2;

if (abs((larea+rarea)-area) > e) {

co larea = quad(l,m,fl,fm,larea);

|| rarea = quad(m,r,fm,fr,rarea);

oc

}

return (larea+rarea);

}

If absvalue((larea + rarea) - area) gt e, repeat computations for each of
the intervals [a, m] and [m,b] in a similar way until the difference between
consecutive approximations is within a given error e.

Multithreaded Programming Rocco De Nicola 46/51

Recursive Adaptive Quadrature Procedure

2G1915. Lecture 1: Introduction. Parallel programming concepts, models and paradigms 37

Recursive Adaptive Quadrature Procedure

• If | (larea + rarea) - area | > e, repeat computations for each of the
intervals [a, m] and [m,b] in a similar way until the difference between
consecutive approximations is within a given e

(a) First approximation (area) (b) Second approximation
(larea + rarea)

y

xa b

f(x)

f(a) + f(b)
2 (b-a)area =

y

xa b

f(x)

f(a) + f(m)
2 (m-a)larea =

m=(b-a)/2

f(m) + f(b)
2 (b-m)rarea =

2G1915. Lecture 1: Introduction. Parallel programming concepts, models and paradigms 38

Recursive Adaptive Quadrature Procedure
• Sequential procedure:

double quad(double l,r,fl,fr,area) {

double m = (l+r)/2;

double fm = f(m);

double larea = (fl+fm)*(m-l)/2;

double rarea = (fm+fr)*(r-m)/2;

if (abs((larea+rarea)-area) > e) {

larea = quad(l,m,fl,fm,larea);

rarea = quad(m,r,fm,fr,rarea);

}

return (larea+rarea);

}

• Two recursive calls are independent and can be executed in parallel
• Usage:

area = quad(a,b,f(a),f(b),(f(a)+f(b))*(b-a)/2)

• Parallel procedure:

double quad(double l,r,fl,fr,area) {

double m = (l+r)/2;

double fm = f(m);

double larea = (fl+fm)*(m-l)/2;

double rarea = (fm+fr)*(r-m)/2;

if (abs((larea+rarea)-area) > e) {

co larea = quad(l,m,fl,fm,larea);

|| rarea = quad(m,r,fm,fr,rarea);

oc

}

return (larea+rarea);

}

I Two recursive calls are independent and can be executed in parallel

I Usage:
area = quad(a,b,f(a),f(b),(f(a)+f(b))*(b-a)/2)

Multithreaded Programming Rocco De Nicola 47/51

Parallel Quick Sort

9/29/08 T-106.5600 Concurrent Programming 11

Parallel Quick Sort

Questions:

How many tasks could be executed independently, i.e. in parallel ?

How many independent phases are there, i.e. what is the time complexity ?

What are the memory requirements ?

r

sort
r

r

sort sort

r

< r > r

Pick a middle

 value as “r”

Recursion!

I How many tasks could be executed independently, i.e. in parallel ?

I How many independent phases are there, i.e. what is the time complexity ?

I What are the memory requirements ?

Multithreaded Programming Rocco De Nicola 48/51

Pipelines of Producers and Consumers

I Parallelism of production (of next data) and consumption (of previous data)

I One-way data stream between Producer and Consumer

I Filters can be placed in between processes organized in a pipeline

I Parallelism of pipeline stages

2G1915. Lecture 1: Introduction. Parallel programming concepts, models and paradigms 39

3. Producers and Consumers. Pipes

• Parallelism of production (of next data) and consumption (of
previous data)
– One-way data stream between Producer and Consumer
– “Filters” can be placed in between
– Processes can be organized in a pipeline

• Parallelism of pipeline stages
• Each consumes the output of predecessor and produces the input for its

successor – true data dependence between stages
• Data buffers (FIFO queues) are placed between processes

Producer ConsumerFilter f1 Filter fn…

2G1915. Lecture 1: Introduction. Parallel programming concepts, models and paradigms 40

4. Clients and Servers
• Parallelism of client and server processes

– Client requests a service
– Server provides the service
– Two-way communication: request – reply pairs

• Parallelism in servicing of multiple clients in separate threads
– Multithreaded servers. Synchronization might be required

• Implemented
– Distributed-memory: using message passing, RPC, rendezvous, RMI
– Shared-memory: using subroutines, monitors etc.

• Example: (Distributed) file systems
– open, read, write, close – client requests
– acknowledgements – server replies

Multithreaded Programming Rocco De Nicola 49/51

Clients and Servers

I Parallelism of client and server processes : Client requests a service, Server
provides the service

I Two-way communication: request-reply pairs

I Parallelism in servicing of multiple clients in separate threads : Multithreaded
servers (synchronization might be required)

I With distributed-memory implemented using message passing, RPC,
RendezVous, RMI

I With shared-memory implemented using subroutines, semaphores, monitors,
. . . (see later)

2G1915. Lecture 1: Introduction. Parallel programming concepts, models and paradigms 39

3. Producers and Consumers. Pipes

• Parallelism of production (of next data) and consumption (of
previous data)
– One-way data stream between Producer and Consumer
– “Filters” can be placed in between
– Processes can be organized in a pipeline

• Parallelism of pipeline stages
• Each consumes the output of predecessor and produces the input for its

successor – true data dependence between stages
• Data buffers (FIFO queues) are placed between processes

Producer ConsumerFilter f1 Filter fn…

2G1915. Lecture 1: Introduction. Parallel programming concepts, models and paradigms 40

4. Clients and Servers
• Parallelism of client and server processes

– Client requests a service
– Server provides the service
– Two-way communication: request – reply pairs

• Parallelism in servicing of multiple clients in separate threads
– Multithreaded servers. Synchronization might be required

• Implemented
– Distributed-memory: using message passing, RPC, rendezvous, RMI
– Shared-memory: using subroutines, monitors etc.

• Example: (Distributed) file systems
– open, read, write, close – client requests
– acknowledgements – server replies

Multithreaded Programming Rocco De Nicola 50/51

Interacting Peers

I Parallelism of equal peers

I Each execute the same set of algorithms and communicate with others
in order to achieve the goal.

I Configurations

I Regular Structures: Grid, Mesh, etc.
I Master (coordinator) and slaves (workers)
I Circular pipelines
I Each to each

2G1915. Lecture 1: Introduction. Parallel programming concepts, models and paradigms 41

5. Interacting Peers

• Parallelism of “equal” peers
– Each execute the same set of algorithms

and communicate with others in order to achieve the goal

• Configurations
– Grid

• Master (coordinator)
and slaves (workers)

• Roles may change
– A circular pipeline
– Each to each
– Mesh
– Arbitrary

Worker0

Coordinator

Worker n-1…

DataData
Results

(a) Coordinator/worker interaction

Worker0 Worker n-1…

(b) A circular pipelineMultithreaded Programming Rocco De Nicola 51/51

	Introduction
	Programming Styles-Gs

