Principles of Concurrent
and
Distributed Programming

Emilio Tuosto

Academic Year 2025/2026

January 2026

1/35

Concurrency in Java

2/35

Processes vs. Threads

Multitasking

Many activities at once none of which “is aware” of the others (e.g., time slicing)

Processes
Running programs with their own execution environment containing basic run-time resources
e.g. the processes’ address space.

Threads

Sequential flows of control within a process (a process can consist of many concurrent

threads)
Threads are also known as lightweight processes because creating a new thread
requires fewer resources than creating a new process. Threads “lives” within a process
and can share the process'’s resources (e.g., memory, files). In general multi-threaded
applications have a “main” thread which can create new threads.

3/35

Context switching

A (simplified) view of how processes interleave:

Example program

Compute sin(x) using Taylor expansion: sin(x) = x - x3/3! +x5/5! - x7/7! + ...
for each element of an array of N floating-point numbers

i i e, o, ot e Compile program Execute program
for (int 1=0; icN; i++)
3 My very simp d te per dock
float value = x[i]; void sinx(int N, int terms, float* x, float* result)
float numer = x[i] * x[i] * x[i];

; (

g !
Float valve = x(1];

for (int 3=1; Jesterns; Jes) Float rumer = x[4] * x[4] * x[1];

int denom = 65 // 31

int sign = -1;

!
B> Emoem

ml r, ro, ro
ALV mul ri, 1, re

1 re, addr(r1]
ml r1, ro, ro
ml r1, r1, 0

value += sign * numer / denon;
numer *= x[1] * x[1];

denon = (244+2) * (24343);
sign *= -1;

for (int 3=1; jesterms; Jo+)
§
b Value += sign * numer / denom;
numer *= x[1] * x[1];
denon *= (20342) * (24343);
o st addr(r2], ro

result[i] = value;

:
}

result[i] = value;

st addelr2], ro
¥

kg

Borrowed from https://maxnilz.com/docs/006-arch/001-cpu-basics/

4/35

https://maxnilz.com/docs/006-arch/001-cpu-basics/

Programming with threads

From [Eck02]

Concurrent programming is like stepping into an entirely new world and learning a new
programming language, or at least a new set of language concepts. With the appearance
of thread support in most microcomputer operating systems, extensions for threads have also
been appearing in programming languages or libraries. In all cases, thread programming:

@ Seems mysterious and requires a shift in the way you think about programming

@ Looks similar to thread support in other languages, so when you understand threads,
you understand a common tongue.

[...] threads are tricky.

5/35

Concurrency and Java OO

Some documentation
https://docs.oracle.com/javase/tutorial/essential/concurrency/index.html

There is no general approach to concurrent programming.

Some rule of thumb
Java's “style” suggests

@ to individuate active and passive objects

@ an active object is basically an object representing a thread

@ a passive object represents a resource that can be concurrently accessed by active objects
@ Reason about how objects “interacts”

e how does active objects’ execution interleave?

e how do active objects access shared resources?
@ Acquire/release policy

@ in which order active objects acquire shared resources?
e under which conditions shared resources can be invoked?
e do active objects release all the acquired resources when they are not any longer needed?

6/35

https://docs.oracle.com/javase/tutorial/essential/concurrency/index.html

Threads in Java

@ Runnable: interface (method run() to be implemented)
@ Threads: class (implements Runnable, run() is just empty)
o Constructors
e Thread()
e Thread(Runnable target)
o Thread(Runnable target, String name)
e Thread(String name)
o ... (see the Java thread API)
e start, sleep, yield
e interrupt
“When something has a Runnable interface, it simply means that it has a run() method, but
there's nothing special about that —it doesn’t produce any innate threading abilities, like
those of a class inherited from Thread.” [Eck02]
To create and run Java thread from a Runnable object:
@ create the Runnable object
@ use the special Thread constructors with runnable objects
@ run the thread by invoking its start() method (which performs some initialisations and
then calls the run() method)
7/35

http://java.sun.com/javase/6/docs/api/index.html?java/util/concurrent/package-summary.html

Some examples

A simple scenario

Write a program that
@ decides if staff is worth a promotion according to their state of service
@ prints a report about the decision

Let's consider some solutions
@ introducing some Java primitives for threads

@ and showing how tricky concurrency can be

8/35

code/java/promotion/promotionconcurrent.html
code/java/promotion/promotionmoreconcurrent.html
code/java/promotion/ioc.html

Some examples

A simple scenario

Write a program that
@ decides if staff is worth a promotion according to their state of service
@ prints a report about the decision

Let's consider some solutions
@ introducing some Java primitives for threads

@ and showing how tricky concurrency can be

Don't do this at home!

. a first attempt

. an improved version

: pausing threads

8/35

code/java/promotion/promotionconcurrent.html
code/java/promotion/promotionmoreconcurrent.html
code/java/promotion/ioc.html

Controlling threads

interrupt(): interrupts the thread on which it is invoked

yield(): Occasionally, a thread can decide to “give a hint to the thread scheduling
mechanism” ([Eck02]) that it is keen to pass the control to another thread.
In Java this is done by invoking the yield() method from run.

join(): when invoked on a thread object, the invoking thread waits for the first thread to
complete before proceeding (there is also a version with timeout). join() must be withing a
try-catch statement because an interrupt() signal can abort the calling thread.

isAlive(): returns ‘true’ if the thread is running.

9/35

Mutual exclusion in Java

The mechanism that is offered by Java is method synchronisation
@ Synchronised Methods can prevent thread interference and memory consistency errors

@ Synchronisation based on (implicit) locks
The synchronized modifier can be used in method declarations or for determining critical
sections.
@ A method declared synchronized cannot be invoked while another synchronised method
IS executing
@ (hence) If more than 2 threads try to invoke a synchronised method, only one of them
actually access the object, while the other is blocked
@ synchronized(obj){stm}: acquires the lock on obj, executes stm and releases the lock;
stm is the critical section on the shared resource obj

10/35

Semaphores in java

public class Semaphore {
private int counter = 0;
private int threshold = 0;

public Semaphore(int counter) { this.counter = counter; }

public synchronized void P() {
while(this.counter <= threshold) {
try {
this.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}

this.counter——;

}

public synchronized void V() {
this.counter-++;

if (this.counter — 1 == threshold)
// this.notifyAll();
this.notify();

11/35

Monitors in Java

It is important to remind that waiting threads must be notified before releasing the shared
object
@ public final void wait() throws InterruptedException
o The thread is suspended and it is put on the object waiting list
@ public final void wait(long timeout) throws InterruptedException
e The thread is suspended until another wakes it up or until the time is elapsed
@ public final void notify()

o Choses and Wakes up a single thread among those waiting on the object monitor.
e Which thread is chosen depends on the implementation of the JVM
e This method should only be called by the “owner thread”, namely the one which is

@ executing a synchronized statement that synchronizes on the object
@ executing the body of a synchronized statement that synchronizes on the object

o Throws: lllegalMonitorStateException - if the current thread does not own the object
@ public final void notifyAll()
o Like notify, but awakes all the waiting threads

12/35

Remote Method
Invocation
In
Java

https://docs.oracle.

com/en/java/javase/2

4/docs/specs/rmi/int
ro.html

13/35

https://docs.oracle.com/en/java/javase/24/docs/specs/rmi/intro.html
https://docs.oracle.com/en/java/javase/24/docs/specs/rmi/intro.html
https://docs.oracle.com/en/java/javase/24/docs/specs/rmi/intro.html
https://docs.oracle.com/en/java/javase/24/docs/specs/rmi/intro.html

RPC vs RMI

Remote Method Invocation (RMI) is the Java correspondent of RPC.

e Instead of remote procedure calls, RMI implements remote method calls (i.e., calls of
methods of remote objects)

@ a key difference between RPC and Java RMI is that the latter allows Java objects to
communicate, while the former provides, in general, a communication middleware for
programs written in different languages

@ RPC can be seen as a very primitive form of message oriented middleware and is data
oriented. Java RMI, on the contrary, you can communicate objects, namely data &
behaviour!

Remark
Observe that Java RMI allows objects running in a JVM to invoke methods of (Java) objects
running in a different JVM

14/35

Distributed Objects: some terminology

@ Distributed object : an object whose methods can be remotely invoked. A distributed
object is provided, or exported by the object server .

@ Remote method : a public method of a distributed object.
@ Object registry : is the equivalent of the RPC name server. Namely, it is used by object
servers to register their services and by object clients to look up for service references.

o Client/server proxy : is the equivalent of client/server stubs in RPC. Object clients call a
remote method appear direct at the programmer level. However,

e on the client host, the client proxy interacts with the software providing runtime support for
the distributed object system

o the runtime support transmits the actual call to the remote host (it also marshals the
parameter to be transmitted)

e similarly, on the object server side, the runtime support for the distributed object system
handles the incoming messages (and their unmarshalling), and forwards the call to the
server proxy

15/35

Java RMI: the first step

In Java:

@ remote objects are those objects extending the java.rmi. remote interface .
Basically, interfaces plays the role of ID, hence the IDL of Java RMI is java.rmi.
@ the object server
e implements a remote interface
e generates stub and skeleton
e register a distributed object implementing the interface
@ An object client accesses the object by invoking the remote methods associated with the
objects using syntax provided for remote method invocations

Remark

Within RMI, remote objects are treated differently from non-remote objects. For instance,
what RMI actually passes when a remote object reference r_obj is sent to a remote object is a
remote stub for r_obj. The stub acts as the local proxy for r_obj so that the caller is
unaffected and calls r_obj via its stub.

16 /35

Java RMI: the second step

Applications relying on distributed object must:
@ Locate remote objects
o by passing remote object references or
e by using the object registry
@ Communicate with remote objects

@ Load class bytecodes for objects passed around: since RMI allows a caller to pass objects
within calls to remote methods, RMI yields the necessary mechanisms for loading an
object’s code and for transmitting its data.

Remark

One of the central features of RMI is the possibility of dinamically downloading bytecodes of
the class of an object when it is not defined in the caller's JVM. Basically, the types and the
behavior of an object can be transmitted to possibly remote JVMs. RMI guarantees that

the behavior of objects remains unchanged when they are sent to another JVM and allows
new types to be introduced into a remote virtual machine, so that an

application can be dynamically extended .

17/35

Creating Distributed Applications Using RMI

Using RMI to develop a distributed application requires you to follow these general steps:
Design and implement the distributed application components
Compile sources and generate stubs

Make classes network accessible: In this step you make everything—the class files
associated with the remote interfaces, stubs, and other classes that need to be
downloaded to clients—accessible via a Web server.

Start the application: Starting the application means to run:

@ the RMI remote object registry
@ the server
© the client

18/35

1. Design and implement the distributed application components

First, give an initial architecture for your application (this might require some revision at a
later stage) and determine which components are local objects and remote objects .
This phase consists of:

@ remote interfaces definition : this specifies the remote methods When designing remote
interfaces you have to determine any local objects that will be used as parameters and
return values for these methods

@ remote objects implementation : generally, remote objects have to implement several
remote interfaces (of course, the remote object class may implements other non-remote
interfaces and define methods available only locally). Any local classes used in remote
method invocations (as parameters or return values) must be implemented.

@ clients implementation : clients invoking remote objects can be implemented at any time
after the definition of remote interfaces or after deployment of remote objects.

19/35

2. Compile sources and generate stubs

This phase has two steps:

@ use javac to compile the server classes (those implementing remote interfaces) and the
client classes

@ use rmic compiler in order to create stubs for remote objects.

Remark

The Java rmic compiler generates the stubs, namely, the programmer does not have to
program client and server proxies and low lever programming detail.

20/35

Java remote interface

@ In a remote interface each method signature must throw Other than
this, a remote interface has the same syntax as any other Java interface.

° exception is raised if errors occur when processing remote method call.
The exception is must be caught by the caller.
° can be caused
o by exceptions that may occur during communications (e.g., access or connection failures)
o by problems in remote method invocations (e.g., errors resulting from object, stub, or
skeleton not being found)

An example:
import java.rmi.x;

public interface ARemotelnterface extends {
String aRemoteMethod1(...) throws ;
int aRemoteMethod2(...) throws ;

21/35

An example: the compute engine

The compute engine is a protocol to execute tasks on a remote engine. This protocol is based on interfaces
supported by the compute engine and by the objects that are submitted to the compute engine.
The remotely accessible part is the compute engine itself, whose remote interface has a single method:
import Java rmi. ;

import java.rmi. ;

*

* The 2 lines above can be replaced by

* import java.rmi.x;

*/
public interface Compute extends {
public Object executeTask(Task t)
throws ;
By extending java.rmi. , the interface Compute allows its method to be called from any JVM. Any

object implementing Compute becomes a remote object.
Notice that executeTask

@ takes a Task
@ can return any Object
@ throws

22/35

An example: the compute engine (2)

An interface for Task objects must be defined.
import java.io. ;

public interface Task extends {

public Object execute();

Different kinds of tasks can be run by a Compute object provide that they implementat Task. It is possible to
add further methods (or data) needed for the computation of the task.

Exercise

execute is not required to throw . Why?

Remark

The Task interface extends the java.io. interface to let the RMI middleware serialise objects so that
they can be transported from a JVM to another.

Implementing marks the class as being capable of conversion into a self-describing byte stream that

can be used to reconstruct an exact copy of the serialized object when the object is read back from the stream.

This implies that local objects are passed by-value while remote objects are passed by-reference .

23/35

Channel-based

concurrency

slides are courtesy of R. Bruni and F. Bonchi

24/35

Google Go

http://golang.org/

Go features

facilitate building reliable and efficient software
open source

compiled, garbage collected

functional and OO features

statically typed (light type system)

concurrent

Go principles

C, C++, Java:

too much typing (writing verbose code)
and too much typing (writing explicit types)
(and poor concurrency)

Python, JS:
no strict typing, no compiler issues
runtime errors that should be caught statically

Google Go:
compiled, static types, type inference
(and nice concurrency primitives)

Go project
designed by Ken Thompson, Rob Pike, Robert Griesemer

2007: started experimentation at Google
nov 2009: first release (more than 250 contributors)

may 2012: version 1.0 (two yearly releases since 2013)
feb 2025: version 1.24.0

C. Doxsey, Introducing Go (2016). Ch: 1-4, 6-7, 10

Introducing

Go

ccccccccc

Go concurrency

any function can be executed in a separate lightweight thread

go f(x)

goroutines run in the same address space
package sync provides basic synchronisation primitives
programmers are encouraged NOT TO USE THEM!

do not communicate by sharing memory
instead, share memory by communicating

use built-in high-level concurrency primitives:
channels and message passing
(inspired by process algebras)

7

Go channels

channels can be created and passed around

var ch = make(chan int)
creates a channel for transmitting integers
chl = ch
aliasing: ch1 and ch now refers to the same channel
go f(ch)
go g(ch)
f and g share the channel ch

Directionality

channels are alway created bidirectional

var ch = make(chan int)
channel types can be annotated with directionality
var rec <-chan int
rec can only be used to receive integers

var snd chan<- int
snd can only be used to send integers

rec = ch
snd = ch
are valid assignments
rec = snd // invalid!

Go communication

to send a value (like ch/2) ch <- 2
to receive and store in x (like ch?x) x = <- ch
to receive and throw the value away <- ch

to close a channel (by the sender) close(ch)
to check if a channel has been closed (by the receiver)

Xx,0k = <= ch // either value,true or 0,false

Go sync communication

by default the communication is synchronous

BOTH send and receive are BLOCKING!

asynchronous channels can be created
by allocating a buffer of fixed size

var ch = make(chan int, 100)

creates an asynchronous channel of size 100

receive on asynchronous channel is of course still blocking
send is blocking only if the buffer is full

no dedicated type for asynchronous channels:
buffering is a property of values not of types

Go communication

to choose between different options

select {
case X = <- chl: { .. }
case ch2 <- v: { .. }

// both send and receive actions
default: { .. }

}

the selection is made pseudo-randomly among enabled cases
if no case is enabled, the default option is applied

if no case is enabled, and no default option is given

the select blocks until (at least) one case is enabled

12

Example

non-blocking receive

select {
case X = <- ch: { .. }
default: { .. }

receives on x from ch, if data available
otherwise proceeds

Example

wait for first among many (senders)

select {
case x = <- chl: { .. }
case x = <- ch2: { .. }
case x = <- ch3: { ... }
}

receives on x from any of ch1, ch2, ch3, if data available
otherwise waits

Example

wait for first among many (receivers)

select {
case chl <- v : { ..
case ch2 <- v : { ..
case ch3 <-v : { ..

e

sends v to any of ch1, ch2, ch3, if available to receive
otherwise waits

Hello

package main
func main() {

println("Hello")
println("world")

Hello
World

Program exited.

concurrency

42

Hello concurrency

package main

func main() {
// launch a goroutine
go println("Hello")
println("World")
// Hey, what happens? Where is Hello?
// (when main ends all its goroutines are terminated)

World

Program exited.

43

Hello

package main
import "time"

func main() {
// launch a goroutine
go println("Hello")
println("World")
time.Sleep(1000)
// Here is Hello!

World
Hello

Program exited.

concurrency

Hello concurrency

package main

// let's sync on a channel
func main() {
done := make(chan bool)
// launch a goroutine
go func() {
println("Hello")
done <- true // send value true on channel done
)
printin("World")
// wait on channel done, ignore received value
<-done

World
Hello

Program exited.

45

Hello concurrency

package main

// Hello takes a channel for exchanging booleans
func Hello(done chan bool) {
println("Hello")
done <- true // send value true on channel done

}

func main() {
// create a channel for sending booleans
done := make(chan bool)
go Hello(done) // launch a goroutine
println("World")
// wait on channel done, ignore received value
<-done // receive a value from channel done
// this way World may get printed before Hello

World
Hello

Program exited.

46

Hello concurrency

package main

// Hello takes a channel for exchanging booleans
func Hello(done chan bool) {
printin("Hello")
done <- true // send value true on channel done

b2

func main() {
done := make(chan bool)
go Hello(done)
<-done
// this way Hello gets printed before World
printin("World")

Hello
World

Program exited.

47

Hello deadlocks

package main

func main() {

c := make(chan int) // create a channel for sending integers

5 c <- 245 // send 245 (but sending is blocking!)
n = <—C // receive from c and store the value in n
printin(n)

fatal error: all goroutines are asleep — deadlock!
goroutine 1 [chan send]:
main.main()

/tmp/sandbox4275027505/prog.go:5 +0x2d

Program exited.

48

Buffering

package main

func main() {
¢ := make(chan int, 1) // create a buffered channel for sending integers

c <- 245 // send 245 (now sending is not blocking!)
n := <—C // receive from c and store the value in n
println(n)
}
Vi
245

Program exited.

49

Communicating goroutines

package main

func main() {
c := make(chan int)
// do the sending in an anonymous goroutine

go func() {
c <— 245
0
n = <-—c
println(n)
}
245

Program exited.

50

Communicating goroutines

package main

func main() {
c := make(chan int)
// do the sending in an anonymous goroutine
go func() {
c <— 245
0
// avoid to use variable n
printin(<-c)

245

Program exited.

5

Name mobility

channels can be sent over channels (like in zz-calculus)

var mob = make(chan chan int)
a channel for communicating channels

mob <- ch

send the channel ch over mob

Name mobility: secrecy

Name mobility: secrecy

Name mobility

as, bs := () // launch server, get secure channels
go A(as) // launch A
(bs) // run B
}

// returns a pair of channels for communicating to the server
func () (as chan chan , bs chan chan) {
// create two channels
// for sending names of channels for sending integers
as (chan chan)
bs (chan chan)
// launch a goroutine for serving requests
go func() {
for {
// forward messages from as to bs
C := <-as
bs <- ¢
}
0

return // naked return

Name mobility

// for N times:
// creates a channel ch
// sends the channel to the server on as
// sends an integer on ch
func A(as chan chan) {
for i := @0; i < N; i++ {
ch : (chan)
fmt. ("created %v (%T) for sending %v\n", ch, ch, i)
as ch // send ch to the server
ch i // send i on ch

b

// for N times:
// receives a channel ch from the server
// receives an integer on ch
func B(bs chan chan) {
for i 0; i <N; i++ {

ch bs

n ch

fmt. ("received %v on %v\n", n, ch)

Name mobility

package main
import "fmt"
const N = 3

// returns a pair of channels for communicating to the server
func Serv() (as chan chan int, bs chan chan int) {
// create two channels
// for sending names of channels for sending integers
as = make(chan chan int)
bs = make(chan chan int)
// launch a anrnutine far carvina renuecte
created 0xc000076150 (chan int) for sending @
received @ on 0xc000076150
created 0xc@000761c@ (chan int) for sending 1
received 1 on 0xc0000761c0@
created 0xc000076230 (chan int) for sending 2
received 2 on 0xc000076230

Program exited.

55

Closing channels

// for N times
// creates a channel ch
// sends the channel to the server on as
// sends an integer on ch
// then closes the communication with the server
func A(as chan chan) {
for i 9; i <N; i {
ch : (chan)
fmt. ("created %v (%T) for sending %v\n", ch, ch, i)
as ch // send ch to the server
ch i // send i on ch

(as) // close channel as shared with server

S

// while bs has not been closed
// receives a channel ch from the server
// receives an integer on ch
func B(bs chan chan) {
// until bs is active
for ch, ok bs; ok; ch, ok bs {
n ch
fmt. ("received %v on %v\n", n, ch)

("done")

Closing channels

// returns a pair of channels for communicating to the server
func () (as chan chan , bs chan chan) {

// create two channels

// for sending names of channels for sending integers

as (chan chan)

bs (chan chan)

// launch a goroutine for serving requests

go (as, bs)

return // naked return

}

func (as chan chan , bs chan chan) {
// until as is active
for c, ok : as; ok; c, ok as {
// forward messages from as to bs
bs C

(bs) // close channel bs shared with B

Closing channels

package main
import "fmt"
const N = 3

func main() {

as, bs := Serv() // launch server, get secure channels
go A(as) // launch A
B(bs) // run B

}

// returnce a nair nf channelec far coammunicatina +n the caruvar

created 0xc00009e150 (chan int) for sending @
created 0xc00009elc@ (chan int) for sending 1
received @ on 0xc00009e150

received 1 on 0xc00009e1lc@

created 0xc00009e230 (chan int) for sending 2
received 2 on 0xc00009e230

done

Program exited.

58

Actor-based concurrency

ERLANG /

wslides are courtesy of R. Bruni and F. Bonchi

25/35

Erlang: a concurrent programming language

http://www.erlang.org/

end _:—iii x\\c‘\
InoS Uddo &

SurdAy orureukp.£

aU/o S
“ ,/0,

dule o goi vyon &l
typing, rlang

ic:t;

o5 /ao
.OOI@NNL
b=

@ Jowir} ‘?_%;, s
P4 Jaudr) m

%, %ﬁ%@%@%ﬂ S
JUdIINOUo?

o) Buissed aBessau 2
BN £ s wde £ [19 ¢

YIS

¥
neurrent,

/) puss

S w3 paen?
7 wefoy ey

Erlang: origins

named after Danish mathematician A. K. Erlang

1986: first experimentation at Ericsson, Sweden
1989: internal use only

1990: sold as a product

1998: open source

Joe Armstrong, “Programming Erlang”, ch.1-5, 11-12

Programmin,
Er%ang g
oltware for

Features

declarative (functional, Prolog) programming

arbitrary size integers, tuples, lists, functions, higher-order
atoms everywhere

dynamically typed

open source

unfriendly syntax

variables are assigned only once

left-to-right evaluation, no posinters, no object-orientation

Features: concurrency

concurrent and distributed programming

asynchronous message passing
(no locks, no mutexes)

fault tolerance

hot swapping code

erlang processes are cheap

automatic memory allocation and garbage collection

can handle large telecom applications

6

Erl

Erlang: erl

erl is the Erlang VM emulator

interactive shell or interpreter, executing read-eval-print loop
programmers enter expressions / declarations one at a time

they are compiled / executed

er| expressions

typical interaction: prompt user’s input

1> command .
value \\\\\
/////// 2>

result \ don’t forget the dot!

next prompt

halt () . to exit the emulator

Erlang modules

functions are organised in modules
one module for source file

filename is module name with suffix .erl
a comment arity declarations end with a dot
\

-module(hello)¥\
-export ([hello/0]).

hello() -> io:format("Hello, world!~n").
function def

module name separator function name argument
10

erl: module loading

compile and load the module

1> c(hello) . invoke the function

{ok,hello}
2> hello:hello()
Hello, world!

ok
I I/ 3>\
return value

next prompt

if you edit hello.erl and do c(hello) again
the new version of the module replaces the old one

Erlang basics

Function definition

separates function clauses with ;
last clause ends with .

variables start with upper-case letters X Head Talil
variables are local to function clauses

function definitions cannot be nested
non-exported functions are local to the module

pattern matching allowed
guards allowed (keyword when)

type-checking is done at runtime

13

Atoms, tuples, lists

numbers: arbitrary size integers, floating point values
(cannot start with .)

atoms: start with lower-case character
(can be single-quoted if needed, don’t use camelCase)
true ok hello world. ‘this is an atom’

tuples: main data constructor

tagged tuples: the first element of the tuple is an atom
we can use pattern matching

{} {movie,”Matrix”} {movie,Title}

lists: can contain elements of any type
we can use pattern matching
[1 [1,2,0k] [H|T] [X,Y,2] [X,Y,Z| Tail]

Funs

funs: anonymous functions (lambda expressions)
can have several arguments and clauses

fun () -> 42 end
fun (X) -> X+1 end
fun (X,Y) -> {X, fun (Z) -> Z+Y end} end

fun (F,X) -> F(X) end

Type test & conversion

is_integer (X)
is float(X)

is_number (X) atom to list(A)
is_atom(X) list to atom(L)
is_tuple(X) tuple to list(T)
is_ list(X) list to tuple(L)

is_ function(X)
is pid(X)

Erlang concurrency

Processes

every Erlang code is executed by a process
processes are implemented by the VM (not by OS threads)

multitasking is preemptive (VM switching and scheduling)
processes need very little memory
switching between processes is very fast

the VM can handle a large number of processes

on multiprocessor/multicore machines, processes can be
scheduled to run in parallel on separate CPUs/cores
using multiple schedulers

different processes may be reading the same program code
at the same time (no variable updates!)
18

each process has a process identifier

pPid = self()

new Erlang processes can be spawned to run functions

Pid = spawn(module, function,arguments)
pPid = spawn(fun () -> .. end)

pPid = spawn(fun £/0)

Pid = spawn(fun m:£/0)

the spawn operation returns immediately
(the return value is the pid of the process)

children pids are available to parent process,
not vice versa (unless passed)

19

Communication

Messages can be sent to pids

pPid ! message

N

called bang
Processes can wait to receive (and select) some message

receive
Patternl when Condl -> Expl;
Pattern2 when Cond2 -> ExpZ2;

Patternk when Condk -> Expk
end

20

Communication

Messages can be sent to pids

pid ' {1,2,3}

N

called bang
Processes can wait to receive (and select) some message

receive

{X} when X>0 -> X;

{X,Y} when Y>X -> X+Y;

{X,Y,Z} when Y>X andalso Z2>Y -> X+2Z;
end

21

Communication

Messages can be sent to pids

pid ' {1,2,3}

N

called bang
Processes can wait to receive (and select) some message

receive
{X} when X>0 -> X;
{X,Y} when Y>X -> X+Y;
{X,Y,Z} when Y>X andalso Z2>Y -> X+2Z;
_ >0
end catch-all

22

Communication

Messages can be sent to pids

pid ' {1,2,3}

N

called bang
Processes can wait to receive (and select) some message

receive
{X} when X>0 -> X;
{X,Y} when Y>X -> X+Y;
{X,Y,Z} when Y>X andalso Z2>Y -> X+2Z;
after 0 -> 0

end \\

timeout 2

Message passing

receive ..
pid ! message

W D=

Message passing

messages are sent asynchronously
(the sender continues immediately)

any value can be sent as a message

each process has a message queue (mailbox)
no size limit, messages are kept until extracted

a message is received when it is extracted from the mailbox
messages are ordered from oldest to newest in the mailbox

the message that is extracted is not necessarily the oldest
(pattern matching can be used, if there is no match
the receiver suspends and keeps waiting)

25

To reply a message, its sender must be known

its pid can be inserted in the message syntax for tuples

pid ! { Mypid , message }/

now the receiver Pid can reply to Mypid

from Mypid

to
Mr. Pid

26

erl session

%% EXAMPLE: permutations

(11) = [[11;
(L) — [[H]|T]

99> c(recursion).

recursion.erl:2:2: Warning: export all flag enabled - all functions

will be exported

{ok, recursion}

100> recursion:perms ("abc") .

["abc", "acb", "bac", "bca", "cab", "cba"]

101> recursion:perms ("abcdef").

["abcdef", "abcdfe", "abcedf", "abcefd", "abcfde", "abcfed",
"abdcef", "abdcfe", "abdecf", "abdefc", "abdfce", "abdfec",
"abecdf", "abecfd", "abedcf", "abedfc", "abefcd", "abefdc",
"abfcde", "abfced", "abfdce", "abfdec", "abfecd", "abfedc",
"acbdef", "acbdfe", "acbedf", "acbefd",
(I N R

58

erl session

%% EXAMPLE: length of a list

([1) —> o;
([_|T]) —= 1 (T).

(L) — (L,0).

([1,Acc) —> Acc;
([_|T1,Acc) —>

%% EXAMPLE: replicate

(0,_) —> I[I;
(N,Term) when N > @ —> [Term|

(N, Term) —>

(0,_,List) —> List;

(T,Acc+1).

(N-1,Term)].

(N, Term, [1).

(N,Term,List) when N > 0 —>

%% EXAMPLE: reverse

(1) —=> [1;

([H[T]) —> [H].
% costs too much!!

(L) — (L, [1).

([1,Acc) —> Acc;
([H|T],Acc) —>

(T, [H|Acc]).

(N-1, Term, [Term|List]).

[Ex. 1] Write a server in erlang to convert temperatures from Celsius degrees
to Fahrenheit degrees and vice versa, using the formula F' = 1.8C' + 32. The
server receives requests of the form (Pid,cs,C) or (Pid,ft, F) and replies
to Pid by sending messages in analogous format. The server can be stopped
by sending the message stop. All the other messages are ignored. Spawn
a copy of the server, send it some temperatures to convert, check out the
results and stop the server.

75

Ex. 1, temp converter

-module(exl).
-export ([convert/0]).

convert() ->
receive

end.

76

Ex. 1, temp converter

-module(exl).
-export ([convert/0]).

convert() ->
receive
{pPid,cs,C} ->

end.

77

Ex. 1, temp converter

-module(exl).
-export ([convert/0]).

convert() ->
receive

{Pid,cs,C} -> pid ! {self(),ft,(1.8 * C) + 32},
convert();

end.

78

Ex. 1, temp converter

-module(exl).
-export ([convert/0]).

convert() ->
receive
{pPid,cs,C} -> pPid ! {self(),ft, (1.8 * C) + 32},
convert();
{pPid,ft,F} ->

end.

79

Ex. 1, temp converter

-module(exl).
-export ([convert/0]).

convert() ->
receive
{pPid,cs,C} -> pPid ! {self(),ft, (1.8 * C) + 32},
convert();
{pid,ft,F} -> pid ! {self(),cs,(F - 32) / 1.8},
convert();

end.

80

Ex. 1, temp converter

-module(exl).
-export ([convert/0]).

convert() ->
receive
{pPid,cs,C} -> pPid ! {self(),ft, (1.8 * C) + 32},
convert();
{pid,ft,F} -> pid ! {self(),cs,(F - 32) / 1.8},
convert();
stop -> true;

end.

8l

Ex. 1, temp converter

-module(exl).
-export ([convert/0]).

convert() ->
receive
{pPid,cs,C} -> pPid ! {self(),ft, (1.8 * C) + 32},
convert();
{pid,ft,F} -> pid ! {self(),cs,(F - 32) / 1.8},
convert();
stop -> true;
_=>
end.

82

Ex. 1, temp converter

-module(exl).
-export ([convert/0]).

convert() ->
receive
{Pid,cs,C} -> pid ! {self(),ft,(1.8 * C) + 32},
convert();
{pid,ft,F} -> pid ! {self(),cs,(F - 32) / 1.8},
convert();
stop -> true;
_ => convert()
end.

83

Eshelle%S) 1a1!ort1:vgr\!)\ p CO nve r"reri

1> c(exl).
{ok,exl}
2>

Ex. 1, temp converter

Eshell V10.2.1 (aggrt with "G)
1> c(exl).

{ok,exl}

2> Conv = spawn(exl,convert,[]).
<0.84.0>

3>

85

Ex. 1, temp converter

Eshell Vv10.2.1 ort with "G)
1> c(exl).

{ok,exl}

2> Conv = spawn(exl,convert,[]).
<0.84.0>

3> Conv ! {self(),cs,23}.
{<0.77.0>,cs,23}
4>

86

Ex. 1, temp converter

Eshell Vv10.2.1 ort with "G)
1> c(exl).

{ok,exl}

2> Conv = spawn(exl,convert,[]).
<0.84.0>

3> Conv ! {self(),cs,23}.
{<0.77.0>,cs,23}
4> receive

4> {Conv,ft,F} -> io:format("23 celsius = ~p fahrenheit~n",[F])
4> end.

23 celsius = 73.4 fahrenheit

ok

5>

87

[Ex. 2] Write an erlang function copy that receives an integer n and if n is
positive it prints n copies of n (one per line). Write an erlang function that
receives a list of integers and spawn an instance of copy for each integer in

the list.

9l

Ex. 2, copy

-module (ex2).
-export ([copy/1,1listCopy/1]).

copy(N) when N > 0 ->

92

Ex. 2, copy

-module (ex2).
-export ([copy/1,1listCopy/1]).

copy(N) when N > 0 -> copy(N,N);

93

Ex. 2, copy

-module (ex2).
-export ([copy/1,1listCopy/1]).

copy(N) when N > 0 -> copy(N,N);
copy(_) ->

94

Ex. 2, copy

-module (ex2).
-export ([copy/1,1listCopy/1]).

copy(N) when N > 0 -> copy(N,N);
copy(_) -> true.

95

Ex. 2, copy

-module (ex2).
-export ([copy/1,1listCopy/1]).

copy(N) when N > 0 -> copy(N,N);
copy(_) -> true.

copy(N,M) when N > 0 ->

96

Ex. 2, copy

-module (ex2).
-export ([copy/1,1listCopy/1]).

copy(N) when N > 0 -> copy(N,N);
copy(_) -> true.

copy(N,M) when N > 0 -> io:format("~p~n",[M]),
copy (N-1,M);

97

Ex. 2, copy

-module (ex2).
-export ([copy/1,1listCopy/1]).

copy(N) when N > 0 -> copy(N,N);
copy(_) -> true.

copy(N,M) when N > 0 -> io:format("~p~n",[M]),

copy (N-1,M);
copy(_,_) -> true.

98

Ex. 2, copy

-module (ex2).
-export ([copy/1,1listCopy/1]).

copy(N) when N > 0 -> copy(N,N);
copy(_) -> true.

copy(N,M) when N > 0 -> io:format("~p~n",[M]),
copy (N-1,M);

copy(_,_) -> true.

listCopy (L) ->

99

Ex. 2, copy

-module (ex2).
-export ([copy/1,1listCopy/1]).

copy(N) when N > 0 -> copy(N,N);
copy(_) -> true.

copy(N,M) when N > 0 -> io:format("~p~n",[M]),
copy (N-1,M);

copy(_,_) -> true.

listCopy (L) -> [|| ¥ <- L].

100

Ex. 2, copy

-module (ex2).
-export ([copy/1,1listCopy/1]).

copy(N) when N > 0 -> copy(N,N);
copy(_) -> true.

copy(N,M) when N > 0 -> io:format("~p~n",[M]),
copy (N-1,M);

copy(_,_) -> true.

listCopy (L) -> [spawn(ex2,copy,[N]) || N <- L].

101

Eshell V10.2.1
1> c(ex2).
{ok,ex2}

2>

(abort with "G)

Ex. 2, co

102

PY

Ex. 2, copy

Eshell V10.2.1 (abort with "G)
1> c(ex2).

{ok,ex2}

2> ex2:listCopy(lists:seq(1,5)).
1

<0.84.0>,<0.85.0>,<0.86.0>,<0.87.0>,<0.88.0>]

o WD WD O WD

w
\

103

On using the “right” primitives

26 /35

Advanced primitives for concurrency

Join patterns are very high-level

Based on the join calculuc [FG96]

Integrated in some programming languages (Erlang, C#, etc.)

We'll see a combination of join patterns and actors introduced in [HHM*24a, HHM*24b]

27/35

Introduction
[o)

» Novel specification of fair join pattern matching for actors
> Novel stateful tree-based matching algorithm with proof of correctness

» JoinActors: novel Scala 3 library for actors with fair join pattern matching

1/13

Introduction
oce

What are Join Patterns?

» Coordination mechanism for concurrent message passing programs

» Introduced in Join Calculus (Fournet et al., POPL 1996)

2/13

What are Join Patterns?

» Coordination mechanism for concurrent message passing programs

» Introduced in Join Calculus (Fournet et al., POPL 1996)

» Message passing programs may react to complex message sequences and
conditions

2/13

Introduction
oce

What are Join Patterns?

v

Coordination mechanism for concurrent message passing programs

v

Introduced in Join Calculus (Fournet et al., POPL 1996)

v

Message passing programs may react to complex message sequences and
conditions

v

Join patterns simplify specifying the association of out-of-order messages

2/13

Example
®0

Monitoring a Factory Shop Floor

» The monitoring program must
associate machine Fault notifications
to Fix notifications from workers

3/13

Example
®0

Monitoring a Factory Shop Floor

» The monitoring program must
associate machine Fault notifications
to Fix notifications from workers

» Messages arrive asynchronously and
out-of-order

3/13

Monitoring a Factory Shop Floor

» The monitoring program must
associate machine Fault notifications
to Fix notifications from workers

» Messages arrive asynchronously and
out-of-order

» Monitor reacts to a combination of
messages in the mailbox

3/13

Example
®0

Monitoring a Factory Shop Floor

» The monitoring program must
associate machine Fault notifications
to Fix notifications from workers

» Messages arrive asynchronously and
out-of-order

» Monitor reacts to a combination of
messages in the mailbox

» Traditionally, programmers write
custom code for message association

3/13

Example
®0

Monitoring a Factory Shop Floor

» The monitoring program must
associate machine Fault notifications
to Fix notifications from workers

» Messages arrive asynchronously and
out-of-order

» Monitor reacts to a combination of
messages in the mailbox

» Traditionally, programmers write
custom code for message association
(e.g., Akka/Pekko actors, Socket
programming)

3/13

Example
oce

Factory Shop Monitor Using JoinActors Ky 2 &*
Using our JoinActors library we can declaratively specify di j?g e
F—=
order-independent message associations o T &

1 def monitor() = Actor[...] {

2 receive { (...) = {

3 case (Fault(idl, _), Fix(id2, _)) if idl == id2 => ...

4 case (Fault(_, ts1), Fault(id2, ts2), Fix(id3, _))

5 if id2 == id3 && ts2 - ts1 > TEN_MIN => ...
6 1}

7}

» Uses Scala 3 macros

Join Patterns Formally
[]

Join Patterns More Formally

Let D = II; + Il where

II; = Fault(’/,'dj , ,) A F]'.X(’l/'dg, ,) if id; = ido
I = Fault(_, t;) A Fault(ids,ts) A Fix(ids,_)ifide = ids && to —t; > 10min

Refer to the paper for more details

5/13

Fair Matching
[]

Join Patterns Matching Ko K
The join definition for the factory shop floor monitor is D = I1; + II5 where 7 lessl ©

II; = Fault('zfdz , ,) A FiX(idg, ,) if id; = ido
Il = Fault(,, tj) A Fault(z'dg, fg) A Fix(idg, ,) if idy = idg && ty — t; > 10min

Now consider the following mailbox M:

6/13

Fair Matching
[]

Join Patterns Matching K ®

The join definition for the factory shop floor monitor is D = I1; + II5 where =L

II; = Fault('zfdz , ,) A FiX(idg, ,) if id; = ido
Il = Fault(,, tj) A Fault(z'dg, fg) A Fix(idg, ,) if idy = idg && ty — t; > 10min

Now consider the following mailbox M:
M =

6/13

Fair Matching
[]

Join Patterns Matching K ®

The join definition for the factory shop floor monitor is D = I1; + II5 where =

II; = Fault('zfdz , ,) A Fix(idg, ,) if id; = ido
Il = Fault(,, tj) A Fault(z'dg, fg) A Fix(idg, ,) if idy = idg && ty — t; > 10min

Now consider the following mailbox M:
M = Faulty (1,10:35)-

6/13

Fair Matching
[]

Join Patterns Matching K ®

The join definition for the factory shop floor monitor is D = I1; + II5 where =L

II; = Fault('zfdz , ,) A Fix(idg, ,) if id; = ido
Il = Fault(,, tj) A Fault(z'dg, fg) A Fix(idg, ,) if idy = idg && ty — t; > 10min

Now consider the following mailbox M:
M = Faulty (1,10:35)- Faulte (2,10:40)-

6/13

Fair Matching
[]

Join Patterns Matching K ®

The join definition for the factory shop floor monitor is D = I1; + II5 where =L

II; = Fault(idz , ,) A Fix(idg, ,) if id; = ido
Il = Fault(,, tj) A Fault(z'dg, fg) A Fix(idg./ ,) if idy = idg && ty — t; > 10min

Now consider the following mailbox M:
M = Faulty (1,10:35)- Faulte (2, 10:40)- Faults (3, 10:55)-

6/13

Fair Matching
[]

Join Patterns Matching K ®

The join definition for the factory shop floor monitor is D = I1; + II5 where =L

II; = Fault(idz , ,) A Fix(idg, ,) if id; = ido
Il = Fault(,, tj) A Fault(z'dg, fg) A Fix(idg./ ,) if idy = idg && ty — t; > 10min

Now consider the following mailbox M:
M = Faulty (1,10:35)- Faulte (2, 10:40)- Faults (3, 10:55) Fix4 (3, 11:00)

6/13

Fair Matching
[]

Join Patterns Matching K o

The join definition for the factory shop floor monitor is D = I1; + II5 where =L

II; = Fault(idz , ,) A Fix(idg, ,) if id; = ido
Il = Fault(,, tj) A Fault(z'dg, fg) A Fix(idg./ ,) if idy = idg && ty — t; > 10min

Now consider the following mailbox M:
M = Faulty (1,10:35)- Faulte (2, 10:40)- Faults (3, 10:55) Fix4 (3, 11:00)

» We have many options to match from M.

6/13

Fair Matching
[]

Join Patterns Matching K o

The join definition for the factory shop floor monitor is D = I1; + II5 where "less)

II; = Fault(idz , ,) A Fix(idg, ,) if id; = ido
1l = Fault(,, tj) A Fault(z'dg, fg) A Fix(idg./ ,) if idy = idg && ty — t; > 10min

Now consider the following mailbox M:
M = Faulty (1,10:35)- Faulte (2, 10:40)- Faults (3, 10:55) Fix4 (3, 11:00)

» We have many options to match from M. How and which one do we pick?

6/13

Fair Matching
[]

Join Patterns Matching K o

The join definition for the factory shop floor monitor is D = I1; + II5 where "less)

II; = Fault(idz , ,) A Fix(idg, ,) if id; = ido

1l = Fault(,, tj) A Fault(z'dg, fg) A Fix(idg./ ,) if idy = idg && ty — t; > 10min
Now consider the following mailbox M:

M = Faulty (1,10:35)- Faulte (2, 10:40)- Faults (3, 10:55) Fix4 (3, 11:00)

» We have many options to match from M. How and which one do we pick?
» 11, : ({Faults,Fix,})

6/13

Fair Matching
[]

Join Patterns Matching o %
[[s%
The join definition for the factory shop floor monitor is D = I1; + Il where =

II; = Fault(idz , ,) A Fix(idg, ,) if id; = ido
1l = Fault(,, tj) A Fault(z'dg, fg) A FiX(Z'dg./ ,) if idy = idg && ty — t; > 10min

Now consider the following mailbox M:
M = Faulty (1,10:35) Faulty (2, 10:40) - Faults (3, 10:55) - Fixa (3, 11:00)

» We have many options to match from M. How and which one do we pick?
» 11, : ({Faults,Fix,})
» 11, : ({Fault,,Faults,Fix,}, {Faulty, Faults, Fix,})

6/13

Fair Matching
[]

Join Patterns Matching Ko K
:] e
The join definition for the factory shop floor monitor is D = I1; + II5 where s l%‘% | <

® P W

II; = Fault(idz , ,) A Fix(idg, ,) if id; = ido
1l = Fault(,, t[) A Fault(z'dg, fg) A FiX(Z'd,g)./ ,) if idy = idg && ty — t; > 10min

Now consider the following mailbox M:
M = Faulty (1,10:35) Faulty (2, 10:40) - Faults (3, 10:55) - Fixa (3, 11:00)

» We have many options to match from M. How and which one do we pick?
» 11, : ({Faults,Fix,})
» 11, : ({Fault,,Faults,Fix,}, {Faulty, Faults, Fix,})

> In existing literature, the selection is either

» Non-deterministic choice. This is usually undesirable
» Pick longest-matching sequence

6/13

Fair Matching
®0

Our Proposal: “Fair Match” K _e K
Recall that we have the following D = I1; + 15 where: i X
IT; = Fault(id;,) A Fix(idg,)ifid; = idy £ = Ty

[Ty = Fault(_, t;) A Fault(ids,ts) A Fix(idg,_)if ide = idg && to —t; > 10min

And the following final mailbox configuration:
M = Faulty (1,10:35)-Faulte (2, 10:40)- Faults (3, 10:55) Fixg (3, 11:00)

» A “fair” match is the one that consumes the oldest messages in M
> No message that can be matched is left in the mailbox indefinitely

7/13

Fair Matching
®0

Our Proposal: “Fair Match” K _e K
Recall that we have the following D = I1; + 15 where: S X
IT; = Fault(id;,) A Fix(idg,)ifid; = idy £ = Ty

[Ty = Fault(_, t;) A Fault(ids,ts) A Fix(idg,_)if ide = idg && to —t; > 10min

And the following final mailbox configuration:
M = Faulty (1,10:35)-Faulte (2, 10:40)- Faults (3, 10:55) Fixg (3, 11:00)

» A “fair” match is the one that consumes the oldest messages in M

> No message that can be matched is left in the mailbox indefinitely
» Now we can pick the fairest match from M:

Hl !({Faultg, FiX4})
II, : ({Fault,, Faults, Fix,} ,{Fault,,Faults,Fix,})

7/13

Fair Matching
®0

Our Proposal: “Fair Match” K _e K
Recall that we have the following D = I1; + 15 where: S X
IT; = Fault(id;,) A Fix(idg,)ifid; = idy £ = Ty

[Ty = Fault(_, t;) A Fault(ids,ts) A Fix(idg,_)if ide = idg && to —t; > 10min

And the following final mailbox configuration:
M = Faulty (1,10:35)-Faulte (2, 10:40)- Faults (3, 10:55) Fixg (3, 11:00)

» A “fair” match is the one that consumes the oldest messages in M

> No message that can be matched is left in the mailbox indefinitely
» Now we can pick the fairest match from M:

H1 1({Fau1t3, FiX4})
I, : ({Fault,, Faults, Fix,} ,{Fault,,Faults, Fix,})
D: ({Faults,Fix,}, {Fault;, Faults, Fixs})

7/13

(e]

“Fair”’ Match Formalisation

We have formalised this notion of “fair” join pattern matching declaratively using
inference rules:

Vie{l,...,n}: pjoc=m; Yo
M1 oo My Eg LA A Ly 1Ty

Match Messages Against Pattern

M(Z] =, 11 for some o
M =g 11

Pick Messages From M

MEer 1l V7' (M Er Il = 7 jex I,) Sel . M h
MeTl o7 elect Fairest Matc

» Translate inference rules into a “fair” message matching brute-force algorithm

» Current implementations use matching without fairness e.g. (Haller et al.
COORDINATION 2008, Plociniczak and Eisenbach COORDINATION 2010, Avila et al. 2020)

» Refer to the paper for more details

8/13

Brute-force Algorithm
[]

Brute-force Algorithm for “Fair” Message Matching % L
Naive algorithm that performs redundant matching attempts -
We have that II;: o

II; = Fault(id,,,) A Fix(idg,,) if id; = ids

and the following mailbox:
M =

9/13

Brute-force Algorithm
[]

Brute-force Algorithm for “Fair” Message Matching % L
Naive algorithm that performs redundant matching attempts -
We have that II;: o

II; = Fault(id,,,) A Fix(idg,,) if id; = ids

and the following mailbox:
M = Fixg (3,.) -

9/13

Brute-force Algorithm
[]

Brute-force Algorithm for “Fair” Message Matching % L
Naive algorithm that performs redundant matching attempts -
We have that II;: o

II; = Fault(id,,,) A Fix(idg,,) if id; = ids

and the following mailbox:
M = Fixg (3,.) -
» Find a match for IT; from M
M[1] : (Fixy (3,.))

9/13

Brute-force Algorithm
[]

Brute-force Algorithm for “Fair” Message Matching % L
Naive algorithm that performs redundant matching attempts -
We have that II;: o

II; = Fault(id,,,) A Fix(idg,,) if id; = ids

and the following mailbox:
M = Fixg (3,.) -
» Find a match for IT; from M

M([1] : (Fixy (3,-)) = Not enough messages X

9/13

Brute-force Algorithm
[]

Brute-force Algorithm for “Fair” Message Matching % L
Naive algorithm that performs redundant matching attempts -
We have that II;: o

II; = Fault(id,,,) A Fix(idg,,) if id; = ids

and the following mailbox:
M = Fix; (3,.)- Faulty (1,_)-
» Find a match for IT; from M

M([1] : (Fixy (3,-)) = Not enough messages X

9/13

Brute-force Algorithm
[]

Brute-force Algorithm for “Fair” Message Matching % L
Naive algorithm that performs redundant matching attempts -
We have that II;: o

II; = Fault(id,,,) A Fix(idg,,) if id; = ids

and the following mailbox:
M = Fix; (3,.)- Faulty (1,_)-
» Find a match for IT; from M

M[1] : (Fixy (3,.)) - Not enough messages X
M][1-2] : (Fixq (3,-)-Faults (1,.))

9/13

Brute-force Algorithm
[]

Brute-force Algorithm for “Fair” Message Matching % L
Naive algorithm that performs redundant matching attempts -
We have that II;: o

II; = Fault(id,,,) A Fix(fdg,,) if id; = ids

and the following mailbox:
M = Fix; (3,_)- Faulty (1,_)- Fault3(2,_)-
» Find a match for IT; from M

M([1] : (Fixy (3,.)) - Not enough messages X
M[1-2] + (Fixy (3,.) -Faulty (1,))

9/13

Brute-force Algorithm
[]

Brute-force Algorithm for “Fair” Message Matching % L
Naive algorithm that performs redundant matching attempts -
We have that II;: o

II; = Fault(id,,,) A Fix(fdg,,) if id; = ids

and the following mailbox:
M = Fix; (3,_)- Faulty (1,_)- Fault3(2,_)-
» Find a match for IT; from M

M([1] : (Fixy (3,.)) - Not enough messages X
M[1-2] + (Fixy (3,.) -Faulty (1,))
M[1-2-3]

9/13

Brute-force Algorithm
[]

Brute-force Algorithm for “Fair” Message Matching % L
Naive algorithm that performs redundant matching attempts -
We have that II;: o

II; = Fault(id,,,) A Fix(fdg,,) if id; = ids

and the following mailbox:
M = Fix; (3,_)- Faulty (1,_)- Fault3(2,_)-
» Find a match for IT; from M
M([1] : (Fixy (3,.)) - Not enough messages X
M[1-2] : (Fixy (3,-)-Faults (1,.))
M[1-2-3] :+ (Fixy (3,-) Faulty(1,.))

9/13

Brute-force Algorithm
[]

Brute-force Algorithm for “Fair” Message Matching % L
Naive algorithm that performs redundant matching attempts -
We have that II;: o

II; = Fault(id,,,) A Fix(fdg,,) if id; = ids

and the following mailbox:
M = Fix; (3,_)- Faulty (1,_)- Fault3(2,_)-
» Find a match for IT; from M
M[1] : (Fix; (3,2)) = Not enough messages X
M[1-2] : (Fixy (3,-)-Faults (1,.))
M[1-2-3] + (Fixy (3,.)-Faulty(1,.)) , (Fixy (3,_) Faults(2,.))

9/13

Brute-force Algorithm
[]

Brute-force Algorithm for “Fair” Message Matching % L
Naive algorithm that performs redundant matching attempts & :g‘ﬂg o
We have that II;: o

II; = Fault(id,,,) A Fix(fdg,,) if id; = idy

and the following mailbox:
M = Fix; (3,.)- Faultg (1,_)- Faults(2,_)- Faulty(3,-)
» Find a match for IT; from M
M[1] : (Fix; (3,2)) = Not enough messages X
M[1-2] : (Fixy (3,-)-Faults (1,.))
M[1-2-3] + (Fixy (3,.)-Faulty(1,.)) , (Fixy (3,_) Faults(2,.))

9/13

Brute-force Algorithm
[]

Brute-force Algorithm for “Fair” Message Matching % L
Naive algorithm that performs redundant matching attempts & :g‘ﬂg o
We have that II;: o

II; = Fault(id,,,) A Fix(fdg,,) if id; = idy

and the following mailbox:
M = Fixq (3,.)- Faulte (7,_)- Faultg (2,) Faulty(3,.)
» Find a match for IT; from M

M[1] : (Fix; (3,2)) = Not enough messages X
M([1-2] : (Fix; (3,.)-Faults (1,.))
M[1-2-3] + (Fixq(3,-) -Faulty(1,.)) , (Fixq(3,-) Faults(2,.))
M[1-2-3-4] : (Fixq (5,.) Faulty (7,.)) , (Fixy (3,-)-Faults(2,.)) ,

9/13

Brute-force Algorithm
[]

Brute-force Algorithm for “Fair” Message Matching % L
Naive algorithm that performs redundant matching attempts & :g‘ﬂg o
We have that II;: o

II; = Fault(id,,,) A Fix(fdg,,) if id; = idy

and the following mailbox:
M = Fixq (3,.)- Faulte (7,_)- Faultg (2,) Faulty(3,.)
» Find a match for IT; from M

M[1] : (Fix; (3,2)) = Not enough messages X
M[1-2] + (Fixq(3,-) Faulty(1,.))
M[1-2-3] + (Fixq(3,-) -Faulty(1,.)) , (Fixq(3,-) Faults(2,.))
M[1-2-3-4] + (Fixq(3,-)-Faulty(1,.)) , (Fixq(3,-) -Faults(2,.)) , (Fixy (3,-) Faulty(3,-))

9/13

Stateful Tree-based Algorithm
®0

Stateful Tree-based Algorithm for “Fair” Message Matching

Use state to track partial matches and avoid redundant matching attempts Ko 2 &%
Recall that I1;: R
IT; = Fault(idy,) A Fix(idg,_)if id; = idy W g R
and the following mailbox: B
M =
0 Check if id; = ids

10/13

Stateful Tree-based Algorithm
®0

Stateful Tree-based Algorithm for “Fair” Message Matching

Use state to track partial matches and avoid redundant matching attempts X 2 ax
Recall that I1;: 8% ;%; a8
IT; = Fault(idy,) A Fix(idg,_)if id; = idy &7 = Ty

and the following mailbox:

M = Fault, (Z,,) .

0 Check if 7d; = ids

10/13

Stateful Tree-based Algorithm
®0

Stateful Tree-based Algorithm for “Fair” Message Matching

Use state to track partial matches and avoid redundant matching attempts ~ *» = %
Recall that I1;: 8% :2; 8
IT; = Fault(idy,) A Fix(idg,_)if id; = idy &7 = Ty
and the following mailbox: B
M = Fault, (Z,,) .
0 Check if ’id] = 7(13
L{Faultl} » Not enough messages to match

10/13

Stateful Tree-based Algorithm
®0

Stateful Tree-based Algorithm for “Fair” Message Matching

Use state to track partial matches and avoid redundant matching attempts ~ *. = %
Recall that I1;: 8. :’gﬁg -
IT; = Fault(idy,) A Fix(idg,_)if id; = idy &7 = Ty
and the following mailbox: B
M = Faulty (1,)- Faulty (2,)-
0 Check if ’id] = 7(13
L{Faultl} » Not enough messages to match

10/13

Stateful Tree-based Algorithm
®0

Stateful Tree-based Algorithm for “Fair” Message Matching

Use state to track partial matches and avoid redundant matching attempts X ® &
Recall that I1;: 8% :%; a8
II; = Fault(’édl , ,) A FiX(’idg, ,) if id; = ids ,“.8 g E’,‘&:
and the following mailbox: B
M = Faulty (1,)- Faulty (2,)-
0 Check if ’I:d[= 7(13
{Fault,} » Not enough messages to match
{Fault,}

10/13

Stateful Tree-based Algorithm
®0

Stateful Tree-based Algorithm for “Fair” Message Matching

Use state to track partial matches and avoid redundant matching attempts N 2 o
Recall that I1;: R
IT; = Fault(idy,) A Fix(idg,_)if id; = idy . g Tg
and the following mailbox: B
M = Faulty (1,_)- Faulty(2,_)- Faultz(3,.)-
0 Check if id; = id»
{Fault,} » Not enough messages to match
{Fault,}

10/13

Stateful Tree-based Algorithm
®0

Stateful Tree-based Algorithm for “Fair” Message Matching

Use state to track partial matches and avoid redundant matching attempts %, = %
Recall that I1;: R
IT; = Fault(id;,) A Fix(ide,)ifid; = idy o 5 B

and the following mailbox: B

M = Faulty (1, ,) - Faults (27 ,) - Faults (3,) -

0 Check if ’I:d[= 7(13

| (Fault,} » Not enough messages to match

—{Fault,}

L_{Fault;}

10/13

Stateful Tree-based Algorithm
®0

Stateful Tree-based Algorithm for “Fair” Message Matching

Use state to track partial matches and avoid redundant matching attempts X ® &
Recall that I1;: R
IT; = Fault(id;,) A Fix(ide,)ifid; = idy o 5 B

and the following mailbox: B

M = Faulty (1,)- Faulty (2,)- Faults (5,)- Fixq (3,)

0 Check if ’I:d[= 7(13

| (Fault,} » Not enough messages to match

—{Fault,}

L_{Fault;}

10/13

Stateful Tree-based Algorithm
®0

Stateful Tree-based Algorithm for “Fair” Message Matching

Use state to track partial matches and avoid redundant matching attempts Ko 2 g"&'
Recall that I1;: 8% :%ég a8
IT; = Fault(idy,) A Fix(idg,_)if id; = idy &7 = Ty

and the following mailbox:
M = Faulty (1,)- Faulty (2,)- Faults (5,)- Fixq (3,)

0 Check if 7d; = ids
—{Fault,}

{Fault,,Fix,}

—{Fault,}

L_{Fault;}

10/13

Stateful Tree-based Algorithm
®0

Stateful Tree-based Algorithm for “Fair” Message Matching

Use state to track partial matches and avoid redundant matching attempts Ko 2 g"&'
Recall that I1;: 8% :%ég a8
IT; = Fault(idy,) A Fix(idg,_)if id; = idy &7 = Ty

and the following mailbox:
M = Faulty (1,)- Faulty (2,)- Faults (5,)- Fixq (3,)

0 Check if 7d; = ids

—{Fault,}
. » Attempt 1: 7 + 3
{Fault,,Fix,}

—{Fault,}

L_{Fault;}

10/13

Stateful Tree-based Algorithm
®0

Stateful Tree-based Algorithm for “Fair” Message Matching

Use state to track partial matches and avoid redundant matching attempts X 2 g"&'
Recall that I1;: 8% :%ég a8
IT; = Fault(idy,) A Fix(idg,_)if id; = idy . g T

and the following mailbox:
M = Faulty (1,)- Faulty (2,)- Faults (5,)- Fixq (3,)

¢ Check if id; = idy
—{Fault,}

) » Attempt 1: 7 + 3 X
{Fault,,Fix,}

—{Fault,}

L_{Fault;}

10/13

Stateful Tree-based Algorithm
®0

Stateful Tree-based Algorithm for “Fair” Message Matching

Use state to track partial matches and avoid redundant matching attempts X 2 g"&'
Recall that I1;: 8% :%ég a8
IT; = Fault(idy,) A Fix(idg,_)if id; = idy . g T

and the following mailbox:
M = Faulty (1,)- Faulty (2,)- Faults (5,)- Fixq (3,)

¢ Check if id; = idy
—{Fault,}
fffffffffffff » Attempt 1: 7 = 3 X

—{Fault,}

L_{Fault;}

10/13

Stateful Tree-based Algorithm
®0

Stateful Tree-based Algorithm for “Fair” Message Matching

Use state to track partial matches and avoid redundant matching attempts X 2 g"&'
Recall that I1;: 8% :%ég a8
IT; = Fault(idy,) A Fix(idg,_)if id; = idy . g T

and the following mailbox:
M = Faulty (1,)- Faulty (2,)- Faults (5,)- Fixq (3,)

¢ Check if id; = idy
—{Fault,}
fffffffffffff » Attempt 1: 7 = 3 X

—{Fault,}
{Fault,,Fix,}

L_{Fault;}

10/13

Stateful Tree-based Algorithm
®0

Stateful Tree-based Algorithm for “Fair” Message Matching

Use state to track partial matches and avoid redundant matching attempts X 2 g"&'
Recall that I1;: 8% :’2; a8
II; = Fault(idl , ,) A FiX(’idg, ,) if id; = ido .“.8 E, & &

and the following mailbox:
M = Faulty (1,)- Faulty (2,)- Faults (5,)- Fixq (3,)

¢ Check if id; = idy
—{Fault,}
fffffffffffff » Attempt 1: 7 = 3 X

|_{Fault,} » Attempt 2: 2+ 3

{Fault,,Fix,}

L {Faults}

10/13

Stateful Tree-based Algorithm
®0

Stateful Tree-based Algorithm for “Fair” Message Matchmg

Use state to track partial matches and avoid redundant matching attempts b B g"&'
Recall that I1;: R
II; = Fault(idl , ,) A FiX(’idg, ,) if id; = ido ng ? B @

and the following mailbox:
M = Faulty (1,)- Faulty (2,)- Faults (5,)- Fixq (3,)

] Check if idy = 7(]3
—{Fault,}

» Attempt 1: 7 # 3 X

L {Fault,} » Attempt 2: 2+ 3 X

{Fault,, Fix,}

L_{Fault;}

10/13

Stateful Tree-based Algorithm
®0

Stateful Tree-based Algorithm for “Fair” Message Matchmg

Use state to track partial matches and avoid redundant matching attempts b B g"&'
Recall that I1;: R
II; = Fault(idl , ,) A FiX(’idg, ,) if id; = ido ng ? B @

and the following mailbox:
M = Faulty (1,)- Faulty (2,)- Faults (5,)- Fixq (3,)

] Check if idy = 7(]3
—{Fault,}

» Attempt 1: 7 +# 3 X
—{Falji;;} 77777777 » Attempt 2: 2+ 3 X

L_{Fault;}

10/13

Stateful Tree-based Algorithm
®0

Stateful Tree-based Algorithm for “Fair” Message Matchmg

Use state to track partial matches and avoid redundant matching attempts b B g"&'
Recall that I1;: R
II; = Fault(idl , ,) A FiX(’idg, ,) if id; = ido ng ? B @

and the following mailbox:
M = Faulty (1,)- Faulty (2,)- Faults (5,)- Fixq (3,)

] Check if idy = 7(]3
—{Fault,}

» Attempt 1: 7 +# 3 X
—{Falji;;} 77777777 » Attempt 2: 2+ 3 X

L_{Fault;}

{Faults, Fix,}

10/13

Stateful Tree-based Algorithm
®0

Stateful Tree-based Algorithm for “Fair” Message Matchmg

Use state to track partial matches and avoid redundant matching attempts b B g"&'
Recall that I1;: R
II; = Fault(idl , ,) A FiX(’idg, ,) if id; = ido ng ? B @

and the following mailbox:
M = Faulty (1,)- Faulty (2,)- Faults (5,)- Fixq (3,)

] Check if idy = 7(]3
—{Fault,}

» Attempt 1: 7 # 3 X

L {Fault,} » Attempt 2: 2 + 3 X
Lifaut, Fixix > Attempt 3: 5 -
L {Faults}

{Faults, Fix,}

10/13

Stateful Tree-based Algorithm
®0

Stateful Tree-based Algorithm for “Fair” Message Matchmg

Use state to track partial matches and avoid redundant matching attempts b B g"&'
Recall that I1;: R
II; = Fault(idl , ,) A FiX(’idg, ,) if id; = ido ng ? B @

and the following mailbox:
M = Faulty (1,)- Faulty (2,)- Faults (5,)- Fixq (3,)

] Check if idy = 7(]3
—{Fault,}

» Attempt 1: 7 # 3 X

L {Fault,} » Attempt 2: 2 + 3 X
Lifaut, Fixix > Attempt 3: 5 -
L {Faults}

{Faults, Fix,}

10/13

Stateful Tree-based Algorithm
®0

Stateful Tree-based Algorithm for “Fair” Message Matchmg

Use state to track partial matches and avoid redundant matching attempts b B g"&'
Recall that I1;: R
II; = Fault(idl , ,) A FiX(’idg, ,) if id; = ido ng ? B @

and the following mailbox:
M = Faulty (1,)- Faulty (2,)- Faults (5,)- Fixq (3,)

] Check if idy = 7(]3
—{Fault,}

» Attempt 1: 7 # 3 X

L {Fault,} » Attempt 2: 2 + 3 X
Lifaut, Fixix > Attempt 3: 5 -
L {Faults}

{Faults, Fix,}

10/13

Stateful Tree-based Algorithm
®0

Stateful Tree-based Algorithm for “Fair” Message Matchmg

Use state to track partial matches and avoid redundant matching attempts b B g"&'
Recall that I1;: R
IT; = Fault(idy,) A Fix(idg,_)if id; = idy " L e "

and the following mailbox:
M = Faulty (1,)- Faulty (2,)- Faults (5,)- Fixq (3,)

(] Check if idy = 7(]3
I {Fault,}

» Attempt 1: 7 # 3 X

| {Fault.,} > Attempt 2: 2+3 X
Liaites Fixiix > Attempt 3: -
| (Fault,} We don't record a partlal match
Fixy because we matched ear-

{Fault(;,FiX4} I.
ler
Li{Fixs} 10/13

Stateful Tree-based Algorithm
oce

Tree Construction (continued) x5 K
We now consider the second join pattern Il5: - R

I = Fault(_, ;) A Fault(ids,ts) A Fix(ids,_)ifide = ids && to —t; > 1Oﬂm5ihg Dgs
and the following mailbox:

M = Faulty (1,10:35)- Faulty (2, 10:40)- Faults(3,10:55)- Fixs (3, 11:00)

11/13

Stateful Tree-based Algorithm
oce

Tree Construction (continued) Ko K

We now consider the second join pattern Ils: o o gl
I = Fault(_, ;) A Fault(ids,ts) A Fix(ids,_)ifide = ids && to —t; > 1Qﬂmmé B

B,

and the following mailbox: N

M = Faulty (1,10:35)- Faulty (2, 10:40)- Faults(3,10:55)- Fixs (3, 11:00)

L (Fault,} Check if idy = idy && ty — t; > 10min:

{Fault,,Fault,}
Lpautes Fauies, Fing > Attempt 1.
= 3 && 10: 40 - 10 : 35 > 10min X
L{Faultl,Fault;g,Fim}
| (Faulte) > Attempt 2:
L (Fault,, Fault.) 3=8&& 10:55-10:35 > 10min

L{Faultz, Faults, Fix,}

{Fault,,Faults}

[-{Fault,}
{Faults, Fix,}

—{Fixs} 11/13

Stateful Tree-based Algorithm
oce

Tree Construction (continued) Ko K

We now consider the second join pattern Ils: o o gl
I = Fault(_, ;) A Fault(ids,ts) A Fix(ids,_)ifide = ids && to —t; > 1Qﬂmmé B

B,

and the following mailbox:

M = Fault; (1,10:35)- Faulty(2,10:40)- Faults(3,10:55)- Fixq(3,11:00)

| (Fault,} Check if ids = idg && to — t; > 10min:
{Fault,,Fault,}
Lpautes Fauies, Fing > Attempt 1.

=3 && 10: 40— 10: 35 > 10min X

{Fault,,Faults}
L{Faultl, Faults, Fix,}

| (Fault,} > Attempt 2:
L {Fault,, Faulte} 3=3&& 10:55-10:35 > 10min
raute Faut Fixy We avoid computing (partial)
[-{Fault,}

_ matches
{Faults, Fix,}

—{Fixs} 11/13

Conclusion

Performance Evaluation

5 Smart House benchmark with upto 32 random messages. 5 iterations .
10°- -10
- «—— Brute-force Algorithm --e-- Brute-force Algorithm Matches per second
14 Stateful Tree-based Algorithm --x-- Stateful Tree-based Algorithm Matches per second

Time (s) - log scale
Matches per second - log scale

0 4 8 12 16 20 24 28 32
Number of random messages sent

Figure: Smart House benchmark based on (Rodriguez-Avila et al. 2021)
12/13

Conclusion
(o] }

Contributions & Future Work
Contributions:
» Novel specification of fair and deterministic join pattern matching

> Novel stateful tree-based matching algorithm to avoid redundant
recomputations

» Proof of correctness of the stateful fair matching algorithm
» JoinActors: novel Scala 3 library with brute-force & stateful matching

» Established a benchmark suite to evaluate join pattern matching performance

13/13

Conclusion
(o] }

Contributions & Future Work
Contributions:
» Novel specification of fair and deterministic join pattern matching

> Novel stateful tree-based matching algorithm to avoid redundant
recomputations

» Proof of correctness of the stateful fair matching algorithm
» JoinActors: novel Scala 3 library with brute-force & stateful matching

» Established a benchmark suite to evaluate join pattern matching performance

Future Work:

Expand benchmark suite with more examples from the literature

v

v

Refine and optimise the Scala 3 implementation of join patterns

v

Alternative matching policies

v

Verify join pattern unreachablity

13/13

Appendix
[1 JeleJe)

Smal’t House Examp|e (Rodriguez-Auvila et al. 2021) l

1 case (Motion(_, mStatus, mRoom, t@),
2 AmbientLight(_, value, alRoom, t1),
Light(_, 1Status, 1Room, t2)) if bathroomOccupied(...) => ...

case (Motion(_, mStatus@, mRoom@, t@),
5 Contact(_, cStatus, cRoom, t1),
Motion(_, mStatus1, mRooml, t2)) if occupiedHome(...) => ...

7 case (Motion(_, mStatus@, mRoom@, t@),
Contact(_, cStatus, cRoom, t1),
Motion(_, mStatusl, mRooml, t2)) if emptyHome(...) => ...

13/13

Smart House Examp|e (Rodriguez-Avila et al. 2021) ll

Smart House benchmark with upto 32 random messages. 5 iterations
103+
- e«—=— Brute-force Algorithm

 “— Stateful Tree-based Algorithm

- Brute-force Algorithm Matches per second
- Stateful Tree-based Algorithm Matches per second

Time (s) - log scale

0 4 8 12 16 20 24 28 32
Number of random messages sent

-104

Matches per second - log scale

13/13

JoinActors vs. Evrete Benchmark

RETE vs. Stateful Tree-based Algorithm with 20 Prefix Messages

/

—@— Stateful Tree-based Algorithm

—— Evrete-based implementation

2

33)0

g 10 /

20

= D/a
=

)

g 107t

&

0 4 8 12 16 20
Number of prefix messages

JoinActors vs. Evrete (lower is better)

Time (s) - log scale

RETE vs. Stateful Tree-based Algorithm with 20 Prefix Messages
With Heavy Guards

L —
—

—8— Stateful Tree-based Algorithm

—— Evrete-based implementation

10!
10°

10-!

0 4 8 12 16 20
Number of prefix messages

JoinActors vs. Evrete (lower is better)

> Evrete is a mature and highly optimised RETE-based Java rule engine library

» JoinActors is our proof-of-concept Scala 3 actor library

13/13

Appendix
[e]e]e] Jo)

Join Patterns Implementation in Scala 3

1 inline def receive[M, TI](
2 inline f: ActorRef[M] => PartialFunction[Any, Result[T]]

3): MatchingAlgorithm => Matcher[M, Result[T]]

13/13

Appendix
[ee]e]e])

Macro Expansion & Code Transformation

The body of receive:

1

2 expr.asTerm match

3 case Inlined(_, _, Block(_, Block(stmts, _))) =>

4 stmts.head match

5 case DefDef(_, List(TermParamClause(params)), _, Some(Block(_,
~ Block(body, _)))) =>

6 body.head match

7 case DefDef(_, _, _, Some(Match(_, cases))) =>

8 cases.flatMap { generateJoinPattern[M, T1(_) }

9

13/13

A problem in concurrency [Tro94]

Problem Definition

Santa Claus sleeps in his shop up at the North Pole, and can only be wakened by either all
nine reindeer being back from their year long vacation on the beaches of some tropical island in the
South Pacific, or by some elves who are having some difficulties making the toys. One elf's problem
is never serious enough to wake up Santa (otherwise, he may never get any sleep), so, the elves visit
Santa in a group of three. When three elves are having their problems solved, any other elves wishing
to visit Santa must wait for those elves to return. If Santa wakes up to find three elves waiting at his
shop's door, along with the last reindeer having come back from the tropics, Santa has decided that
the elves can wait until after Christmas, because it is more important to get his sleigh ready as soon
as possible. (It is assumed that the reindeer don't want to leave the tropics, and therefore they stay
there until the last possible moment. They might not even come back, but since Santa is footing the
bill for their year in paradise ... This could also explain the quickness in their delivering of presents,
since the reindeer can't wait to get back to where it is warm.) The penalty for the last reindeer to
arrive is that it must get Santa while the others wait in a warming hut before being harnessed to the
sleigh.

The solution with semaphores takes about
2 pages of C code [Tro94]!

A Solution

The solution that has worked best over the years, and also appears to be the simplest, is
written using C statements and pseudo-code. (Constants are also used in case the number of reindeer
were to change, or if the group size of "solution-secking" elves is modified.) Basically, the reindeer
arrive, update the count of how many have arrived, and the last one wakes up Santa. An elf, upon
discovering a problem, attempts to modify the count for the number of elves with a problem and
either: waits outside Santa's shop if he/she is the first or second such elf; knocks on the door and
wakes up Santa if that elf is the third one; or waits in the elves' shop until the elves currently with
Santa start coming back. (The code for this solution can be found in the Appendix.)

1 receive

2 {reindeer, Pidl} and {reindeer, Pid2) and {reindeer, Pid3}

3 and {reindeer, Pid4} and {reindeer, PidS} and {reindeer, Pidé}

A and {reindeer, Pid7} and {reindeer, Pid8} and {reindeer, Pid9} —>

io:format ("Ho, ho, ho! let’s deliver presents!™n"),

E [Pidl, Pid2, Pid3, Pid4, PidS, Pid6, Pid7, Pids, Pidd];

- {elf, Pidl} and {elf, Pid2} and {elf, Pid3} —>

s io:format ("Ho, ho, ho! Let’s discuss R&D possibilities!™n"),
B [Pidl, Pid2, Pid3]

10 end

28/35

Applying Concurrency with generative
communication [CG89]

29/35

A model-driven approach for multi-robots missions [BTBS26]

Multi-robot application are complex: robots’ interactions are “low-level”

Model-driven development based on BPMN and X-KLAIM lowers barries

X-Klaim
code

Java
code

X-Klaim robotics

application

Jjava_rosbridge
library

Gazebo simulator

30/35

Business Process Modelling Notation [BTBS26]

30sec.
Work
Alone
send)
. position notjoin
g W
5 jork
g O—. Explore Alone
&
start H =] ond
|
| arrived
! ! Work
} Together
| I =]
| 1 |
[| [l !
it 7 |
——-- fagr PR join notification | ! | anva
______ | notification
| | notjoin | |
notification
I I rotfator y
| | | /s
| | |
| | N |
|) i\’ |
v g I oty |
notjoin
5 Evaluate | \
£ Position
H I |
et end
posen Move To Help the
is reachable? Explorer
join arival

31/35

Business Process

Modelling Notation

send
position

30 sec.

not join

Work
Alone

join

8
5 Work
g O—. Explore Alone
&
start H =] ond
|
| arrived
! ! Work
} Together
| | 4 [22]
| | | !
[| 1 !
sition 7 |
——-- fagr PR join notification | | | anva
______ | notification
| | notjoin | |
! e
| | | /s
I | I
| | N |
| | ¥/ |
v (=9 | notify |
notjoin
5 Evaluate | \
£ Position
H I |
get end
position
Move To Help the
is reachable? Explorer

32/35

From BPMN to X-Klaim [BTBS26]

XOR

AND

Event-Based
(between
messages)

iftcondition)(
translate(P1)
inely@self |

else{
translate(P2)
in(e2)@self |

out(e3)@self

while(condition){
translate(P1)
in(e)@self |

out(e2)@self

eval(new ProcP1())@self
evalinew ProcP2())@self
in(el)@self

in(e2)@self
out(e3)@self

var eventOccured = false
while(leventOccured)]

if(in(m1,vars]) @self within pollTimeout){

eventOceured = true
wanslate(P1)
in(el)@self |

else if(in(m2,vars2) @self within pollTimeout){

eventOccured = true

translate(P2)

in(e2)@self })
out(e3)@self

/ Processes 1o be

// added to the node

proc ProcP1(){
translate(P1)

proc ProcP2(){
translate(P2)

33/35

Klaim

Network-aware programming and generative communication:
X-KLAIM: eXtended Kernel Language for Agents Interaction and Mobility

Network
MRS {

Drone { (new DroneBehavior(Tractor)) @ self }
Tractor { (new TractorBehavior()) @ self }

}

where

Some processes

DroneBehavior(Locality Tractor) {
(new WeedHandler(Tractor)) @ self
(new TakeOff("el”))tractor @ self
("el”) @ self

(new Explore(”e2")) @ self
("e2") @ self

(new Land("e3")) @ self
("e3") @ self

TractorBehavior() {
(WEED_POSITION, Double x, Double y) @ self
(new MoveTo("e4", x, y)) @ self
("ed") @ self
(new CutGrass(”e5")) @ self
("e5”) @ self
(new ReturnToBase("e6")) @ self
("e6”) @ self

34/35

Programming support

2.xklaim Current and Index - Eclipse

xklai - Compare /com

File Edit Navigate Search Project Run Window Help

&

- Bi%~A~i%~0~QA- B85 F~ D G :

=/ Compare MissionRobot2.xklaim Current and Index x
¢ Xklaim Compare
Local: MissionRobot2.xklaim
1package xklaim.missionrobot2
2
3import klava.lLocality
4import xklaim.activities.*
5

Index: MissionRobot2.xklaim (editable)
1package xklaim.missionrobot2
2
3import klava.locality
4import xklaim.activities.*

5
6proc MissionRobot2() {

6proc MissionRobot2() {

}o{ 7 in('Message_2g93ger', val Double x, val Dou

| 7] in('message_2g93ger')eself
8 8
9 Thread.sleep(6000) 9 Thread.sleep(3000)
10 10
11 eval(new MoveTo('Flow_1i95ynf'/* TODO: Pass other necessary args */))@self - : 11 eval(new MoveTo('Flow_1i95ynf', 'robot2',x,y
12 in('Flow_1i95ynf')@self il ! i95ynf ')@self
13
14
15}
16

35/35

[BTBS26]

[CG8Y]

[Eck02]

[FGO6]

[HHM*24a]

Khalid Bourr, Francesco Tiezzi, Lorenzo Bettini, and Stefano Seriani.
Translating bpmn models into x-klaim programs for developing multi-robot
missions.

International Journal on Software Tools for Technology Transfer, pages
1433-2787, January 2026.

Nicholas Carriero and David Gelernter. Linda in context.
Communications of the ACM, 32(4):444—-458, April 1989.

Bruce Eckel. Thinking in Java, 4rd Edition.

Prentice-Hall, December 2002. Chapter 13. The beta version of the 3rd edition
is available at

http://www. javaclue.org/pub/java/ebooks/tij/tij-3rd-ed.pdf.

Cedric Fournet and George Gonthier. The reflexive CHAM and the join-calculus.
In Conference Record of POPL '96: The 23"4 ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 372-385, St.
Petersburg Beach, Florida, January 1996.

Philipp Haller, Ayman Hussein, Herndn C. Melgratti, Alceste Scalas, and Emilio

Tuosto. Fair join pattern matching for actors.
35/35

http://www.javaclue.org/pub/java/ebooks/tij/tij-3rd-ed.pdf

[HHM*24b]

[Tro94]

In Jonathan Aldrich and Guido Salvaneschi, editors, 38th European Conference
on Object-Oriented Programming, ECOOP 2024, Vienna, Austria, September
16-20, 2024, volume 313 of LIPIcs, pages 17:1-17:28. Schloss Dagstuhl -
Leibniz-Zentrum fiir Informatik, 2024.

Philipp Haller, Ayman Hussein, Hernan C. Melgratti, Alceste Scalas, and Emilio
Tuosto. Fair join pattern matching for actors (artifact).
Dagstuhl Artifacts Ser., 10(2):8:1-8:3, 2024.

John A. Trono. A new exercise in concurrency.
SIGCSE Bull., 26(3):8-10, September 1994.

35/35

