
Principles of Concurrent
and

Distributed Programming

Emilio Tuosto

Academic Year 2025/2026

January 2026

1 / 35

Concurrency in Java

2 / 35

Processes vs. Threads

Multitasking

Many activities at once none of which “is aware” of the others (e.g., time slicing)

Processes

Running programs with their own execution environment containing basic run-time resources
e.g. the processes’ address space.

Threads

Sequential flows of control within a process (a process can consist of many concurrent
threads)

Threads are also known as lightweight processes because creating a new thread
requires fewer resources than creating a new process. Threads “lives” within a process
and can share the process’s resources (e.g., memory, files). In general multi-threaded
applications have a “main” thread which can create new threads.

3 / 35

Context switching

A (simplified) view of how processes interleave:

Borrowed from https://maxnilz.com/docs/006-arch/001-cpu-basics/

4 / 35

https://maxnilz.com/docs/006-arch/001-cpu-basics/

Programming with threads

From [Eck02]

Concurrent programming is like stepping into an entirely new world and learning a new
programming language, or at least a new set of language concepts. With the appearance
of thread support in most microcomputer operating systems, extensions for threads have also
been appearing in programming languages or libraries. In all cases, thread programming:

Seems mysterious and requires a shift in the way you think about programming

Looks similar to thread support in other languages, so when you understand threads,
you understand a common tongue.

[...] threads are tricky.

5 / 35

Concurrency and Java OO

Some documentation

https://docs.oracle.com/javase/tutorial/essential/concurrency/index.html

There is no general approach to concurrent programming.

Some rule of thumb

Java’s “style” suggests

to individuate active and passive objects

an active object is basically an object representing a thread
a passive object represents a resource that can be concurrently accessed by active objects

Reason about how objects “interacts”

how does active objects’ execution interleave?
how do active objects access shared resources?

Acquire/release policy

in which order active objects acquire shared resources?
under which conditions shared resources can be invoked?
do active objects release all the acquired resources when they are not any longer needed?

6 / 35

https://docs.oracle.com/javase/tutorial/essential/concurrency/index.html

Threads in Java

Runnable: interface (method run() to be implemented)
Threads: class (implements Runnable, run() is just empty)

Constructors
Thread()
Thread(Runnable target)
Thread(Runnable target, String name)
Thread(String name)
... (see the Java thread API)

start, sleep, yield
interrupt

“When something has a Runnable interface, it simply means that it has a run() method, but
there’s nothing special about that –it doesn’t produce any innate threading abilities, like
those of a class inherited from Thread.” [Eck02]
To create and run Java thread from a Runnable object:

create the Runnable object
use the special Thread constructors with runnable objects
run the thread by invoking its start() method (which performs some initialisations and
then calls the run() method)

7 / 35

http://java.sun.com/javase/6/docs/api/index.html?java/util/concurrent/package-summary.html

Some examples

A simple scenario

Write a program that

decides if staff is worth a promotion according to their state of service

prints a report about the decision

Let’s consider some solutions

introducing some Java primitives for threads

and showing how tricky concurrency can be

Don’t do this at home!

PromotionConcurrent.java: a first attempt

PromotionMoreConcurrent.java: an improved version

IoC.java: pausing threads

8 / 35

code/java/promotion/promotionconcurrent.html
code/java/promotion/promotionmoreconcurrent.html
code/java/promotion/ioc.html

Some examples

A simple scenario

Write a program that

decides if staff is worth a promotion according to their state of service

prints a report about the decision

Let’s consider some solutions

introducing some Java primitives for threads

and showing how tricky concurrency can be

Don’t do this at home!

PromotionConcurrent.java: a first attempt

PromotionMoreConcurrent.java: an improved version

IoC.java: pausing threads

8 / 35

code/java/promotion/promotionconcurrent.html
code/java/promotion/promotionmoreconcurrent.html
code/java/promotion/ioc.html

Controlling threads

interrupt(): interrupts the thread on which it is invoked

yield(): Occasionally, a thread can decide to “give a hint to the thread scheduling
mechanism” ([Eck02]) that it is keen to pass the control to another thread.
In Java this is done by invoking the yield() method from run.

join(): when invoked on a thread object, the invoking thread waits for the first thread to
complete before proceeding (there is also a version with timeout). join() must be withing a
try-catch statement because an interrupt() signal can abort the calling thread.

isAlive(): returns ‘true’ if the thread is running.

9 / 35

Mutual exclusion in Java

The mechanism that is offered by Java is method synchronisation

Synchronised Methods can prevent thread interference and memory consistency errors

Synchronisation based on (implicit) locks

The synchronized modifier can be used in method declarations or for determining critical
sections.

A method declared synchronized cannot be invoked while another synchronised method
is executing

(hence) If more than 2 threads try to invoke a synchronised method, only one of them
actually access the object, while the other is blocked

synchronized(obj){stm}: acquires the lock on obj, executes stm and releases the lock;
stm is the critical section on the shared resource obj

10 / 35

Semaphores in java

public class Semaphore {
private int counter = 0;
private int threshold = 0;
public Semaphore(int counter) { this.counter = counter; }

public synchronized void P() {
while(this.counter <= threshold) {

try {
this.wait();

} catch (InterruptedException e) {
e.printStackTrace();

}
}
this.counter−−;

}

public synchronized void V() {
this.counter++;
if (this.counter − 1 == threshold)

// this.notifyAll();
this.notify();

}
}

11 / 35

Monitors in Java

It is important to remind that waiting threads must be notified before releasing the shared
object

public final void wait() throws InterruptedException

The thread is suspended and it is put on the object waiting list

public final void wait(long timeout) throws InterruptedException

The thread is suspended until another wakes it up or until the time is elapsed

public final void notify()

Choses and Wakes up a single thread among those waiting on the object monitor.
Which thread is chosen depends on the implementation of the JVM
This method should only be called by the “owner thread”, namely the one which is

executing a synchronized statement that synchronizes on the object
executing the body of a synchronized statement that synchronizes on the object

Throws: IllegalMonitorStateException - if the current thread does not own the object

public final void notifyAll()

Like notify, but awakes all the waiting threads

12 / 35

Remote Method
Invocation

in
Java

https://docs.oracle.

com/en/java/javase/2

4/docs/specs/rmi/int

ro.html

13 / 35

https://docs.oracle.com/en/java/javase/24/docs/specs/rmi/intro.html
https://docs.oracle.com/en/java/javase/24/docs/specs/rmi/intro.html
https://docs.oracle.com/en/java/javase/24/docs/specs/rmi/intro.html
https://docs.oracle.com/en/java/javase/24/docs/specs/rmi/intro.html

RPC vs RMI

Remote Method Invocation (RMI) is the Java correspondent of RPC.

Instead of remote procedure calls, RMI implements remote method calls (i.e., calls of
methods of remote objects)

a key difference between RPC and Java RMI is that the latter allows Java objects to
communicate, while the former provides, in general, a communication middleware for
programs written in different languages

RPC can be seen as a very primitive form of message oriented middleware and is data
oriented. Java RMI, on the contrary, you can communicate objects, namely data &
behaviour!

Remark

Observe that Java RMI allows objects running in a JVM to invoke methods of (Java) objects
running in a different JVM

14 / 35

Distributed Objects: some terminology

Distributed object : an object whose methods can be remotely invoked. A distributed
object is provided, or exported by the object server .

Remote method : a public method of a distributed object.

Object registry : is the equivalent of the RPC name server. Namely, it is used by object
servers to register their services and by object clients to look up for service references.

Client/server proxy : is the equivalent of client/server stubs in RPC. Object clients call a
remote method appear direct at the programmer level. However,

on the client host, the client proxy interacts with the software providing runtime support for
the distributed object system
the runtime support transmits the actual call to the remote host (it also marshals the
parameter to be transmitted)
similarly, on the object server side, the runtime support for the distributed object system
handles the incoming messages (and their unmarshalling), and forwards the call to the
server proxy

15 / 35

Java RMI: the first step

In Java:

remote objects are those objects extending the java.rmi.Remote remote interface .
Basically, interfaces plays the role of ID, hence the IDL of Java RMI is java.rmi.Remote

the object server

implements a remote interface
generates stub and skeleton
register a distributed object implementing the interface

An object client accesses the object by invoking the remote methods associated with the
objects using syntax provided for remote method invocations

Remark

Within RMI, remote objects are treated differently from non-remote objects. For instance,
what RMI actually passes when a remote object reference r obj is sent to a remote object is a
remote stub for r obj. The stub acts as the local proxy for r obj so that the caller is
unaffected and calls r obj via its stub.

16 / 35

Java RMI: the second step

Applications relying on distributed object must:

Locate remote objects

by passing remote object references or
by using the object registry

Communicate with remote objects

Load class bytecodes for objects passed around: since RMI allows a caller to pass objects
within calls to remote methods, RMI yields the necessary mechanisms for loading an
object’s code and for transmitting its data.

Remark

One of the central features of RMI is the possibility of dinamically downloading bytecodes of
the class of an object when it is not defined in the caller’s JVM. Basically, the types and the
behavior of an object can be transmitted to possibly remote JVMs. RMI guarantees that
the behavior of objects remains unchanged when they are sent to another JVM and allows
new types to be introduced into a remote virtual machine, so that an
application can be dynamically extended .

17 / 35

Creating Distributed Applications Using RMI

Using RMI to develop a distributed application requires you to follow these general steps:
1

Design and implement the distributed application components
2

Compile sources and generate stubs
3

Make classes network accessible: In this step you make everything–the class files
associated with the remote interfaces, stubs, and other classes that need to be
downloaded to clients–accessible via a Web server.

4
Start the application: Starting the application means to run:

1 the RMI remote object registry
2 the server
3 the client

18 / 35

1. Design and implement the distributed application components

First, give an initial architecture for your application (this might require some revision at a
later stage) and determine which components are local objects and remote objects .
This phase consists of:

remote interfaces definition : this specifies the remote methods When designing remote
interfaces you have to determine any local objects that will be used as parameters and
return values for these methods

remote objects implementation : generally, remote objects have to implement several
remote interfaces (of course, the remote object class may implements other non-remote
interfaces and define methods available only locally). Any local classes used in remote
method invocations (as parameters or return values) must be implemented.

clients implementation : clients invoking remote objects can be implemented at any time
after the definition of remote interfaces or after deployment of remote objects.

19 / 35

2. Compile sources and generate stubs

This phase has two steps:

use javac to compile the server classes (those implementing remote interfaces) and the
client classes

use rmic compiler in order to create stubs for remote objects.

Remark

The Java rmic compiler generates the stubs, namely, the programmer does not have to
program client and server proxies and low lever programming detail.

20 / 35

Java remote interface

In a remote interface each method signature must throw RemoteException Other than
this, a remote interface has the same syntax as any other Java interface.

RemoteException exception is raised if errors occur when processing remote method call.
The exception is must be caught by the caller.

RemoteException can be caused

by exceptions that may occur during communications (e.g., access or connection failures)
by problems in remote method invocations (e.g., errors resulting from object, stub, or
skeleton not being found)

An example:
import java.rmi.∗;

public interface ARemoteInterface extends Remote {
String aRemoteMethod1(...) throws RemoteException;
int aRemoteMethod2(...) throws RemoteException;

}

21 / 35

An example: the compute engine

The compute engine is a protocol to execute tasks on a remote engine. This protocol is based on interfaces
supported by the compute engine and by the objects that are submitted to the compute engine.
The remotely accessible part is the compute engine itself, whose remote interface has a single method:
import java.rmi.Remote;
import java.rmi.RemoteException;
/∗
∗ The 2 lines above can be replaced by
∗ import java.rmi.∗;
∗/
public interface Compute extends Remote {

public Object executeTask(Task t)
throws RemoteException;

}
By extending java.rmi.Remote, the interface Compute allows its method to be called from any JVM. Any
object implementing Compute becomes a remote object.
Notice that executeTask

takes a Task

can return any Object

throws RemoteException

22 / 35

An example: the compute engine (2)

An interface for Task objects must be defined.
import java.io.Serializable;

public interface Task extends Serializable {

public Object execute();

}
Different kinds of tasks can be run by a Compute object provide that they implementat Task. It is possible to
add further methods (or data) needed for the computation of the task.

Exercise
execute is not required to throw RemoteException. Why?

Remark
The Task interface extends the java.io.Serializable interface to let the RMI middleware serialise objects so that
they can be transported from a JVM to another.
Implementing Serializable marks the class as being capable of conversion into a self-describing byte stream that
can be used to reconstruct an exact copy of the serialized object when the object is read back from the stream.

This implies that local objects are passed by-value while remote objects are passed by-reference .

23 / 35

Channel-based
concurrency

slides are courtesy of R. Bruni and F. Bonchi

24 / 35

33

http://golang.org/

Google Go

44

Go features
facilitate building reliable and efficient software

open source

compiled, garbage collected

functional and OO features

statically typed (light type system)

concurrent

55

Go principles
C, C++, Java:
too much typing (writing verbose code)
and too much typing (writing explicit types)
(and poor concurrency)

Python, JS:
no strict typing, no compiler issues
runtime errors that should be caught statically

Google Go:
compiled, static types, type inference
(and nice concurrency primitives)

66

Go project

2007: started experimentation at Google
nov 2009: first release (more than 250 contributors)
may 2012: version 1.0 (two yearly releases since 2013)
feb 2025: version 1.24.0

C. Doxsey, Introducing Go (2016). Ch: 1-4, 6-7, 10

designed by Ken Thompson, Rob Pike, Robert Griesemer

77

Go concurrency
any function can be executed in a separate lightweight thread

go f(x)

goroutines run in the same address space
package sync provides basic synchronisation primitives
programmers are encouraged NOT TO USE THEM!

do not communicate by sharing memory
instead, share memory by communicating

use built-in high-level concurrency primitives:
channels and message passing
(inspired by process algebras)

88

Go channels
channels can be created and passed around

var ch = make(chan int)

creates a channel for transmitting integers

aliasing: ch1 and ch now refers to the same channel

f and g share the channel ch

ch1 = ch

go f(ch)
go g(ch)

99

Directionality
channels are alway created bidirectional

var ch = make(chan int)

channel types can be annotated with directionality

rec can only be used to receive integers
var rec <-chan int

var snd chan<- int
snd can only be used to send integers

rec = ch
snd = ch

are valid assignments
rec = snd // invalid!

1010

Go communication
to send a value (like ch!2) ch <- 2

to receive and store in x (like ch?x)

to receive and throw the value away

x = <- ch

<- ch

to close a channel (by the sender) close(ch)

to check if a channel has been closed (by the receiver)

x,ok = <- ch // either value,true or 0,false

1111

Go sync communication
by default the communication is synchronous

BOTH send and receive are BLOCKING!

creates an asynchronous channel of size 100
receive on asynchronous channel is of course still blocking

asynchronous channels can be created
by allocating a buffer of fixed size

var ch = make(chan int, 100)

send is blocking only if the buffer is full

no dedicated type for asynchronous channels:
buffering is a property of values not of types

1212

Go communication
to choose between different options

select {
 case x = <- ch1: { … }
 case ch2 <- v: { … }
 // both send and receive actions
 default: { … }
}

the selection is made pseudo-randomly among enabled cases
if no case is enabled, the default option is applied
if no case is enabled, and no default option is given
the select blocks until (at least) one case is enabled

1313

Example
non-blocking receive

select {
 case x = <- ch: { … }
 default: { … }
}

receives on x from ch, if data available
otherwise proceeds

1414

Example
wait for first among many (senders)

select {
 case x = <- ch1: { … }
 case x = <- ch2: { … }
 case x = <- ch3: { … }
}

receives on x from any of ch1, ch2, ch3, if data available
otherwise waits

1515

Example
wait for first among many (receivers)

select {
 case ch1 <- v : { … }
 case ch2 <- v : { … }
 case ch3 <- v : { … }
}

sends v to any of ch1, ch2, ch3, if available to receive
otherwise waits

4242

Hello concurrency

4343

Hello concurrency

4444

Hello concurrency

4545

Hello concurrency

4646

Hello concurrency

4747

Hello concurrency

4848

Hello deadlocks

4949

Buffering

5050

Communicating goroutines

5151

Communicating goroutines

1616

Name mobility
channels can be sent over channels (like in -calculus)π

a channel for communicating channels

send the channel ch over mob

var mob = make(chan chan int)

mob <- ch

1717

Name mobility: secrecy

S

<latexit sha1_base64="TN8hXS2Ikx5Axv128O6bLvECOMU=">AAACEHicbVDLSgNBEJz1GeMr6tHLYBA8hd0gqLegF48JmgckS+iddOKQ2QczvWJY8gXeRP/Fm3j1D/wVT+7GICaxTkVVN1WUFylpyLY/raXlldW19dxGfnNre2e3sLffMGGsBdZFqELd8sCgkgHWSZLCVqQRfE9h0xteZX7zHrWRYXBLowhdHwaB7EsBlEq1m26haJfsCfgicaakyKaodgtfnV4oYh8DEgqMaTt2RG4CmqRQOM53YoMRiCEMsJ3SAHw0bjIpOubHsQEKeYSaS8UnIv79SMA3ZuR76aUPdGfmvUz8z2vH1D93ExlEMWEgsiCSCidBRmiZLoC8JzUSQdYcuQy4AA1EqCUHIVIxTieZCVRA+JDW+U1Mx3Lmp1kkjXLJOS1d1MrFyuV0thw7ZEfshDnsjFXYNauyOhMM2SN7Zi/Wk/VqvVnvP6dL1vTngM3A+vgGVLedZA==</latexit>

as •

<latexit sha1_base64="p4bomjorEuhKQN2NkUbJO2GkTvo=">AAACG3icbVC7TgJBFJ3FF+ILpbSZSEysyK4hUTuijSUm8khgQ+4OF5ww+8jMXSPZ4J8YW/0OO2Nr4Wf4B+4ihYCnOjnnPk6OFylpyLa/rNzK6tr6Rn6zsLW9s7tX3D9omjDWAhsiVKFue2BQyQAbJElhO9IIvqew5Y2uMr91j9rIMLilcYSuD8NADqQASqVesdT1ge4kJWAmj10vVgqpVyzbFXsKvkycGSmzGeq94ne3H4rYx4CEAmM6jh2Rm4AmKRROCt3YYARiBEPspDQAH42bTMNP+HFsgEIeoeZS8amIfzcS8I0Z+146mUU1i14m/ud1Yhqcu4kMopgwENkjkgqnj4zQMm0FeV9qJIIsOXIZcAEaiFBLDkKkYpzWNHcUlHKTh/Ek7chZbGSZNE8rTrVycVMt1y5nbeXZITtiJ8xhZ6zGrlmdNZhgY/bMXtir9WS9We/Wx+9ozprtlNgcrM8f9f+i0g==</latexit>

• bs

<latexit sha1_base64="4ks2pV4i4k/fucpZFJYyAqX3Ue0=">AAACG3icbVC7TgJBFJ3FF+ILpbSZSEysyK4hUTuijSUm8khgQ+4OF5ww+8jMXSPZ4J8YW/0OO2Nr4Wf4B+4ihYCnOjnnPk6OFylpyLa/rNzK6tr6Rn6zsLW9s7tX3D9omjDWAhsiVKFue2BQyQAbJElhO9IIvqew5Y2uMr91j9rIMLilcYSuD8NADqQASqVesdT1YqWQHrs+0J2kxDOTXrFsV+wp+DJxZqTMZqj3it/dfihiHwMSCozpOHZEbgKapFA4KXRjgxGIEQyxk9IAfDRuMg0/4cexAQp5hJpLxaci/t1IwDdm7HvpZBbRLHqZ+J/XiWlw7iYyiGLCQGSPSCqcPjJCy7QV5H2pkQiy5MhlwAVoIEItOQiRinFa09xRUMpNHsZZR85iI8ukeVpxqpWLm2q5djlrK88O2RE7YQ47YzV2zeqswQQbs2f2wl6tJ+vNerc+fkdz1mynxOZgff4A9tSi0w==</latexit>

as •

<latexit sha1_base64="p4bomjorEuhKQN2NkUbJO2GkTvo=">AAACG3icbVC7TgJBFJ3FF+ILpbSZSEysyK4hUTuijSUm8khgQ+4OF5ww+8jMXSPZ4J8YW/0OO2Nr4Wf4B+4ihYCnOjnnPk6OFylpyLa/rNzK6tr6Rn6zsLW9s7tX3D9omjDWAhsiVKFue2BQyQAbJElhO9IIvqew5Y2uMr91j9rIMLilcYSuD8NADqQASqVesdT1ge4kJWAmj10vVgqpVyzbFXsKvkycGSmzGeq94ne3H4rYx4CEAmM6jh2Rm4AmKRROCt3YYARiBEPspDQAH42bTMNP+HFsgEIeoeZS8amIfzcS8I0Z+146mUU1i14m/ud1Yhqcu4kMopgwENkjkgqnj4zQMm0FeV9qJIIsOXIZcAEaiFBLDkKkYpzWNHcUlHKTh/Ek7chZbGSZNE8rTrVycVMt1y5nbeXZITtiJ8xhZ6zGrlmdNZhgY/bMXtir9WS9We/Wx+9ozprtlNgcrM8f9f+i0g==</latexit>

A

<latexit sha1_base64="aDBL+/LX88Z98tJQSEHtl+fGZhM=">AAACB3icbVDLTgJBEJzFF+IL9ehlIjHxRHYNiXpDvXiERB4JbEjv0OCE2Udmeo1kwwcYr/od3oxXP8PP8A/cRQ4C1qlS1d3VKS9S0pBtf1m5ldW19Y38ZmFre2d3r7h/0DRhrAU2RKhC3fbAoJIBNkiSwnakEXxPYcsb3WR+6wG1kWFwR+MIXR+GgRxIAZRK9atesWSX7Sn4MnFmpMRmqPWK391+KGIfAxIKjOk4dkRuApqkUDgpdGODEYgRDLGT0gB8NG4yfXTCT2IDFPIINZeKT0X8u5GAb8zY99JJH+jeLHqZ+J/XiWlw4SYyiGLCQGRBJBVOg4zQMm0AeV9qJILsc+Qy4AI0EKGWHIRIxTitZO4oKOUmj+NJ2pGz2MgyaZ6VnUr5sl4pVa9nbeXZETtmp8xh56zKblmNNZhgyJ7ZC3u1nqw36936+B3NWbOdQzYH6/MHzGCaHQ==</latexit>

• bs

<latexit sha1_base64="4ks2pV4i4k/fucpZFJYyAqX3Ue0=">AAACG3icbVC7TgJBFJ3FF+ILpbSZSEysyK4hUTuijSUm8khgQ+4OF5ww+8jMXSPZ4J8YW/0OO2Nr4Wf4B+4ihYCnOjnnPk6OFylpyLa/rNzK6tr6Rn6zsLW9s7tX3D9omjDWAhsiVKFue2BQyQAbJElhO9IIvqew5Y2uMr91j9rIMLilcYSuD8NADqQASqVesdT1YqWQHrs+0J2kxDOTXrFsV+wp+DJxZqTMZqj3it/dfihiHwMSCozpOHZEbgKapFA4KXRjgxGIEQyxk9IAfDRuMg0/4cexAQp5hJpLxaci/t1IwDdm7HvpZBbRLHqZ+J/XiWlw7iYyiGLCQGSPSCqcPjJCy7QV5H2pkQiy5MhlwAVoIEItOQiRinFa09xRUMpNHsZZR85iI8ukeVpxqpWLm2q5djlrK88O2RE7YQ47YzV2zeqswQQbs2f2wl6tJ+vNerc+fkdz1mynxOZgff4A9tSi0w==</latexit>

B

<latexit sha1_base64="L7FLYDfMedF3yFWYndC9a9GBP0I=">AAACB3icbVDLTgJBEJzFF+IL9ehlIjHxRHYNiXojePEIiTwS2JDeocEJs4/M9BrJhg8wXvU7vBmvfoaf4R+4ixwErFOlqrurU16kpCHb/rJya+sbm1v57cLO7t7+QfHwqGXCWAtsilCFuuOBQSUDbJIkhZ1II/iewrY3vsn89gNqI8PgjiYRuj6MAjmUAiiVGrV+sWSX7Rn4KnHmpMTmqPeL371BKGIfAxIKjOk6dkRuApqkUDgt9GKDEYgxjLCb0gB8NG4ye3TKz2IDFPIINZeKz0T8u5GAb8zE99JJH+jeLHuZ+J/XjWl45SYyiGLCQGRBJBXOgozQMm0A+UBqJILsc+Qy4AI0EKGWHIRIxTitZOEoKOUmj5Np2pGz3MgqaV2UnUr5ulEpVWvztvLshJ2yc+awS1Zlt6zOmkwwZM/shb1aT9ab9W59/I7mrPnOMVuA9fkDzgOaHg==</latexit>

• ab

<latexit sha1_base64="oLIYWDbWgHUB+E7/HvDiFaaLbH8=">AAACEHicbVC7TsNAEDyHd3gFKGlOREhUkY0iAV0EDSVIJEEkVrQ+NuGU89m6WyMiK3wEooXvoEO0/AGfwR9gBxdAmGo0s7uzmiBW0pLrfjilmdm5+YXFpfLyyuraemVjs2WjxAhsikhF5jIAi0pqbJIkhZexQQgDhe1geJL77Vs0Vkb6gkYx+iEMtOxLAZRJV90gUQrpHoJeperW3An4NPEKUmUFznqVz+51JJIQNQkF1nY8NyY/BUNSKByXu4nFGMQQBtjJqIYQrZ9OPh7z3cQCRTxGw6XiExF/bqQQWjsKg2wyBLqxf71c/M/rJNQ/9FOp44RQizyIpMJJkBVGZlUgv5YGiSD/HLnUXIABIjSSgxCZmGTd/DoKSvnp3WicdeT9bWSatPZrXr12dF6vNo6LthbZNtthe8xjB6zBTtkZazLBNHtkT+zZeXBenFfn7Xu05BQ7W+wXnPcviteeWw==</latexit>

ab

<latexit sha1_base64="/HDNfb/AUwjKYKsdh+IPQD8eQ7U=">AAACCHicbVDLSgNBEJyNrxhfUY9eBoPgKeyKoN6CXjxGMQ9IltA76cQhsw9mesWw5AfEq36HN/HqX/gZ/oGbdQ8msU5FVXdXU16kpCHb/rIKS8srq2vF9dLG5tb2Tnl3r2nCWAtsiFCFuu2BQSUDbJAkhe1II/iewpY3upr6rQfURobBHY0jdH0YBnIgBVAq3YLXK1fsqp2BLxInJxWWo94rf3f7oYh9DEgoMKbj2BG5CWiSQuGk1I0NRiBGMMROSgPw0bhJ9umEH8UGKOQRai4Vz0T8u5GAb8zY99JJH+jezHtT8T+vE9Pg3E1kEMWEgZgGkVSYBRmhZVoB8r7USATTz5HLgAvQQIRachAiFeO0k5mjoJSbPI4naUfOfCOLpHlSdU6rFzenldpl3laRHbBDdswcdsZq7JrVWYMJNmDP7IW9Wk/Wm/VuffyOFqx8Z5/NwPr8AcaZmqk=</latexit>

m

<latexit sha1_base64="XSdEmDxDoD/oesFiu/JCDpjTH88=">AAACB3icbVDLTgJBEJzFF+IL9ehlIjHxRHYNiXojevEIiYAJbEjv0OCE2Udmeo1kwwcYr/od3oxXP8PP8A/cxT0IWKdKVXdXp7xISUO2/WUVVlbX1jeKm6Wt7Z3dvfL+QduEsRbYEqEK9Z0HBpUMsEWSFN5FGsH3FHa88XXmdx5QGxkGtzSJ0PVhFMihFECp1PT75YpdtWfgy8TJSYXlaPTL371BKGIfAxIKjOk6dkRuApqkUDgt9WKDEYgxjLCb0gB8NG4ye3TKT2IDFPIINZeKz0T8u5GAb8zE99JJH+jeLHqZ+J/XjWl44SYyiGLCQGRBJBXOgozQMm0A+UBqJILsc+Qy4AI0EKGWHIRIxTitZO4oKOUmj5Np2pGz2MgyaZ9VnVr1slmr1K/ytorsiB2zU+awc1ZnN6zBWkwwZM/shb1aT9ab9W59/I4WrHznkM3B+vwBFHOaSQ==</latexit>

1818

S

<latexit sha1_base64="TN8hXS2Ikx5Axv128O6bLvECOMU=">AAACEHicbVDLSgNBEJz1GeMr6tHLYBA8hd0gqLegF48JmgckS+iddOKQ2QczvWJY8gXeRP/Fm3j1D/wVT+7GICaxTkVVN1WUFylpyLY/raXlldW19dxGfnNre2e3sLffMGGsBdZFqELd8sCgkgHWSZLCVqQRfE9h0xteZX7zHrWRYXBLowhdHwaB7EsBlEq1m26haJfsCfgicaakyKaodgtfnV4oYh8DEgqMaTt2RG4CmqRQOM53YoMRiCEMsJ3SAHw0bjIpOubHsQEKeYSaS8UnIv79SMA3ZuR76aUPdGfmvUz8z2vH1D93ExlEMWEgsiCSCidBRmiZLoC8JzUSQdYcuQy4AA1EqCUHIVIxTieZCVRA+JDW+U1Mx3Lmp1kkjXLJOS1d1MrFyuV0thw7ZEfshDnsjFXYNauyOhMM2SN7Zi/Wk/VqvVnvP6dL1vTngM3A+vgGVLedZA==</latexit>

as •

<latexit sha1_base64="p4bomjorEuhKQN2NkUbJO2GkTvo=">AAACG3icbVC7TgJBFJ3FF+ILpbSZSEysyK4hUTuijSUm8khgQ+4OF5ww+8jMXSPZ4J8YW/0OO2Nr4Wf4B+4ihYCnOjnnPk6OFylpyLa/rNzK6tr6Rn6zsLW9s7tX3D9omjDWAhsiVKFue2BQyQAbJElhO9IIvqew5Y2uMr91j9rIMLilcYSuD8NADqQASqVesdT1ge4kJWAmj10vVgqpVyzbFXsKvkycGSmzGeq94ne3H4rYx4CEAmM6jh2Rm4AmKRROCt3YYARiBEPspDQAH42bTMNP+HFsgEIeoeZS8amIfzcS8I0Z+146mUU1i14m/ud1Yhqcu4kMopgwENkjkgqnj4zQMm0FeV9qJIIsOXIZcAEaiFBLDkKkYpzWNHcUlHKTh/Ek7chZbGSZNE8rTrVycVMt1y5nbeXZITtiJ8xhZ6zGrlmdNZhgY/bMXtir9WS9We/Wx+9ozprtlNgcrM8f9f+i0g==</latexit>

• bs

<latexit sha1_base64="4ks2pV4i4k/fucpZFJYyAqX3Ue0=">AAACG3icbVC7TgJBFJ3FF+ILpbSZSEysyK4hUTuijSUm8khgQ+4OF5ww+8jMXSPZ4J8YW/0OO2Nr4Wf4B+4ihYCnOjnnPk6OFylpyLa/rNzK6tr6Rn6zsLW9s7tX3D9omjDWAhsiVKFue2BQyQAbJElhO9IIvqew5Y2uMr91j9rIMLilcYSuD8NADqQASqVesdT1YqWQHrs+0J2kxDOTXrFsV+wp+DJxZqTMZqj3it/dfihiHwMSCozpOHZEbgKapFA4KXRjgxGIEQyxk9IAfDRuMg0/4cexAQp5hJpLxaci/t1IwDdm7HvpZBbRLHqZ+J/XiWlw7iYyiGLCQGSPSCqcPjJCy7QV5H2pkQiy5MhlwAVoIEItOQiRinFa09xRUMpNHsZZR85iI8ukeVpxqpWLm2q5djlrK88O2RE7YQ47YzV2zeqswQQbs2f2wl6tJ+vNerc+fkdz1mynxOZgff4A9tSi0w==</latexit>

as •

<latexit sha1_base64="p4bomjorEuhKQN2NkUbJO2GkTvo=">AAACG3icbVC7TgJBFJ3FF+ILpbSZSEysyK4hUTuijSUm8khgQ+4OF5ww+8jMXSPZ4J8YW/0OO2Nr4Wf4B+4ihYCnOjnnPk6OFylpyLa/rNzK6tr6Rn6zsLW9s7tX3D9omjDWAhsiVKFue2BQyQAbJElhO9IIvqew5Y2uMr91j9rIMLilcYSuD8NADqQASqVesdT1ge4kJWAmj10vVgqpVyzbFXsKvkycGSmzGeq94ne3H4rYx4CEAmM6jh2Rm4AmKRROCt3YYARiBEPspDQAH42bTMNP+HFsgEIeoeZS8amIfzcS8I0Z+146mUU1i14m/ud1Yhqcu4kMopgwENkjkgqnj4zQMm0FeV9qJIIsOXIZcAEaiFBLDkKkYpzWNHcUlHKTh/Ek7chZbGSZNE8rTrVycVMt1y5nbeXZITtiJ8xhZ6zGrlmdNZhgY/bMXtir9WS9We/Wx+9ozprtlNgcrM8f9f+i0g==</latexit>

A

<latexit sha1_base64="aDBL+/LX88Z98tJQSEHtl+fGZhM=">AAACB3icbVDLTgJBEJzFF+IL9ehlIjHxRHYNiXpDvXiERB4JbEjv0OCE2Udmeo1kwwcYr/od3oxXP8PP8A/cRQ4C1qlS1d3VKS9S0pBtf1m5ldW19Y38ZmFre2d3r7h/0DRhrAU2RKhC3fbAoJIBNkiSwnakEXxPYcsb3WR+6wG1kWFwR+MIXR+GgRxIAZRK9atesWSX7Sn4MnFmpMRmqPWK391+KGIfAxIKjOk4dkRuApqkUDgpdGODEYgRDLGT0gB8NG4yfXTCT2IDFPIINZeKT0X8u5GAb8zY99JJH+jeLHqZ+J/XiWlw4SYyiGLCQGRBJBVOg4zQMm0AeV9qJILsc+Qy4AI0EKGWHIRIxTitZO4oKOUmj+NJ2pGz2MgyaZ6VnUr5sl4pVa9nbeXZETtmp8xh56zKblmNNZhgyJ7ZC3u1nqw36936+B3NWbOdQzYH6/MHzGCaHQ==</latexit>

• bs

<latexit sha1_base64="4ks2pV4i4k/fucpZFJYyAqX3Ue0=">AAACG3icbVC7TgJBFJ3FF+ILpbSZSEysyK4hUTuijSUm8khgQ+4OF5ww+8jMXSPZ4J8YW/0OO2Nr4Wf4B+4ihYCnOjnnPk6OFylpyLa/rNzK6tr6Rn6zsLW9s7tX3D9omjDWAhsiVKFue2BQyQAbJElhO9IIvqew5Y2uMr91j9rIMLilcYSuD8NADqQASqVesdT1YqWQHrs+0J2kxDOTXrFsV+wp+DJxZqTMZqj3it/dfihiHwMSCozpOHZEbgKapFA4KXRjgxGIEQyxk9IAfDRuMg0/4cexAQp5hJpLxaci/t1IwDdm7HvpZBbRLHqZ+J/XiWlw7iYyiGLCQGSPSCqcPjJCy7QV5H2pkQiy5MhlwAVoIEItOQiRinFa09xRUMpNHsZZR85iI8ukeVpxqpWLm2q5djlrK88O2RE7YQ47YzV2zeqswQQbs2f2wl6tJ+vNerc+fkdz1mynxOZgff4A9tSi0w==</latexit>

B

<latexit sha1_base64="L7FLYDfMedF3yFWYndC9a9GBP0I=">AAACB3icbVDLTgJBEJzFF+IL9ehlIjHxRHYNiXojePEIiTwS2JDeocEJs4/M9BrJhg8wXvU7vBmvfoaf4R+4ixwErFOlqrurU16kpCHb/rJya+sbm1v57cLO7t7+QfHwqGXCWAtsilCFuuOBQSUDbJIkhZ1II/iewrY3vsn89gNqI8PgjiYRuj6MAjmUAiiVGrV+sWSX7Rn4KnHmpMTmqPeL371BKGIfAxIKjOk6dkRuApqkUDgt9GKDEYgxjLCb0gB8NG4ye3TKz2IDFPIINZeKz0T8u5GAb8zE99JJH+jeLHuZ+J/XjWl45SYyiGLCQGRBJBXOgozQMm0A+UBqJILsc+Qy4AI0EKGWHIRIxTitZOEoKOUmj5Np2pGz3MgqaV2UnUr5ulEpVWvztvLshJ2yc+awS1Zlt6zOmkwwZM/shb1aT9ab9W59/I7mrPnOMVuA9fkDzgOaHg==</latexit>

• ab

<latexit sha1_base64="oLIYWDbWgHUB+E7/HvDiFaaLbH8=">AAACEHicbVC7TsNAEDyHd3gFKGlOREhUkY0iAV0EDSVIJEEkVrQ+NuGU89m6WyMiK3wEooXvoEO0/AGfwR9gBxdAmGo0s7uzmiBW0pLrfjilmdm5+YXFpfLyyuraemVjs2WjxAhsikhF5jIAi0pqbJIkhZexQQgDhe1geJL77Vs0Vkb6gkYx+iEMtOxLAZRJV90gUQrpHoJeperW3An4NPEKUmUFznqVz+51JJIQNQkF1nY8NyY/BUNSKByXu4nFGMQQBtjJqIYQrZ9OPh7z3cQCRTxGw6XiExF/bqQQWjsKg2wyBLqxf71c/M/rJNQ/9FOp44RQizyIpMJJkBVGZlUgv5YGiSD/HLnUXIABIjSSgxCZmGTd/DoKSvnp3WicdeT9bWSatPZrXr12dF6vNo6LthbZNtthe8xjB6zBTtkZazLBNHtkT+zZeXBenFfn7Xu05BQ7W+wXnPcviteeWw==</latexit>

ab •

<latexit sha1_base64="htB+JKgd3Sq4TFCHRUMvabicgxw=">AAACEHicbVC7TsNAEDyHd3gFKGlOREhUkY0iAV0EDSVIJEEkVrQ+NuGU89m6WyMiK3wEooXvoEO0/AGfwR9gBxdAmGo0s7uzmiBW0pLrfjilmdm5+YXFpfLyyuraemVjs2WjxAhsikhF5jIAi0pqbJIkhZexQQgDhe1geJL77Vs0Vkb6gkYx+iEMtOxLAZRJVxDcd4NEKaReperW3An4NPEKUmUFznqVz+51JJIQNQkF1nY8NyY/BUNSKByXu4nFGMQQBtjJqIYQrZ9OPh7z3cQCRTxGw6XiExF/bqQQWjsKg2wyBLqxf71c/M/rJNQ/9FOp44RQizyIpMJJkBVGZlUgv5YGiSD/HLnUXIABIjSSgxCZmGTd/DoKSvnp3WicdeT9bWSatPZrXr12dF6vNo6LthbZNtthe8xjB6zBTtkZazLBNHtkT+zZeXBenFfn7Xu05BQ7W+wXnPcvirmeWw==</latexit>

m

<latexit sha1_base64="XSdEmDxDoD/oesFiu/JCDpjTH88=">AAACB3icbVDLTgJBEJzFF+IL9ehlIjHxRHYNiXojevEIiYAJbEjv0OCE2Udmeo1kwwcYr/od3oxXP8PP8A/cxT0IWKdKVXdXp7xISUO2/WUVVlbX1jeKm6Wt7Z3dvfL+QduEsRbYEqEK9Z0HBpUMsEWSFN5FGsH3FHa88XXmdx5QGxkGtzSJ0PVhFMihFECp1PT75YpdtWfgy8TJSYXlaPTL371BKGIfAxIKjOk6dkRuApqkUDgt9WKDEYgxjLCb0gB8NG4ye3TKT2IDFPIINZeKz0T8u5GAb8zE99JJH+jeLHqZ+J/XjWl44SYyiGLCQGRBJBXOgozQMm0A+UBqJILsc+Qy4AI0EKGWHIRIxTitZO4oKOUmj5Np2pGz2MgyaZ9VnVr1slmr1K/ytorsiB2zU+awc1ZnN6zBWkwwZM/shb1aT9ab9W59/I4WrHznkM3B+vwBFHOaSQ==</latexit>

Name mobility: secrecy

5353

Name mobility

5454

Name mobility

5555

Name mobility

5656

Closing channels

5757

Closing channels

5858

Closing channels

Actor-based concurrency

wslides are courtesy of R. Bruni and F. Bonchi

25 / 35

33

Erlang: a concurrent programming language

http://www.erlang.org/

44

Erlang: origins
named after Danish mathematician A. K. Erlang

1986: first experimentation at Ericsson, Sweden
1989: internal use only
1990: sold as a product
1998: open source

Joe Armstrong, “Programming Erlang”, ch.1-5, 11-12

55

Features
declarative (functional, Prolog) programming

arbitrary size integers, tuples, lists, functions, higher-order

atoms everywhere

dynamically typed

open source

unfriendly syntax

variables are assigned only once

left-to-right evaluation, no pointers, no object-orientation

66

Features: concurrency
concurrent and distributed programming

asynchronous message passing
(no locks, no mutexes)

fault tolerance

hot swapping code

erlang processes are cheap

automatic memory allocation and garbage collection

can handle large telecom applications

Erl

7

88

Erlang: erl

interactive shell or interpreter, executing read-eval-print loop

programmers enter expressions / declarations one at a time

they are compiled / executed

erl is the Erlang VM emulator

99

erl expressions

typical interaction:

1> command .
value
2>

prompt user’s input

result don’t forget the dot!

next prompt

halt(). to exit the emulator

1010

Erlang modules
functions are organised in modules

one module for source file

filename is module name with suffix .erl

% filename hello.erl
-module(hello).
-export([hello/0]).

hello() -> io:format("Hello, world!~n").

a comment declarations end with a dot

module name function name argumentseparator

arity

function def

1111

erl: module loading

1> c(hello) .
{ok,hello}
2> hello:hello() .
Hello, world!
ok
3>

compile and load the module

return value

next prompt

invoke the function

if you edit hello.erl and do c(hello) again
the new version of the module replaces the old one

Erlang basics

12

1313

Function definition
separates function clauses with ;
last clause ends with .

variables start with upper-case letters X Head Tail
variables are local to function clauses

function definitions cannot be nested
non-exported functions are local to the module

pattern matching allowed

guards allowed (keyword when)

type-checking is done at runtime

1414

Atoms, tuples, lists
numbers: arbitrary size integers, floating point values
(cannot start with .)

atoms: start with lower-case character
(can be single-quoted if needed, don’t use camelCase)
true ok hello_world. ’this is an atom’

tuples: main data constructor
tagged tuples: the first element of the tuple is an atom
we can use pattern matching
{} {movie,”Matrix”} {movie,Title}

lists: can contain elements of any type
we can use pattern matching
[] [1,2,ok] [H|T] [X,Y,Z] [X,Y,Z| Tail]

1515

Funs

funs: anonymous functions (lambda expressions)
can have several arguments and clauses

fun () -> 42 end

fun (X) -> X+1 end

fun (X,Y) -> {X, fun (Z) -> Z+Y end} end

fun (F,X) -> F(X) end

1616

Type test & conversion

is_integer(X)
is_float(X)
is_number(X)
is_atom(X)
is_tuple(X)
is_list(X)
is_function(X)
is_pid(X)
…

atom_to_list(A)
list_to_atom(L)
tuple_to_list(T)
list_to_tuple(L)
…

Erlang concurrency

17

1818

Processes
every Erlang code is executed by a process
processes are implemented by the VM (not by OS threads)

multitasking is preemptive (VM switching and scheduling)

processes need very little memory

switching between processes is very fast

the VM can handle a large number of processes
on multiprocessor/multicore machines, processes can be
scheduled to run in parallel on separate CPUs/cores
using multiple schedulers

different processes may be reading the same program code
at the same time (no variable updates!)

1919

Pids
each process has a process identifier

Pid = spawn(module,function,arguments)

Pid = self()

new Erlang processes can be spawned to run functions

Pid = spawn(fun () -> … end)

Pid = spawn(fun f/0)

Pid = spawn(fun m:f/0)

the spawn operation returns immediately
(the return value is the pid of the process)

children pids are available to parent process,
not vice versa (unless passed)

2020

Communication
Messages can be sent to pids

Pid ! message

Processes can wait to receive (and select) some message

receive
 Pattern1 when Cond1 -> Exp1;
 Pattern2 when Cond2 -> Exp2;
 ...
 Patternk when Condk -> Expk
end

called bang

2121

Communication
Messages can be sent to pids

Pid ! {1,2,3}

Processes can wait to receive (and select) some message

receive
 {X} when X>0 -> X;
 {X,Y} when Y>X -> X+Y;
 {X,Y,Z} when Y>X andalso Z>Y -> X+Z;
end

called bang

First matching clause for first message,
if none, first matching clause for second message,
if none, ...
if none it blocks (all messages are kept)

2222

Communication
Messages can be sent to pids

Pid ! {1,2,3}

Processes can wait to receive (and select) some message

receive
 {X} when X>0 -> X;
 {X,Y} when Y>X -> X+Y;
 {X,Y,Z} when Y>X andalso Z>Y -> X+Z;
 _ -> 0
end

called bang

First matching clause for first message
(the last clause, called catch-all, will match anyway)

2323

Communication
Messages can be sent to pids

Pid ! {1,2,3}

Processes can wait to receive (and select) some message

receive
 {X} when X>0 -> X;
 {X,Y} when Y>X -> X+Y;
 {X,Y,Z} when Y>X andalso Z>Y -> X+Z;
 after 0 -> 0
end

called bang

First matching clause for first message,
if none, first matching clause for second message,
if none, ...
if none it evaluates to 0 (all messages are kept)timeout

2424

Message passing

Pid ! message

Pid

receive … end

2525

Message passing
messages are sent asynchronously
(the sender continues immediately)

any value can be sent as a message

each process has a message queue (mailbox)
no size limit, messages are kept until extracted

messages are ordered from oldest to newest in the mailbox

a message is received when it is extracted from the mailbox

the message that is extracted is not necessarily the oldest
(pattern matching can be used, if there is no match
the receiver suspends and keeps waiting)

2626

Reply
To reply a message, its sender must be known

its pid can be inserted in the message

Pid ! { Mypid , message }

now the receiver Pid can reply to Mypid

syntax for tuples

to
Mr. Pid

from Mypid

5858

erl session

99> c(recursion).
recursion.erl:2:2: Warning: export_all flag enabled - all functions
will be exported
{ok,recursion}
100> recursion:perms("abc").
["abc","acb","bac","bca","cab","cba"]
101> recursion:perms("abcdef").
["abcdef","abcdfe","abcedf","abcefd","abcfde","abcfed",
 "abdcef","abdcfe","abdecf","abdefc","abdfce","abdfec",
 "abecdf","abecfd","abedcf","abedfc","abefcd","abefdc",
 "abfcde","abfced","abfdce","abfdec","abfecd","abfedc",
 "acbdef","acbdfe","acbedf","acbefd",
 [...]|...]

5959

erl session

75

Principles for software composition 2019/20
06 - Erlang and CCS

[Ex. 1] Write a server in erlang to convert temperatures from Celsius degrees
to Fahrenheit degrees and vice versa, using the formula F = 1.8C + 32. The
server receives requests of the form (Pid , cs, C) or (Pid , ft, F) and replies
to Pid by sending messages in analogous format. The server can be stopped
by sending the message stop. All the other messages are ignored. Spawn
a copy of the server, send it some temperatures to convert, check out the
results and stop the server.

[Ex. 2] Write an erlang function copy that receives an integer n and if n is
positive it prints n copies of n (one per line). Write an erlang function that
receives a list of integers and spawn an instance of copy for each integer in
the list.

[Ex. 3] Define a CCS process Bn
k that represents an in/out bu↵er with

capacity n of which k positions are taken. Show that Bn
0 is strongly bisimilar

to n copies of B1
0 that run in parallel.

[Ex. 4] Write a guarded CCS process whose LTS has infinitely many states
without using parallel composition.

[Ex. 5] Prove that CCS strong bisimilarity is a congruence w.r.t. restriction,
i.e., that for all p, q, ↵:

p ' q) p\↵ ' q\↵

[Ex. 6] Prove that the CCS agents

p
def
= ↵.(↵.�.nil + ↵.(�.nil + �.nil)) and q

def
= ↵.(↵.�.nil + ↵.�.nil)

are not strong bisimilar.

[Ex. 7] Let us consider the guarded CCS processes

p
def
= rec x.(↵.x + �.x) q

def
= rec y.(↵.nil + �.y) r

def
= rec z.(�.nil + �.z)

1. Draw the LTSs of the processes p, q, r and s
def
= (p|q|r)\↵\�\�.

2. Show that s is strong bisimilar to the process t
def
= rec w.(⌧.w+⌧.⌧.nil).

[Ex. 8] Prove that the following property is valid for any agent p, where ⇡
is the weak bisimilarity:

p + ⌧.p ⇡ ⌧.p

7676

Ex. 1, temp converter
-module(ex1).
-export([convert/0]).

convert() ->
 receive
 {Pid,cs,C} -> Pid ! {self(),ft,(1.8 * C) + 32},
 convert();
 {Pid,ft,F} -> Pid ! {self(),cs,(F - 32) / 1.8},
 convert();
 stop -> true;
 _ -> convert()
 end.

7777

Ex. 1, temp converter
-module(ex1).
-export([convert/0]).

convert() ->
 receive
 {Pid,cs,C} -> Pid ! {self(),ft,(1.8 * C) + 32},
 convert();
 {Pid,ft,F} -> Pid ! {self(),cs,(F - 32) / 1.8},
 convert();
 stop -> true;
 _ -> convert()
 end.

7878

Ex. 1, temp converter
-module(ex1).
-export([convert/0]).

convert() ->
 receive
 {Pid,cs,C} -> Pid ! {self(),ft,(1.8 * C) + 32},
 convert();
 {Pid,ft,F} -> Pid ! {self(),cs,(F - 32) / 1.8},
 convert();
 stop -> true;
 _ -> convert()
 end.

7979

Ex. 1, temp converter
-module(ex1).
-export([convert/0]).

convert() ->
 receive
 {Pid,cs,C} -> Pid ! {self(),ft,(1.8 * C) + 32},
 convert();
 {Pid,ft,F} -> Pid ! {self(),cs,(F - 32) / 1.8},
 convert();
 stop -> true;
 _ -> convert()
 end.

8080

Ex. 1, temp converter
-module(ex1).
-export([convert/0]).

convert() ->
 receive
 {Pid,cs,C} -> Pid ! {self(),ft,(1.8 * C) + 32},
 convert();
 {Pid,ft,F} -> Pid ! {self(),cs,(F - 32) / 1.8},
 convert();
 stop -> true;
 _ -> convert()
 end.

8181

Ex. 1, temp converter
-module(ex1).
-export([convert/0]).

convert() ->
 receive
 {Pid,cs,C} -> Pid ! {self(),ft,(1.8 * C) + 32},
 convert();
 {Pid,ft,F} -> Pid ! {self(),cs,(F - 32) / 1.8},
 convert();
 stop -> true;
 _ -> convert()
 end.

8282

Ex. 1, temp converter
-module(ex1).
-export([convert/0]).

convert() ->
 receive
 {Pid,cs,C} -> Pid ! {self(),ft,(1.8 * C) + 32},
 convert();
 {Pid,ft,F} -> Pid ! {self(),cs,(F - 32) / 1.8},
 convert();
 stop -> true;
 _ -> convert()
 end.

8383

Ex. 1, temp converter
-module(ex1).
-export([convert/0]).

convert() ->
 receive
 {Pid,cs,C} -> Pid ! {self(),ft,(1.8 * C) + 32},
 convert();
 {Pid,ft,F} -> Pid ! {self(),cs,(F - 32) / 1.8},
 convert();
 stop -> true;
 _ -> convert()
 end.

8484

Eshell V10.2.1 (abort with ^G)
1> c(ex1).
{ok,ex1}
2> Conv = spawn(ex1,convert,[]).
<0.84.0>
3> Conv ! {self(),cs,23}.
{<0.77.0>,cs,23}
4> receive
4> {Conv,ft,F} -> io:format("23 celsius = ~p fahrenheit~n",[F])
4> end.
23 celsius = 73.4 fahrenheit
ok
5> Conv ! {self(),ft,74}.
{<0.77.0>,ft,74}
6> receive
6> {Conv,cs,C} -> io:format("74 fahrenheit = ~p celsius~n",[C])
6> end.
74 fahrenheit = 23.333333333333332 celsius
ok
7> Conv ! stop.
stop
8>

Ex. 1, temp converter

8585

Eshell V10.2.1 (abort with ^G)
1> c(ex1).
{ok,ex1}
2> Conv = spawn(ex1,convert,[]).
<0.84.0>
3> Conv ! {self(),cs,23}.
{<0.77.0>,cs,23}
4> receive
4> {Conv,ft,F} -> io:format("23 celsius = ~p fahrenheit~n",[F])
4> end.
23 celsius = 73.4 fahrenheit
ok
5> Conv ! {self(),ft,74}.
{<0.77.0>,ft,74}
6> receive
6> {Conv,cs,C} -> io:format("74 fahrenheit = ~p celsius~n",[C])
6> end.
74 fahrenheit = 23.333333333333332 celsius
ok
7> Conv ! stop.
stop
8>

Ex. 1, temp converter

8686

Eshell V10.2.1 (abort with ^G)
1> c(ex1).
{ok,ex1}
2> Conv = spawn(ex1,convert,[]).
<0.84.0>
3> Conv ! {self(),cs,23}.
{<0.77.0>,cs,23}
4> receive
4> {Conv,ft,F} -> io:format("23 celsius = ~p fahrenheit~n",[F])
4> end.
23 celsius = 73.4 fahrenheit
ok
5> Conv ! {self(),ft,74}.
{<0.77.0>,ft,74}
6> receive
6> {Conv,cs,C} -> io:format("74 fahrenheit = ~p celsius~n",[C])
6> end.
74 fahrenheit = 23.333333333333332 celsius
ok
7> Conv ! stop.
stop
8>

Ex. 1, temp converter

8787

Eshell V10.2.1 (abort with ^G)
1> c(ex1).
{ok,ex1}
2> Conv = spawn(ex1,convert,[]).
<0.84.0>
3> Conv ! {self(),cs,23}.
{<0.77.0>,cs,23}
4> receive
4> {Conv,ft,F} -> io:format("23 celsius = ~p fahrenheit~n",[F])
4> end.
23 celsius = 73.4 fahrenheit
ok
5> Conv ! {self(),ft,74}.
{<0.77.0>,ft,74}
6> receive
6> {Conv,cs,C} -> io:format("74 fahrenheit = ~p celsius~n",[C])
6> end.
74 fahrenheit = 23.333333333333332 celsius
ok
7> Conv ! stop.
stop
8>

Ex. 1, temp converter

91

Principles for software composition 2019/20
06 - Erlang and CCS

[Ex. 1] Write a server in erlang to convert temperatures from Celsius degrees
to Fahrenheit degrees and vice versa, using the formula F = 1.8C + 32. The
server receives requests of the form (Pid , cs, C) or (Pid , ft, F) and replies
to Pid by sending messages in analogous format. The server can be stopped
by sending the message stop. All the other messages are ignored. Spawn
a copy of the server, send it some temperatures to convert, check out the
results and stop the server.

[Ex. 2] Write an erlang function copy that receives an integer n and if n is
positive it prints n copies of n (one per line). Write an erlang function that
receives a list of integers and spawn an instance of copy for each integer in
the list.

[Ex. 3] Define a CCS process Bn
k that represents an in/out bu↵er with

capacity n of which k positions are taken. Show that Bn
0 is strongly bisimilar

to n copies of B1
0 that run in parallel.

[Ex. 4] Write a guarded CCS process whose LTS has infinitely many states
without using parallel composition.

[Ex. 5] Prove that CCS strong bisimilarity is a congruence w.r.t. restriction,
i.e., that for all p, q, ↵:

p ' q) p\↵ ' q\↵

[Ex. 6] Prove that the CCS agents

p
def
= ↵.(↵.�.nil + ↵.(�.nil + �.nil)) and q

def
= ↵.(↵.�.nil + ↵.�.nil)

are not strong bisimilar.

[Ex. 7] Let us consider the guarded CCS processes

p
def
= rec x.(↵.x + �.x) q

def
= rec y.(↵.nil + �.y) r

def
= rec z.(�.nil + �.z)

1. Draw the LTSs of the processes p, q, r and s
def
= (p|q|r)\↵\�\�.

2. Show that s is strong bisimilar to the process t
def
= rec w.(⌧.w+⌧.⌧.nil).

[Ex. 8] Prove that the following property is valid for any agent p, where ⇡
is the weak bisimilarity:

p + ⌧.p ⇡ ⌧.p

9292

Ex. 2, copy
-module(ex2).
-export([copy/1,listCopy/1]).

copy(N) when N > 0 -> copy(N,N);
copy(_) -> true.

copy(N,M) when N > 0 -> io:format("~p~n",[M]),
 copy(N-1,M);
copy(_,_) -> true.

listCopy(L) -> [spawn(ex2,copy,[N]) || N <- L].

9393

Ex. 2, copy
-module(ex2).
-export([copy/1,listCopy/1]).

copy(N) when N > 0 -> copy(N,N);
copy(_) -> true.

copy(N,M) when N > 0 -> io:format("~p~n",[M]),
 copy(N-1,M);
copy(_,_) -> true.

listCopy(L) -> [spawn(ex2,copy,[N]) || N <- L].

9494

Ex. 2, copy
-module(ex2).
-export([copy/1,listCopy/1]).

copy(N) when N > 0 -> copy(N,N);
copy(_) -> true.

copy(N,M) when N > 0 -> io:format("~p~n",[M]),
 copy(N-1,M);
copy(_,_) -> true.

listCopy(L) -> [spawn(ex2,copy,[N]) || N <- L].

9595

Ex. 2, copy
-module(ex2).
-export([copy/1,listCopy/1]).

copy(N) when N > 0 -> copy(N,N);
copy(_) -> true.

copy(N,M) when N > 0 -> io:format("~p~n",[M]),
 copy(N-1,M);
copy(_,_) -> true.

listCopy(L) -> [spawn(ex2,copy,[N]) || N <- L].

9696

Ex. 2, copy
-module(ex2).
-export([copy/1,listCopy/1]).

copy(N) when N > 0 -> copy(N,N);
copy(_) -> true.

copy(N,M) when N > 0 -> io:format("~p~n",[M]),
 copy(N-1,M);
copy(_,_) -> true.

listCopy(L) -> [spawn(ex2,copy,[N]) || N <- L].

9797

Ex. 2, copy
-module(ex2).
-export([copy/1,listCopy/1]).

copy(N) when N > 0 -> copy(N,N);
copy(_) -> true.

copy(N,M) when N > 0 -> io:format("~p~n",[M]),
 copy(N-1,M);
copy(_,_) -> true.

listCopy(L) -> [spawn(ex2,copy,[N]) || N <- L].

9898

Ex. 2, copy
-module(ex2).
-export([copy/1,listCopy/1]).

copy(N) when N > 0 -> copy(N,N);
copy(_) -> true.

copy(N,M) when N > 0 -> io:format("~p~n",[M]),
 copy(N-1,M);
copy(_,_) -> true.

listCopy(L) -> [spawn(ex2,copy,[N]) || N <- L].

9999

Ex. 2, copy
-module(ex2).
-export([copy/1,listCopy/1]).

copy(N) when N > 0 -> copy(N,N);
copy(_) -> true.

copy(N,M) when N > 0 -> io:format("~p~n",[M]),
 copy(N-1,M);
copy(_,_) -> true.

listCopy(L) -> [spawn(ex2,copy,[N]) || N <- L].

100100

Ex. 2, copy
-module(ex2).
-export([copy/1,listCopy/1]).

copy(N) when N > 0 -> copy(N,N);
copy(_) -> true.

copy(N,M) when N > 0 -> io:format("~p~n",[M]),
 copy(N-1,M);
copy(_,_) -> true.

listCopy(L) -> [spawn(ex2,copy,[N]) || N <- L].

101101

Ex. 2, copy
-module(ex2).
-export([copy/1,listCopy/1]).

copy(N) when N > 0 -> copy(N,N);
copy(_) -> true.

copy(N,M) when N > 0 -> io:format("~p~n",[M]),
 copy(N-1,M);
copy(_,_) -> true.

listCopy(L) -> [spawn(ex2,copy,[N]) || N <- L].

102102

Ex. 2, copy
Eshell V10.2.1 (abort with ^G)
1> c(ex2).
{ok,ex2}
2> ex2:listCopy(lists:seq(1,5)).
1
2
3
4
5
[<0.84.0>,<0.85.0>,<0.86.0>,<0.87.0>,<0.88.0>]
2
3
4
5
3
4
5
4
5
5
3>

103103

Ex. 2, copy
Eshell V10.2.1 (abort with ^G)
1> c(ex2).
{ok,ex2}
2> ex2:listCopy(lists:seq(1,5)).
1
2
3
4
5
[<0.84.0>,<0.85.0>,<0.86.0>,<0.87.0>,<0.88.0>]
2
3
4
5
3
4
5
4
5
5
3>

On using the “right” primitives

26 / 35

Advanced primitives for concurrency

Join patterns are very high-level

Based on the join calculuc [FG96]

Integrated in some programming languages (Erlang, C#, etc.)

We’ll see a combination of join patterns and actors introduced in [HHM+24a, HHM+24b]

27 / 35

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

▸ Novel specification of fair join pattern matching for actors▸ Novel stateful tree-based matching algorithm with proof of correctness▸ JoinActors: novel Scala 3 library for actors with fair join pattern matching

1 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

What are Join Patterns?

▸ Coordination mechanism for concurrent message passing programs▸ Introduced in Join Calculus (Fournet et al., POPL 1996)

▸ Message passing programs may react to complex message sequences and
conditions▸ Join patterns simplify specifying the association of out-of-order messages

2 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

What are Join Patterns?

▸ Coordination mechanism for concurrent message passing programs▸ Introduced in Join Calculus (Fournet et al., POPL 1996)▸ Message passing programs may react to complex message sequences and
conditions

▸ Join patterns simplify specifying the association of out-of-order messages

2 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

What are Join Patterns?

▸ Coordination mechanism for concurrent message passing programs▸ Introduced in Join Calculus (Fournet et al., POPL 1996)▸ Message passing programs may react to complex message sequences and
conditions▸ Join patterns simplify specifying the association of out-of-order messages

2 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Monitoring a Factory Shop Floor

▸ The monitoring program must
associate machine Fault notifications
to Fix notifications from workers

▸ Messages arrive asynchronously and
out-of-order▸ Monitor reacts to a combination of
messages in the mailbox▸ Traditionally, programmers write
custom code for message association

(e.g., Akka/Pekko actors, Socket
programming)

3 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Monitoring a Factory Shop Floor

▸ The monitoring program must
associate machine Fault notifications
to Fix notifications from workers▸ Messages arrive asynchronously and
out-of-order

▸ Monitor reacts to a combination of
messages in the mailbox▸ Traditionally, programmers write
custom code for message association

(e.g., Akka/Pekko actors, Socket
programming)

3 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Monitoring a Factory Shop Floor

▸ The monitoring program must
associate machine Fault notifications
to Fix notifications from workers▸ Messages arrive asynchronously and
out-of-order▸ Monitor reacts to a combination of
messages in the mailbox

▸ Traditionally, programmers write
custom code for message association

(e.g., Akka/Pekko actors, Socket
programming)

3 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Monitoring a Factory Shop Floor

▸ The monitoring program must
associate machine Fault notifications
to Fix notifications from workers▸ Messages arrive asynchronously and
out-of-order▸ Monitor reacts to a combination of
messages in the mailbox▸ Traditionally, programmers write
custom code for message association

(e.g., Akka/Pekko actors, Socket
programming)

3 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Monitoring a Factory Shop Floor

▸ The monitoring program must
associate machine Fault notifications
to Fix notifications from workers▸ Messages arrive asynchronously and
out-of-order▸ Monitor reacts to a combination of
messages in the mailbox▸ Traditionally, programmers write
custom code for message association
(e.g., Akka/Pekko actors, Socket
programming)

3 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Factory Shop Monitor Using JoinActors
Using our JoinActors library we can declaratively specify
order-independent message associations

1 def monitor() = Actor[...] {
2 receive { (...) => {
3 case (Fault(id1, _), Fix(id2, _)) if id1 == id2 => ...

4 case (Fault(_, ts1), Fault(id2, ts2), Fix(id3, _))
5 if id2 == id3 && ts2 - ts1 > TEN_MIN => ...
6 }}
7 }

▸ Uses Scala 3 macros
4 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Join Patterns More Formally

Let D = Π1 +Π2 where

Π1 = Fault(id1 ,) ∧ Fix(id2 ,) if id1 = id2

Π2 = Fault(, t1) ∧ Fault(id2 , t2) ∧ Fix(id3 ,) if id2 = id3 && t2 − t1 > 10min

Refer to the paper for more details

5 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Join Patterns Matching
The join definition for the factory shop floor monitor is D = Π1 +Π2 where

Π1 = Fault(id1 ,) ∧ Fix(id2 ,) if id1 = id2

Π2 = Fault(, t1) ∧ Fault(id2 , t2) ∧ Fix(id3 ,) if id2 = id3 && t2 − t1 > 10min

Now consider the following mailbox M:

M =

Fault1 (1 , 10 ∶35) ⋅ Fault2 (2 , 10 ∶40) ⋅ Fault3 (3 , 10 ∶55) ⋅ Fix4 (3 , 11 ∶00)

▸ We have many options to match from M.

How and which one do we pick?▸ Π1 ∶ ⟨{Fault3,Fix4}⟩▸ Π2 ∶ ⟨{Fault1,Fault3,Fix4},{Fault2,Fault3,Fix4}⟩

▸ In existing literature, the selection is either▸ Non-deterministic choice. This is usually undesirable▸ Pick longest-matching sequence

6 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Join Patterns Matching
The join definition for the factory shop floor monitor is D = Π1 +Π2 where

Π1 = Fault(id1 ,) ∧ Fix(id2 ,) if id1 = id2

Π2 = Fault(, t1) ∧ Fault(id2 , t2) ∧ Fix(id3 ,) if id2 = id3 && t2 − t1 > 10min

Now consider the following mailbox M:M =

Fault1 (1 , 10 ∶35) ⋅ Fault2 (2 , 10 ∶40) ⋅ Fault3 (3 , 10 ∶55) ⋅ Fix4 (3 , 11 ∶00)
▸ We have many options to match from M.

How and which one do we pick?▸ Π1 ∶ ⟨{Fault3,Fix4}⟩▸ Π2 ∶ ⟨{Fault1,Fault3,Fix4},{Fault2,Fault3,Fix4}⟩

▸ In existing literature, the selection is either▸ Non-deterministic choice. This is usually undesirable▸ Pick longest-matching sequence

6 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Join Patterns Matching
The join definition for the factory shop floor monitor is D = Π1 +Π2 where

Π1 = Fault(id1 ,) ∧ Fix(id2 ,) if id1 = id2

Π2 = Fault(, t1) ∧ Fault(id2 , t2) ∧ Fix(id3 ,) if id2 = id3 && t2 − t1 > 10min

Now consider the following mailbox M:M = Fault1 (1 , 10 ∶35) ⋅

Fault2 (2 , 10 ∶40) ⋅ Fault3 (3 , 10 ∶55) ⋅ Fix4 (3 , 11 ∶00)
▸ We have many options to match from M.

How and which one do we pick?▸ Π1 ∶ ⟨{Fault3,Fix4}⟩▸ Π2 ∶ ⟨{Fault1,Fault3,Fix4},{Fault2,Fault3,Fix4}⟩

▸ In existing literature, the selection is either▸ Non-deterministic choice. This is usually undesirable▸ Pick longest-matching sequence

6 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Join Patterns Matching
The join definition for the factory shop floor monitor is D = Π1 +Π2 where

Π1 = Fault(id1 ,) ∧ Fix(id2 ,) if id1 = id2

Π2 = Fault(, t1) ∧ Fault(id2 , t2) ∧ Fix(id3 ,) if id2 = id3 && t2 − t1 > 10min

Now consider the following mailbox M:M = Fault1 (1 , 10 ∶35) ⋅ Fault2 (2 , 10 ∶40) ⋅

Fault3 (3 , 10 ∶55) ⋅ Fix4 (3 , 11 ∶00)
▸ We have many options to match from M.

How and which one do we pick?▸ Π1 ∶ ⟨{Fault3,Fix4}⟩▸ Π2 ∶ ⟨{Fault1,Fault3,Fix4},{Fault2,Fault3,Fix4}⟩

▸ In existing literature, the selection is either▸ Non-deterministic choice. This is usually undesirable▸ Pick longest-matching sequence

6 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Join Patterns Matching
The join definition for the factory shop floor monitor is D = Π1 +Π2 where

Π1 = Fault(id1 ,) ∧ Fix(id2 ,) if id1 = id2

Π2 = Fault(, t1) ∧ Fault(id2 , t2) ∧ Fix(id3 ,) if id2 = id3 && t2 − t1 > 10min

Now consider the following mailbox M:M = Fault1 (1 , 10 ∶35) ⋅ Fault2 (2 , 10 ∶40) ⋅ Fault3 (3 , 10 ∶55) ⋅

Fix4 (3 , 11 ∶00)
▸ We have many options to match from M.

How and which one do we pick?▸ Π1 ∶ ⟨{Fault3,Fix4}⟩▸ Π2 ∶ ⟨{Fault1,Fault3,Fix4},{Fault2,Fault3,Fix4}⟩

▸ In existing literature, the selection is either▸ Non-deterministic choice. This is usually undesirable▸ Pick longest-matching sequence

6 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Join Patterns Matching
The join definition for the factory shop floor monitor is D = Π1 +Π2 where

Π1 = Fault(id1 ,) ∧ Fix(id2 ,) if id1 = id2

Π2 = Fault(, t1) ∧ Fault(id2 , t2) ∧ Fix(id3 ,) if id2 = id3 && t2 − t1 > 10min

Now consider the following mailbox M:M = Fault1 (1 , 10 ∶35) ⋅ Fault2 (2 , 10 ∶40) ⋅ Fault3 (3 , 10 ∶55) ⋅ Fix4 (3 , 11 ∶00)

▸ We have many options to match from M.

How and which one do we pick?▸ Π1 ∶ ⟨{Fault3,Fix4}⟩▸ Π2 ∶ ⟨{Fault1,Fault3,Fix4},{Fault2,Fault3,Fix4}⟩

▸ In existing literature, the selection is either▸ Non-deterministic choice. This is usually undesirable▸ Pick longest-matching sequence

6 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Join Patterns Matching
The join definition for the factory shop floor monitor is D = Π1 +Π2 where

Π1 = Fault(id1 ,) ∧ Fix(id2 ,) if id1 = id2

Π2 = Fault(, t1) ∧ Fault(id2 , t2) ∧ Fix(id3 ,) if id2 = id3 && t2 − t1 > 10min

Now consider the following mailbox M:M = Fault1 (1 , 10 ∶35) ⋅ Fault2 (2 , 10 ∶40) ⋅ Fault3 (3 , 10 ∶55) ⋅ Fix4 (3 , 11 ∶00)
▸ We have many options to match from M.

How and which one do we pick?▸ Π1 ∶ ⟨{Fault3,Fix4}⟩▸ Π2 ∶ ⟨{Fault1,Fault3,Fix4},{Fault2,Fault3,Fix4}⟩▸ In existing literature, the selection is either▸ Non-deterministic choice. This is usually undesirable▸ Pick longest-matching sequence

6 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Join Patterns Matching
The join definition for the factory shop floor monitor is D = Π1 +Π2 where

Π1 = Fault(id1 ,) ∧ Fix(id2 ,) if id1 = id2

Π2 = Fault(, t1) ∧ Fault(id2 , t2) ∧ Fix(id3 ,) if id2 = id3 && t2 − t1 > 10min

Now consider the following mailbox M:M = Fault1 (1 , 10 ∶35) ⋅ Fault2 (2 , 10 ∶40) ⋅ Fault3 (3 , 10 ∶55) ⋅ Fix4 (3 , 11 ∶00)
▸ We have many options to match from M. How and which one do we pick?

▸ Π1 ∶ ⟨{Fault3,Fix4}⟩▸ Π2 ∶ ⟨{Fault1,Fault3,Fix4},{Fault2,Fault3,Fix4}⟩▸ In existing literature, the selection is either▸ Non-deterministic choice. This is usually undesirable▸ Pick longest-matching sequence

6 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Join Patterns Matching
The join definition for the factory shop floor monitor is D = Π1 +Π2 where

Π1 = Fault(id1 ,) ∧ Fix(id2 ,) if id1 = id2

Π2 = Fault(, t1) ∧ Fault(id2 , t2) ∧ Fix(id3 ,) if id2 = id3 && t2 − t1 > 10min

Now consider the following mailbox M:M = Fault1 (1 , 10 ∶35) ⋅ Fault2 (2 , 10 ∶40) ⋅ Fault3 (3 , 10 ∶55) ⋅ Fix4 (3 , 11 ∶00)
▸ We have many options to match from M. How and which one do we pick?▸ Π1 ∶ ⟨{Fault3,Fix4}⟩

▸ Π2 ∶ ⟨{Fault1,Fault3,Fix4},{Fault2,Fault3,Fix4}⟩▸ In existing literature, the selection is either▸ Non-deterministic choice. This is usually undesirable▸ Pick longest-matching sequence

6 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Join Patterns Matching
The join definition for the factory shop floor monitor is D = Π1 +Π2 where

Π1 = Fault(id1 ,) ∧ Fix(id2 ,) if id1 = id2

Π2 = Fault(, t1) ∧ Fault(id2 , t2) ∧ Fix(id3 ,) if id2 = id3 && t2 − t1 > 10min

Now consider the following mailbox M:M = Fault1 (1 , 10 ∶35) ⋅ Fault2 (2 , 10 ∶40) ⋅ Fault3 (3 , 10 ∶55) ⋅ Fix4 (3 , 11 ∶00)
▸ We have many options to match from M. How and which one do we pick?▸ Π1 ∶ ⟨{Fault3,Fix4}⟩▸ Π2 ∶ ⟨{Fault1,Fault3,Fix4},{Fault2,Fault3,Fix4}⟩

▸ In existing literature, the selection is either▸ Non-deterministic choice. This is usually undesirable▸ Pick longest-matching sequence

6 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Join Patterns Matching
The join definition for the factory shop floor monitor is D = Π1 +Π2 where

Π1 = Fault(id1 ,) ∧ Fix(id2 ,) if id1 = id2

Π2 = Fault(, t1) ∧ Fault(id2 , t2) ∧ Fix(id3 ,) if id2 = id3 && t2 − t1 > 10min

Now consider the following mailbox M:M = Fault1 (1 , 10 ∶35) ⋅ Fault2 (2 , 10 ∶40) ⋅ Fault3 (3 , 10 ∶55) ⋅ Fix4 (3 , 11 ∶00)
▸ We have many options to match from M. How and which one do we pick?▸ Π1 ∶ ⟨{Fault3,Fix4}⟩▸ Π2 ∶ ⟨{Fault1,Fault3,Fix4},{Fault2,Fault3,Fix4}⟩▸ In existing literature, the selection is either▸ Non-deterministic choice. This is usually undesirable▸ Pick longest-matching sequence

6 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Our Proposal: “Fair Match”
Recall that we have the following D = Π1 +Π2 where:

Π1 = Fault(id1 ,) ∧ Fix(id2 ,) if id1 = id2

Π2 = Fault(, t1) ∧ Fault(id2 , t2) ∧ Fix(id3 ,) if id2 = id3 && t2 − t1 > 10min

And the following final mailbox configuration:M = Fault1 (1 , 10 ∶35) ⋅ Fault2 (2 , 10 ∶40) ⋅ Fault3 (3 , 10 ∶55) ⋅ Fix4 (3 , 11 ∶00)
▸ A “fair” match is the one that consumes the oldest messages in M▸ No message that can be matched is left in the mailbox indefinitely

▸ Now we can pick the fairest match from M:
Π1 ∶ ⟨ {Fault3, Fix4} ⟩
Π2 ∶ ⟨ {Fault1, Fault3, Fix4} ,{Fault2,Fault3,Fix4}⟩

D ∶ ⟨{Fault3,Fix4}, {Fault1, Fault3, Fix4} ⟩

7 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Our Proposal: “Fair Match”
Recall that we have the following D = Π1 +Π2 where:

Π1 = Fault(id1 ,) ∧ Fix(id2 ,) if id1 = id2

Π2 = Fault(, t1) ∧ Fault(id2 , t2) ∧ Fix(id3 ,) if id2 = id3 && t2 − t1 > 10min

And the following final mailbox configuration:M = Fault1 (1 , 10 ∶35) ⋅ Fault2 (2 , 10 ∶40) ⋅ Fault3 (3 , 10 ∶55) ⋅ Fix4 (3 , 11 ∶00)
▸ A “fair” match is the one that consumes the oldest messages in M▸ No message that can be matched is left in the mailbox indefinitely▸ Now we can pick the fairest match from M:

Π1 ∶ ⟨ {Fault3, Fix4} ⟩
Π2 ∶ ⟨ {Fault1, Fault3, Fix4} ,{Fault2,Fault3,Fix4}⟩

D ∶ ⟨{Fault3,Fix4}, {Fault1, Fault3, Fix4} ⟩

7 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Our Proposal: “Fair Match”
Recall that we have the following D = Π1 +Π2 where:

Π1 = Fault(id1 ,) ∧ Fix(id2 ,) if id1 = id2

Π2 = Fault(, t1) ∧ Fault(id2 , t2) ∧ Fix(id3 ,) if id2 = id3 && t2 − t1 > 10min

And the following final mailbox configuration:M = Fault1 (1 , 10 ∶35) ⋅ Fault2 (2 , 10 ∶40) ⋅ Fault3 (3 , 10 ∶55) ⋅ Fix4 (3 , 11 ∶00)
▸ A “fair” match is the one that consumes the oldest messages in M▸ No message that can be matched is left in the mailbox indefinitely▸ Now we can pick the fairest match from M:

Π1 ∶ ⟨ {Fault3, Fix4} ⟩
Π2 ∶ ⟨ {Fault1, Fault3, Fix4} ,{Fault2,Fault3,Fix4}⟩
D ∶ ⟨{Fault3,Fix4}, {Fault1, Fault3, Fix4} ⟩

7 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

“Fair” Match Formalisation
We have formalised this notion of “fair” join pattern matching declaratively using
inference rules:

∀i ∈ {1, . . . , n} ∶ µiσ =mi γσ Match Messages Against Pattern
m1⋅ . . . ⋅mn ⊧σ µ1 ∧ . . .∧µn if γ

M[I] ⊧σ Π for some σ Pick Messages From MM⊧I Π

M⊧I Π ∀I ′. (M ⊧I′ Π Ô⇒ I ⩽lex I ′) Select Fairest MatchM⊧ Π↝ I
▸ Translate inference rules into a “fair” message matching brute-force algorithm▸ Current implementations use matching without fairness e.g. (Haller et al.

COORDINATION 2008, Plociniczak and Eisenbach COORDINATION 2010, Avila et al. 2020)▸ Refer to the paper for more details
8 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Brute-force Algorithm for “Fair” Message Matching
Naive algorithm that performs redundant matching attempts
We have that Π1:

Π1 = Fault(id1 ,) ∧ Fix(id2 ,) if id1 = id2

and the following mailbox:M =

Fix1 (3 ,) ⋅ Fault2 (1 ,) ⋅ Fault3 (2 ,) ⋅ Fault4 (3 ,)

▸ Find a match for Π1 from M

M[1] : ⟨Fix1 (3 ,)⟩

– Not enough messages ×

M[1 ⋅ 2] : ⟨Fix1 (3 ,) ⋅ Fault2 (1 ,)⟩
M[1 ⋅ 2 ⋅ 3] :

⟨Fix1 (3 ,) ⋅ Fault2 (1 ,)⟩ , ⟨Fix1 (3 ,) ⋅ Fault3 (2 ,)⟩

M[1 ⋅ 2 ⋅ 3 ⋅ 4] :

⟨Fix1 (3 ,) ⋅ Fault2 (1 ,)⟩ , ⟨Fix1 (3 ,) ⋅ Fault3 (2 ,)⟩

,

⟨Fix1 (3 ,) ⋅ Fault4 (3 ,)⟩

9 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Brute-force Algorithm for “Fair” Message Matching
Naive algorithm that performs redundant matching attempts
We have that Π1:

Π1 = Fault(id1 ,) ∧ Fix(id2 ,) if id1 = id2

and the following mailbox:M = Fix1 (3 ,) ⋅

Fault2 (1 ,) ⋅ Fault3 (2 ,) ⋅ Fault4 (3 ,)

▸ Find a match for Π1 from M

M[1] : ⟨Fix1 (3 ,)⟩

– Not enough messages ×

M[1 ⋅ 2] : ⟨Fix1 (3 ,) ⋅ Fault2 (1 ,)⟩
M[1 ⋅ 2 ⋅ 3] :

⟨Fix1 (3 ,) ⋅ Fault2 (1 ,)⟩ , ⟨Fix1 (3 ,) ⋅ Fault3 (2 ,)⟩

M[1 ⋅ 2 ⋅ 3 ⋅ 4] :

⟨Fix1 (3 ,) ⋅ Fault2 (1 ,)⟩ , ⟨Fix1 (3 ,) ⋅ Fault3 (2 ,)⟩

,

⟨Fix1 (3 ,) ⋅ Fault4 (3 ,)⟩

9 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Brute-force Algorithm for “Fair” Message Matching
Naive algorithm that performs redundant matching attempts
We have that Π1:

Π1 = Fault(id1 ,) ∧ Fix(id2 ,) if id1 = id2

and the following mailbox:M = Fix1 (3 ,) ⋅

Fault2 (1 ,) ⋅ Fault3 (2 ,) ⋅ Fault4 (3 ,)

▸ Find a match for Π1 from M
M[1] : ⟨Fix1 (3 ,)⟩

– Not enough messages ×M[1 ⋅ 2] : ⟨Fix1 (3 ,) ⋅ Fault2 (1 ,)⟩
M[1 ⋅ 2 ⋅ 3] :

⟨Fix1 (3 ,) ⋅ Fault2 (1 ,)⟩ , ⟨Fix1 (3 ,) ⋅ Fault3 (2 ,)⟩

M[1 ⋅ 2 ⋅ 3 ⋅ 4] :

⟨Fix1 (3 ,) ⋅ Fault2 (1 ,)⟩ , ⟨Fix1 (3 ,) ⋅ Fault3 (2 ,)⟩

,

⟨Fix1 (3 ,) ⋅ Fault4 (3 ,)⟩

9 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Brute-force Algorithm for “Fair” Message Matching
Naive algorithm that performs redundant matching attempts
We have that Π1:

Π1 = Fault(id1 ,) ∧ Fix(id2 ,) if id1 = id2

and the following mailbox:M = Fix1 (3 ,) ⋅

Fault2 (1 ,) ⋅ Fault3 (2 ,) ⋅ Fault4 (3 ,)

▸ Find a match for Π1 from M
M[1] : ⟨Fix1 (3 ,)⟩ – Not enough messages ×

M[1 ⋅ 2] : ⟨Fix1 (3 ,) ⋅ Fault2 (1 ,)⟩
M[1 ⋅ 2 ⋅ 3] :

⟨Fix1 (3 ,) ⋅ Fault2 (1 ,)⟩ , ⟨Fix1 (3 ,) ⋅ Fault3 (2 ,)⟩

M[1 ⋅ 2 ⋅ 3 ⋅ 4] :

⟨Fix1 (3 ,) ⋅ Fault2 (1 ,)⟩ , ⟨Fix1 (3 ,) ⋅ Fault3 (2 ,)⟩

,

⟨Fix1 (3 ,) ⋅ Fault4 (3 ,)⟩

9 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Brute-force Algorithm for “Fair” Message Matching
Naive algorithm that performs redundant matching attempts
We have that Π1:

Π1 = Fault(id1 ,) ∧ Fix(id2 ,) if id1 = id2

and the following mailbox:M = Fix1 (3 ,) ⋅ Fault2 (1 ,) ⋅

Fault3 (2 ,) ⋅ Fault4 (3 ,)

▸ Find a match for Π1 from M
M[1] : ⟨Fix1 (3 ,)⟩ – Not enough messages ×

M[1 ⋅ 2] : ⟨Fix1 (3 ,) ⋅ Fault2 (1 ,)⟩
M[1 ⋅ 2 ⋅ 3] :

⟨Fix1 (3 ,) ⋅ Fault2 (1 ,)⟩ , ⟨Fix1 (3 ,) ⋅ Fault3 (2 ,)⟩

M[1 ⋅ 2 ⋅ 3 ⋅ 4] :

⟨Fix1 (3 ,) ⋅ Fault2 (1 ,)⟩ , ⟨Fix1 (3 ,) ⋅ Fault3 (2 ,)⟩

,

⟨Fix1 (3 ,) ⋅ Fault4 (3 ,)⟩

9 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Brute-force Algorithm for “Fair” Message Matching
Naive algorithm that performs redundant matching attempts
We have that Π1:

Π1 = Fault(id1 ,) ∧ Fix(id2 ,) if id1 = id2

and the following mailbox:M = Fix1 (3 ,) ⋅ Fault2 (1 ,) ⋅

Fault3 (2 ,) ⋅ Fault4 (3 ,)

▸ Find a match for Π1 from M
M[1] : ⟨Fix1 (3 ,)⟩ – Not enough messages ×M[1 ⋅ 2] : ⟨Fix1 (3 ,) ⋅ Fault2 (1 ,)⟩

M[1 ⋅ 2 ⋅ 3] :

⟨Fix1 (3 ,) ⋅ Fault2 (1 ,)⟩ , ⟨Fix1 (3 ,) ⋅ Fault3 (2 ,)⟩

M[1 ⋅ 2 ⋅ 3 ⋅ 4] :

⟨Fix1 (3 ,) ⋅ Fault2 (1 ,)⟩ , ⟨Fix1 (3 ,) ⋅ Fault3 (2 ,)⟩

,

⟨Fix1 (3 ,) ⋅ Fault4 (3 ,)⟩

9 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Brute-force Algorithm for “Fair” Message Matching
Naive algorithm that performs redundant matching attempts
We have that Π1:

Π1 = Fault(id1 ,) ∧ Fix(id2 ,) if id1 = id2

and the following mailbox:M = Fix1 (3 ,) ⋅ Fault2 (1 ,) ⋅ Fault3 (2 ,) ⋅

Fault4 (3 ,)

▸ Find a match for Π1 from M
M[1] : ⟨Fix1 (3 ,)⟩ – Not enough messages ×M[1 ⋅ 2] : ⟨Fix1 (3 ,) ⋅ Fault2 (1 ,)⟩

M[1 ⋅ 2 ⋅ 3] :

⟨Fix1 (3 ,) ⋅ Fault2 (1 ,)⟩ , ⟨Fix1 (3 ,) ⋅ Fault3 (2 ,)⟩

M[1 ⋅ 2 ⋅ 3 ⋅ 4] :

⟨Fix1 (3 ,) ⋅ Fault2 (1 ,)⟩ , ⟨Fix1 (3 ,) ⋅ Fault3 (2 ,)⟩

,

⟨Fix1 (3 ,) ⋅ Fault4 (3 ,)⟩

9 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Brute-force Algorithm for “Fair” Message Matching
Naive algorithm that performs redundant matching attempts
We have that Π1:

Π1 = Fault(id1 ,) ∧ Fix(id2 ,) if id1 = id2

and the following mailbox:M = Fix1 (3 ,) ⋅ Fault2 (1 ,) ⋅ Fault3 (2 ,) ⋅

Fault4 (3 ,)

▸ Find a match for Π1 from M
M[1] : ⟨Fix1 (3 ,)⟩ – Not enough messages ×M[1 ⋅ 2] : ⟨Fix1 (3 ,) ⋅ Fault2 (1 ,)⟩

M[1 ⋅ 2 ⋅ 3] :

⟨Fix1 (3 ,) ⋅ Fault2 (1 ,)⟩ , ⟨Fix1 (3 ,) ⋅ Fault3 (2 ,)⟩
M[1 ⋅ 2 ⋅ 3 ⋅ 4] :

⟨Fix1 (3 ,) ⋅ Fault2 (1 ,)⟩ , ⟨Fix1 (3 ,) ⋅ Fault3 (2 ,)⟩

,

⟨Fix1 (3 ,) ⋅ Fault4 (3 ,)⟩

9 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Brute-force Algorithm for “Fair” Message Matching
Naive algorithm that performs redundant matching attempts
We have that Π1:

Π1 = Fault(id1 ,) ∧ Fix(id2 ,) if id1 = id2

and the following mailbox:M = Fix1 (3 ,) ⋅ Fault2 (1 ,) ⋅ Fault3 (2 ,) ⋅

Fault4 (3 ,)

▸ Find a match for Π1 from M
M[1] : ⟨Fix1 (3 ,)⟩ – Not enough messages ×M[1 ⋅ 2] : ⟨Fix1 (3 ,) ⋅ Fault2 (1 ,)⟩

M[1 ⋅ 2 ⋅ 3] : ⟨Fix1 (3 ,) ⋅ Fault2 (1 ,)⟩

, ⟨Fix1 (3 ,) ⋅ Fault3 (2 ,)⟩
M[1 ⋅ 2 ⋅ 3 ⋅ 4] :

⟨Fix1 (3 ,) ⋅ Fault2 (1 ,)⟩ , ⟨Fix1 (3 ,) ⋅ Fault3 (2 ,)⟩

,

⟨Fix1 (3 ,) ⋅ Fault4 (3 ,)⟩

9 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Brute-force Algorithm for “Fair” Message Matching
Naive algorithm that performs redundant matching attempts
We have that Π1:

Π1 = Fault(id1 ,) ∧ Fix(id2 ,) if id1 = id2

and the following mailbox:M = Fix1 (3 ,) ⋅ Fault2 (1 ,) ⋅ Fault3 (2 ,) ⋅

Fault4 (3 ,)

▸ Find a match for Π1 from M
M[1] : ⟨Fix1 (3 ,)⟩ – Not enough messages ×M[1 ⋅ 2] : ⟨Fix1 (3 ,) ⋅ Fault2 (1 ,)⟩

M[1 ⋅ 2 ⋅ 3] : ⟨Fix1 (3 ,) ⋅ Fault2 (1 ,)⟩ , ⟨Fix1 (3 ,) ⋅ Fault3 (2 ,)⟩

M[1 ⋅ 2 ⋅ 3 ⋅ 4] :

⟨Fix1 (3 ,) ⋅ Fault2 (1 ,)⟩ , ⟨Fix1 (3 ,) ⋅ Fault3 (2 ,)⟩

,

⟨Fix1 (3 ,) ⋅ Fault4 (3 ,)⟩

9 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Brute-force Algorithm for “Fair” Message Matching
Naive algorithm that performs redundant matching attempts
We have that Π1:

Π1 = Fault(id1 ,) ∧ Fix(id2 ,) if id1 = id2

and the following mailbox:M = Fix1 (3 ,) ⋅ Fault2 (1 ,) ⋅ Fault3 (2 ,) ⋅ Fault4 (3 ,)▸ Find a match for Π1 from M
M[1] : ⟨Fix1 (3 ,)⟩ – Not enough messages ×M[1 ⋅ 2] : ⟨Fix1 (3 ,) ⋅ Fault2 (1 ,)⟩

M[1 ⋅ 2 ⋅ 3] : ⟨Fix1 (3 ,) ⋅ Fault2 (1 ,)⟩ , ⟨Fix1 (3 ,) ⋅ Fault3 (2 ,)⟩

M[1 ⋅ 2 ⋅ 3 ⋅ 4] :

⟨Fix1 (3 ,) ⋅ Fault2 (1 ,)⟩ , ⟨Fix1 (3 ,) ⋅ Fault3 (2 ,)⟩

,

⟨Fix1 (3 ,) ⋅ Fault4 (3 ,)⟩

9 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Brute-force Algorithm for “Fair” Message Matching
Naive algorithm that performs redundant matching attempts
We have that Π1:

Π1 = Fault(id1 ,) ∧ Fix(id2 ,) if id1 = id2

and the following mailbox:M = Fix1 (3 ,) ⋅ Fault2 (1 ,) ⋅ Fault3 (2 ,) ⋅ Fault4 (3 ,)▸ Find a match for Π1 from M
M[1] : ⟨Fix1 (3 ,)⟩ – Not enough messages ×M[1 ⋅ 2] : ⟨Fix1 (3 ,) ⋅ Fault2 (1 ,)⟩

M[1 ⋅ 2 ⋅ 3] : ⟨Fix1 (3 ,) ⋅ Fault2 (1 ,)⟩ , ⟨Fix1 (3 ,) ⋅ Fault3 (2 ,)⟩
M[1 ⋅ 2 ⋅ 3 ⋅ 4] : ⟨Fix1 (3 ,) ⋅ Fault2 (1 ,)⟩ , ⟨Fix1 (3 ,) ⋅ Fault3 (2 ,)⟩ ,

⟨Fix1 (3 ,) ⋅ Fault4 (3 ,)⟩

9 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Brute-force Algorithm for “Fair” Message Matching
Naive algorithm that performs redundant matching attempts
We have that Π1:

Π1 = Fault(id1 ,) ∧ Fix(id2 ,) if id1 = id2

and the following mailbox:M = Fix1 (3 ,) ⋅ Fault2 (1 ,) ⋅ Fault3 (2 ,) ⋅ Fault4 (3 ,)▸ Find a match for Π1 from M
M[1] : ⟨Fix1 (3 ,)⟩ – Not enough messages ×M[1 ⋅ 2] : ⟨Fix1 (3 ,) ⋅ Fault2 (1 ,)⟩

M[1 ⋅ 2 ⋅ 3] : ⟨Fix1 (3 ,) ⋅ Fault2 (1 ,)⟩ , ⟨Fix1 (3 ,) ⋅ Fault3 (2 ,)⟩
M[1 ⋅ 2 ⋅ 3 ⋅ 4] : ⟨Fix1 (3 ,) ⋅ Fault2 (1 ,)⟩ , ⟨Fix1 (3 ,) ⋅ Fault3 (2 ,)⟩ , ⟨Fix1 (3 ,) ⋅ Fault4 (3 ,)⟩

9 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Stateful Tree-based Algorithm for “Fair” Message Matching
Use state to track partial matches and avoid redundant matching attempts
Recall that Π1:

Π1 = Fault(id1 ,) ∧ Fix(id2 ,) if id1 = id2

and the following mailbox:M =

Fault1 (1 ,) ⋅ Fault2 (2 ,) ⋅ Fault3 (3 ,) ⋅ Fix4 (3 ,)

Check if id1 = id2

▸ Attempt 1: 1 ≠ 3▸ Attempt 2: 2 ≠ 3▸ Attempt 3: 3 = 3
We don’t record a partial match
Fix4 because we matched ear-
lier

10 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Stateful Tree-based Algorithm for “Fair” Message Matching
Use state to track partial matches and avoid redundant matching attempts
Recall that Π1:

Π1 = Fault(id1 ,) ∧ Fix(id2 ,) if id1 = id2

and the following mailbox:M = Fault1 (1 ,) ⋅

Fault2 (2 ,) ⋅ Fault3 (3 ,) ⋅ Fix4 (3 ,)

Check if id1 = id2

▸ Attempt 1: 1 ≠ 3▸ Attempt 2: 2 ≠ 3▸ Attempt 3: 3 = 3
We don’t record a partial match
Fix4 because we matched ear-
lier

10 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Stateful Tree-based Algorithm for “Fair” Message Matching
Use state to track partial matches and avoid redundant matching attempts
Recall that Π1:

Π1 = Fault(id1 ,) ∧ Fix(id2 ,) if id1 = id2

and the following mailbox:M = Fault1 (1 ,) ⋅

Fault2 (2 ,) ⋅ Fault3 (3 ,) ⋅ Fix4 (3 ,)

Check if id1 = id2▸ Not enough messages to match

▸ Attempt 1: 1 ≠ 3▸ Attempt 2: 2 ≠ 3▸ Attempt 3: 3 = 3
We don’t record a partial match
Fix4 because we matched ear-
lier

10 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Stateful Tree-based Algorithm for “Fair” Message Matching
Use state to track partial matches and avoid redundant matching attempts
Recall that Π1:

Π1 = Fault(id1 ,) ∧ Fix(id2 ,) if id1 = id2

and the following mailbox:M = Fault1 (1 ,) ⋅ Fault2 (2 ,) ⋅

Fault3 (3 ,) ⋅ Fix4 (3 ,)

Check if id1 = id2▸ Not enough messages to match

▸ Attempt 1: 1 ≠ 3▸ Attempt 2: 2 ≠ 3▸ Attempt 3: 3 = 3
We don’t record a partial match
Fix4 because we matched ear-
lier

10 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Stateful Tree-based Algorithm for “Fair” Message Matching
Use state to track partial matches and avoid redundant matching attempts
Recall that Π1:

Π1 = Fault(id1 ,) ∧ Fix(id2 ,) if id1 = id2

and the following mailbox:M = Fault1 (1 ,) ⋅ Fault2 (2 ,) ⋅

Fault3 (3 ,) ⋅ Fix4 (3 ,)

Check if id1 = id2▸ Not enough messages to match

▸ Attempt 1: 1 ≠ 3▸ Attempt 2: 2 ≠ 3▸ Attempt 3: 3 = 3
We don’t record a partial match
Fix4 because we matched ear-
lier

10 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Stateful Tree-based Algorithm for “Fair” Message Matching
Use state to track partial matches and avoid redundant matching attempts
Recall that Π1:

Π1 = Fault(id1 ,) ∧ Fix(id2 ,) if id1 = id2

and the following mailbox:M = Fault1 (1 ,) ⋅ Fault2 (2 ,) ⋅ Fault3 (3 ,) ⋅

Fix4 (3 ,)

Check if id1 = id2▸ Not enough messages to match

▸ Attempt 1: 1 ≠ 3▸ Attempt 2: 2 ≠ 3▸ Attempt 3: 3 = 3
We don’t record a partial match
Fix4 because we matched ear-
lier

10 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Stateful Tree-based Algorithm for “Fair” Message Matching
Use state to track partial matches and avoid redundant matching attempts
Recall that Π1:

Π1 = Fault(id1 ,) ∧ Fix(id2 ,) if id1 = id2

and the following mailbox:M = Fault1 (1 ,) ⋅ Fault2 (2 ,) ⋅ Fault3 (3 ,) ⋅

Fix4 (3 ,)

Check if id1 = id2▸ Not enough messages to match

▸ Attempt 1: 1 ≠ 3▸ Attempt 2: 2 ≠ 3▸ Attempt 3: 3 = 3
We don’t record a partial match
Fix4 because we matched ear-
lier

10 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Stateful Tree-based Algorithm for “Fair” Message Matching
Use state to track partial matches and avoid redundant matching attempts
Recall that Π1:

Π1 = Fault(id1 ,) ∧ Fix(id2 ,) if id1 = id2

and the following mailbox:M = Fault1 (1 ,) ⋅ Fault2 (2 ,) ⋅ Fault3 (3 ,) ⋅ Fix4 (3 ,)
Check if id1 = id2▸ Not enough messages to match

▸ Attempt 1: 1 ≠ 3▸ Attempt 2: 2 ≠ 3▸ Attempt 3: 3 = 3
We don’t record a partial match
Fix4 because we matched ear-
lier

10 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Stateful Tree-based Algorithm for “Fair” Message Matching
Use state to track partial matches and avoid redundant matching attempts
Recall that Π1:

Π1 = Fault(id1 ,) ∧ Fix(id2 ,) if id1 = id2

and the following mailbox:M = Fault1 (1 ,) ⋅ Fault2 (2 ,) ⋅ Fault3 (3 ,) ⋅ Fix4 (3 ,)
Check if id1 = id2

▸ Attempt 1: 1 ≠ 3▸ Attempt 2: 2 ≠ 3▸ Attempt 3: 3 = 3
We don’t record a partial match
Fix4 because we matched ear-
lier

10 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Stateful Tree-based Algorithm for “Fair” Message Matching
Use state to track partial matches and avoid redundant matching attempts
Recall that Π1:

Π1 = Fault(id1 ,) ∧ Fix(id2 ,) if id1 = id2

and the following mailbox:M = Fault1 (1 ,) ⋅ Fault2 (2 ,) ⋅ Fault3 (3 ,) ⋅ Fix4 (3 ,)
Check if id1 = id2▸ Attempt 1: 1 ≠ 3

▸ Attempt 2: 2 ≠ 3▸ Attempt 3: 3 = 3
We don’t record a partial match
Fix4 because we matched ear-
lier

10 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Stateful Tree-based Algorithm for “Fair” Message Matching
Use state to track partial matches and avoid redundant matching attempts
Recall that Π1:

Π1 = Fault(id1 ,) ∧ Fix(id2 ,) if id1 = id2

and the following mailbox:M = Fault1 (1 ,) ⋅ Fault2 (2 ,) ⋅ Fault3 (3 ,) ⋅ Fix4 (3 ,)
Check if id1 = id2

▸ Attempt 1: 1 ≠ 3 ×

▸ Attempt 2: 2 ≠ 3▸ Attempt 3: 3 = 3
We don’t record a partial match
Fix4 because we matched ear-
lier

10 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Stateful Tree-based Algorithm for “Fair” Message Matching
Use state to track partial matches and avoid redundant matching attempts
Recall that Π1:

Π1 = Fault(id1 ,) ∧ Fix(id2 ,) if id1 = id2

and the following mailbox:M = Fault1 (1 ,) ⋅ Fault2 (2 ,) ⋅ Fault3 (3 ,) ⋅ Fix4 (3 ,)
Check if id1 = id2

▸ Attempt 1: 1 ≠ 3 ×

▸ Attempt 2: 2 ≠ 3▸ Attempt 3: 3 = 3
We don’t record a partial match
Fix4 because we matched ear-
lier

10 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Stateful Tree-based Algorithm for “Fair” Message Matching
Use state to track partial matches and avoid redundant matching attempts
Recall that Π1:

Π1 = Fault(id1 ,) ∧ Fix(id2 ,) if id1 = id2

and the following mailbox:M = Fault1 (1 ,) ⋅ Fault2 (2 ,) ⋅ Fault3 (3 ,) ⋅ Fix4 (3 ,)
Check if id1 = id2

▸ Attempt 1: 1 ≠ 3 ×

▸ Attempt 2: 2 ≠ 3▸ Attempt 3: 3 = 3
We don’t record a partial match
Fix4 because we matched ear-
lier

10 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Stateful Tree-based Algorithm for “Fair” Message Matching
Use state to track partial matches and avoid redundant matching attempts
Recall that Π1:

Π1 = Fault(id1 ,) ∧ Fix(id2 ,) if id1 = id2

and the following mailbox:M = Fault1 (1 ,) ⋅ Fault2 (2 ,) ⋅ Fault3 (3 ,) ⋅ Fix4 (3 ,)
Check if id1 = id2

▸ Attempt 1: 1 ≠ 3 ×▸ Attempt 2: 2 ≠ 3

▸ Attempt 3: 3 = 3
We don’t record a partial match
Fix4 because we matched ear-
lier

10 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Stateful Tree-based Algorithm for “Fair” Message Matching
Use state to track partial matches and avoid redundant matching attempts
Recall that Π1:

Π1 = Fault(id1 ,) ∧ Fix(id2 ,) if id1 = id2

and the following mailbox:M = Fault1 (1 ,) ⋅ Fault2 (2 ,) ⋅ Fault3 (3 ,) ⋅ Fix4 (3 ,)
Check if id1 = id2

▸ Attempt 1: 1 ≠ 3 ×
▸ Attempt 2: 2 ≠ 3 ×

▸ Attempt 3: 3 = 3
We don’t record a partial match
Fix4 because we matched ear-
lier

10 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Stateful Tree-based Algorithm for “Fair” Message Matching
Use state to track partial matches and avoid redundant matching attempts
Recall that Π1:

Π1 = Fault(id1 ,) ∧ Fix(id2 ,) if id1 = id2

and the following mailbox:M = Fault1 (1 ,) ⋅ Fault2 (2 ,) ⋅ Fault3 (3 ,) ⋅ Fix4 (3 ,)
Check if id1 = id2

▸ Attempt 1: 1 ≠ 3 ×
▸ Attempt 2: 2 ≠ 3 ×

▸ Attempt 3: 3 = 3
We don’t record a partial match
Fix4 because we matched ear-
lier

10 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Stateful Tree-based Algorithm for “Fair” Message Matching
Use state to track partial matches and avoid redundant matching attempts
Recall that Π1:

Π1 = Fault(id1 ,) ∧ Fix(id2 ,) if id1 = id2

and the following mailbox:M = Fault1 (1 ,) ⋅ Fault2 (2 ,) ⋅ Fault3 (3 ,) ⋅ Fix4 (3 ,)
Check if id1 = id2

▸ Attempt 1: 1 ≠ 3 ×
▸ Attempt 2: 2 ≠ 3 ×

▸ Attempt 3: 3 = 3
We don’t record a partial match
Fix4 because we matched ear-
lier

10 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Stateful Tree-based Algorithm for “Fair” Message Matching
Use state to track partial matches and avoid redundant matching attempts
Recall that Π1:

Π1 = Fault(id1 ,) ∧ Fix(id2 ,) if id1 = id2

and the following mailbox:M = Fault1 (1 ,) ⋅ Fault2 (2 ,) ⋅ Fault3 (3 ,) ⋅ Fix4 (3 ,)
Check if id1 = id2

▸ Attempt 1: 1 ≠ 3 ×
▸ Attempt 2: 2 ≠ 3 ×▸ Attempt 3: 3 = 3

We don’t record a partial match
Fix4 because we matched ear-
lier

10 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Stateful Tree-based Algorithm for “Fair” Message Matching
Use state to track partial matches and avoid redundant matching attempts
Recall that Π1:

Π1 = Fault(id1 ,) ∧ Fix(id2 ,) if id1 = id2

and the following mailbox:M = Fault1 (1 ,) ⋅ Fault2 (2 ,) ⋅ Fault3 (3 ,) ⋅ Fix4 (3 ,)
Check if id1 = id2

▸ Attempt 1: 1 ≠ 3 ×
▸ Attempt 2: 2 ≠ 3 ×▸ Attempt 3: 3 = 3 ✓

We don’t record a partial match
Fix4 because we matched ear-
lier

10 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Stateful Tree-based Algorithm for “Fair” Message Matching
Use state to track partial matches and avoid redundant matching attempts
Recall that Π1:

Π1 = Fault(id1 ,) ∧ Fix(id2 ,) if id1 = id2

and the following mailbox:M = Fault1 (1 ,) ⋅ Fault2 (2 ,) ⋅ Fault3 (3 ,) ⋅ Fix4 (3 ,)
Check if id1 = id2

▸ Attempt 1: 1 ≠ 3 ×
▸ Attempt 2: 2 ≠ 3 ×▸ Attempt 3: 3 = 3 ✓

We don’t record a partial match
Fix4 because we matched ear-
lier

10 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Stateful Tree-based Algorithm for “Fair” Message Matching
Use state to track partial matches and avoid redundant matching attempts
Recall that Π1:

Π1 = Fault(id1 ,) ∧ Fix(id2 ,) if id1 = id2

and the following mailbox:M = Fault1 (1 ,) ⋅ Fault2 (2 ,) ⋅ Fault3 (3 ,) ⋅ Fix4 (3 ,)
Check if id1 = id2

▸ Attempt 1: 1 ≠ 3 ×
▸ Attempt 2: 2 ≠ 3 ×▸ Attempt 3: 3 = 3 ✓

We don’t record a partial match
Fix4 because we matched ear-
lier

10 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Tree Construction (continued)
We now consider the second join pattern Π2:

Π2 = Fault(, t1) ∧ Fault(id2 , t2) ∧ Fix(id3 ,) if id2 = id3 && t2 − t1 > 10min
and the following mailbox:
M = Fault1 (1 , 10 ∶35) ⋅ Fault2 (2 , 10 ∶40) ⋅ Fault3 (3 , 10 ∶55) ⋅ Fix4 (3 , 11 ∶00)

Check if id2 = id3 && t2 − t1 > 10min:

▸ Attempt 1:
1 = 3 && 10 ∶ 40 − 10 ∶ 35 > 10min ×▸ Attempt 2:
3 = 3 && 10 ∶ 55 − 10 ∶ 35 > 10min ✓

We avoid computing (partial)
matches

11 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Tree Construction (continued)
We now consider the second join pattern Π2:

Π2 = Fault(, t1) ∧ Fault(id2 , t2) ∧ Fix(id3 ,) if id2 = id3 && t2 − t1 > 10min
and the following mailbox:
M = Fault1 (1 , 10 ∶35) ⋅ Fault2 (2 , 10 ∶40) ⋅ Fault3 (3 , 10 ∶55) ⋅ Fix4 (3 , 11 ∶00)

Check if id2 = id3 && t2 − t1 > 10min:
▸ Attempt 1:

1 = 3 && 10 ∶ 40 − 10 ∶ 35 > 10min ×▸ Attempt 2:
3 = 3 && 10 ∶ 55 − 10 ∶ 35 > 10min ✓

We avoid computing (partial)
matches

11 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Tree Construction (continued)
We now consider the second join pattern Π2:

Π2 = Fault(, t1) ∧ Fault(id2 , t2) ∧ Fix(id3 ,) if id2 = id3 && t2 − t1 > 10min
and the following mailbox:
M = Fault1 (1 , 10 ∶35) ⋅ Fault2 (2 , 10 ∶40) ⋅ Fault3 (3 , 10 ∶55) ⋅ Fix4 (3 , 11 ∶00)

Check if id2 = id3 && t2 − t1 > 10min:
▸ Attempt 1:

1 = 3 && 10 ∶ 40 − 10 ∶ 35 > 10min ×▸ Attempt 2:
3 = 3 && 10 ∶ 55 − 10 ∶ 35 > 10min ✓

We avoid computing (partial)
matches

11 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Performance Evaluation

0 4 8 12 16 20 24 28 320 4 8 12 16 20 24 28 32
Number of random messages sent

10 2

10 1

100

101

102

103

Ti
m

e
(s

) -
 lo

g
sc

al
e

Smart House benchmark with upto 32 random messages. 5 iterations
Brute-force Algorithm
Stateful Tree-based Algorithm

0

100

101

102

103

104

M
at

ch
es

 p
er

 se
co

nd
 -

lo
g

sc
al

e

Brute-force Algorithm Matches per second
Stateful Tree-based Algorithm Matches per second

Figure: Smart House benchmark based on (Rodriguez-Avila et al. 2021)
12 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Contributions & Future Work
Contributions:▸ Novel specification of fair and deterministic join pattern matching▸ Novel stateful tree-based matching algorithm to avoid redundant

recomputations▸ Proof of correctness of the stateful fair matching algorithm▸ JoinActors: novel Scala 3 library with brute-force & stateful matching▸ Established a benchmark suite to evaluate join pattern matching performance

Future Work:▸ Expand benchmark suite with more examples from the literature▸ Refine and optimise the Scala 3 implementation of join patterns▸ Alternative matching policies▸ Verify join pattern unreachablity

13 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Contributions & Future Work
Contributions:▸ Novel specification of fair and deterministic join pattern matching▸ Novel stateful tree-based matching algorithm to avoid redundant

recomputations▸ Proof of correctness of the stateful fair matching algorithm▸ JoinActors: novel Scala 3 library with brute-force & stateful matching▸ Established a benchmark suite to evaluate join pattern matching performance

Future Work:▸ Expand benchmark suite with more examples from the literature▸ Refine and optimise the Scala 3 implementation of join patterns▸ Alternative matching policies▸ Verify join pattern unreachablity
13 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Smart House Example (Rodriguez-Avila et al. 2021) I

1 case (Motion(_, mStatus, mRoom, t0),
2 AmbientLight(_, value, alRoom, t1),
3 Light(_, lStatus, lRoom, t2)) if bathroomOccupied(...) => ...

4 case (Motion(_, mStatus0, mRoom0, t0),
5 Contact(_, cStatus, cRoom, t1),
6 Motion(_, mStatus1, mRoom1, t2)) if occupiedHome(...) => ...

7 case (Motion(_, mStatus0, mRoom0, t0),
8 Contact(_, cStatus, cRoom, t1),
9 Motion(_, mStatus1, mRoom1, t2)) if emptyHome(...) => ...

13 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Smart House Example (Rodriguez-Avila et al. 2021) II

0 4 8 12 16 20 24 28 320 4 8 12 16 20 24 28 32
Number of random messages sent

10 2

10 1

100

101

102

103

Ti
m

e
(s

) -
 lo

g
sc

al
e

Smart House benchmark with upto 32 random messages. 5 iterations
Brute-force Algorithm
Stateful Tree-based Algorithm

0

100

101

102

103

104

M
at

ch
es

 p
er

 se
co

nd
 -

lo
g

sc
al

e

Brute-force Algorithm Matches per second
Stateful Tree-based Algorithm Matches per second

13 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

JoinActors vs. Evrete Benchmark

0 4 8 12 16 200 4 8 12 16 20

Number of prefix messages

10−1

100

T
im

e
(s

)
-

lo
g

sc
al

e

RETE vs. Stateful Tree-based Algorithm with 20 Prefix Messages

Stateful Tree-based Algorithm

Evrete-based implementation

JoinActors vs. Evrete (lower is better)

0 4 8 12 16 200 4 8 12 16 20

Number of prefix messages

10−1

100

101

T
im

e
(s

)
-

lo
g

sc
al

e

RETE vs. Stateful Tree-based Algorithm with 20 Prefix Messages
With Heavy Guards

Stateful Tree-based Algorithm

Evrete-based implementation

JoinActors vs. Evrete (lower is better)▸ Evrete is a mature and highly optimised RETE-based Java rule engine library▸ JoinActors is our proof-of-concept Scala 3 actor library

13 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Join Patterns Implementation in Scala 3

1 inline def receive[M, T](

2 inline f: ActorRef[M] => PartialFunction[Any, Result[T]]

3): MatchingAlgorithm => Matcher[M, Result[T]]

13 / 13

Introduction Example Join Patterns Formally Fair Matching Brute-force Algorithm Stateful Tree-based Algorithm Conclusion Appendix

Macro Expansion & Code Transformation

The body of receive:

1 ...
2 expr.asTerm match
3 case Inlined(_, _, Block(_, Block(stmts, _))) =>
4 stmts.head match
5 case DefDef(_, List(TermParamClause(params)), _, Some(Block(_,

Block(body, _)))) =>↪
6 body.head match
7 case DefDef(_, _, _, Some(Match(_, cases))) =>
8 cases.flatMap { generateJoinPattern[M, T](_) }
9 ...

13 / 13

A problem in concurrency [Tro94]

The solution with semaphores takes about
2 pages of C code [Tro94]!

28 / 35

Applying Concurrency with generative
communication [CG89]

29 / 35

A model-driven approach for multi-robots missions [BTBS26]

Multi-robot application are complex: robots’ interactions are “low-level”

Model-driven development based on BPMN and X-KLAIM lowers barries

30 / 35

Business Process Modelling Notation [BTBS26]

31 / 35

Business Process Modelling Notation

32 / 35

From BPMN to X-Klaim [BTBS26]

33 / 35

Klaim

Network-aware programming and generative communication:
X-KLAIM: eXtended Kernel Language for Agents Interaction and Mobility

Network
net MRS {
node Drone { eval(new DroneBehavior(Tractor)) @ self }
node Tractor { eval(new TractorBehavior()) @ self }
}

where

Some processes

proc DroneBehavior(Locality Tractor) {
eval(new WeedHandler(Tractor)) @ self
eval(new TakeOff(”e1”))tractor @ self
in(”e1”) @ self
eval(new Explore(”e2”)) @ self
in(”e2”) @ self
eval(new Land(”e3”)) @ self
in(”e3”) @ self
}

proc TractorBehavior() {
in(WEED POSITION, var Double x, var Double y) @ self
eval(new MoveTo(”e4”, x, y)) @ self
in(”e4”) @ self
eval(new CutGrass(”e5”)) @ self
in(”e5”) @ self
eval(new ReturnToBase(”e6”)) @ self
in(”e6”) @ self

34 / 35

Programming support

35 / 35

[BTBS26] Khalid Bourr, Francesco Tiezzi, Lorenzo Bettini, and Stefano Seriani.
Translating bpmn models into x-klaim programs for developing multi-robot
missions.
International Journal on Software Tools for Technology Transfer, pages
1433–2787, January 2026.

[CG89] Nicholas Carriero and David Gelernter. Linda in context.
Communications of the ACM, 32(4):444–458, April 1989.

[Eck02] Bruce Eckel. Thinking in Java, 4rd Edition.
Prentice-Hall, December 2002. Chapter 13. The beta version of the 3rd edition
is available at
http://www.javaclue.org/pub/java/ebooks/tij/tij-3rd-ed.pdf.

[FG96] Cedric Fournet and George Gonthier. The reflexive CHAM and the join-calculus.
In Conference Record of POPL ’96: The 23rd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 372–385, St.
Petersburg Beach, Florida, January 1996.

[HHM+24a] Philipp Haller, Ayman Hussein, Hernán C. Melgratti, Alceste Scalas, and Emilio
Tuosto. Fair join pattern matching for actors.

35 / 35

http://www.javaclue.org/pub/java/ebooks/tij/tij-3rd-ed.pdf

In Jonathan Aldrich and Guido Salvaneschi, editors, 38th European Conference
on Object-Oriented Programming, ECOOP 2024, Vienna, Austria, September
16-20, 2024, volume 313 of LIPIcs, pages 17:1–17:28. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2024.

[HHM+24b] Philipp Haller, Ayman Hussein, Hernán C. Melgratti, Alceste Scalas, and Emilio
Tuosto. Fair join pattern matching for actors (artifact).
Dagstuhl Artifacts Ser., 10(2):8:1–8:3, 2024.

[Tro94] John A. Trono. A new exercise in concurrency.
SIGCSE Bull., 26(3):8–10, September 1994.

35 / 35

