
Modelling and Validation of
Concurrent System

António Ravara

May 7, 2024

Applications

Models in Computer Science

Aim
Formally and rigorously represent the behaviour of systems

Some kinds

1. Sequential programming is adequately modeled with functions
From an input calculate in finite time an output
(if the problem is decidable).

2. Reactive systems are adequately modeled with processes
Represent (possibly infinite) communications/events patterns

2

Models in Computer Science

Aim
Formally and rigorously represent the behaviour of systems

Some kinds

1. Sequential programming is adequately modeled with functions
From an input calculate in finite time an output
(if the problem is decidable).

2. Reactive systems are adequately modeled with processes
Represent (possibly infinite) communications/events patterns

2

Models in Computer Science

Aim
Formally and rigorously represent the behaviour of systems

Some kinds

1. Sequential programming is adequately modeled with functions
From an input calculate in finite time an output
(if the problem is decidable).

2. Reactive systems are adequately modeled with processes
Represent (possibly infinite) communications/events patterns

2

The Calculus of Communicating Systems

Key ingredients

1. A language to specify communication-based concurrent
systems.

2. An execution mechanism
Structural Operation Semantics.

3. A mathematical model supporting behavioural reasoning
Labelled Transition Systems.

4. A congruence notion, capturing behavioural equivalence
Bisimilarity.

3

The Calculus of Communicating Systems

Key ingredients

1. A language to specify communication-based concurrent
systems.

2. An execution mechanism
Structural Operation Semantics.

3. A mathematical model supporting behavioural reasoning
Labelled Transition Systems.

4. A congruence notion, capturing behavioural equivalence
Bisimilarity.

3

The Calculus of Communicating Systems

Key ingredients

1. A language to specify communication-based concurrent
systems.

2. An execution mechanism
Structural Operation Semantics.

3. A mathematical model supporting behavioural reasoning
Labelled Transition Systems.

4. A congruence notion, capturing behavioural equivalence
Bisimilarity.

3

The Calculus of Communicating Systems

Key ingredients

1. A language to specify communication-based concurrent
systems.

2. An execution mechanism
Structural Operation Semantics.

3. A mathematical model supporting behavioural reasoning
Labelled Transition Systems.

4. A congruence notion, capturing behavioural equivalence
Bisimilarity.

3

For what is CCS used?

Versions of it are used to model and show correct various types of
systems:

1. Hardware design
2. Operating Systems
3. Systems Biology
4. (Business and Computer) Protocols

A famous example

In 1995, Gavin Lowe (Univ of Oxford) found an attack on the
Needham-Schroeder public-key authentication protocol

He was actually trying to prove it correct...

Let us illustrate how to use CCS by implementing a communication
protocol, and by proving it correct.

4

For what is CCS used?

Versions of it are used to model and show correct various types of
systems:

1. Hardware design
2. Operating Systems
3. Systems Biology
4. (Business and Computer) Protocols

A famous example

In 1995, Gavin Lowe (Univ of Oxford) found an attack on the
Needham-Schroeder public-key authentication protocol

He was actually trying to prove it correct...

Let us illustrate how to use CCS by implementing a communication
protocol, and by proving it correct.

4

For what is CCS used?

Versions of it are used to model and show correct various types of
systems:

1. Hardware design
2. Operating Systems
3. Systems Biology
4. (Business and Computer) Protocols

A famous example

In 1995, Gavin Lowe (Univ of Oxford) found an attack on the
Needham-Schroeder public-key authentication protocol

He was actually trying to prove it correct...

Let us illustrate how to use CCS by implementing a communication
protocol, and by proving it correct.

4

The Alternating-Bit Protocol

ABP is a simple communication protocol which assumes that the
network may loose messages. Its aim is managing the
retransmission of lost messages in a communicating system.

Description

1. Messages have a content and an extra bit.

2. Messages are repeatedly sent (with the same bit) until an
acknowledgement message with the same bit is received.

3. Consider a sender S and a receiver R , and assume a
communication medium M from S to R (which do not
communicate directly).

5

The Alternating-Bit Protocol

ABP is a simple communication protocol which assumes that the
network may loose messages. Its aim is managing the
retransmission of lost messages in a communicating system.

Description

1. Messages have a content and an extra bit.

2. Messages are repeatedly sent (with the same bit) until an
acknowledgement message with the same bit is received.

3. Consider a sender S and a receiver R , and assume a
communication medium M from S to R (which do not
communicate directly).

5

The Alternating-Bit Protocol

ABP is a simple communication protocol which assumes that the
network may loose messages. Its aim is managing the
retransmission of lost messages in a communicating system.

Description

1. Messages have a content and an extra bit.

2. Messages are repeatedly sent (with the same bit) until an
acknowledgement message with the same bit is received.

3. Consider a sender S and a receiver R , and assume a
communication medium M from S to R (which do not
communicate directly).

5

The Alternating-Bit Protocol

ABP is a simple communication protocol which assumes that the
network may loose messages. Its aim is managing the
retransmission of lost messages in a communicating system.

Description

1. Messages have a content and an extra bit.

2. Messages are repeatedly sent (with the same bit) until an
acknowledgement message with the same bit is received.

3. Consider a sender S and a receiver R , and assume a
communication medium M from S to R (which do not
communicate directly).

5

The Alternating-Bit Protocol

The protocol at work

1. R sends an acknowledgement message to S (with the same
bit) as soon as it receives the first message.

The first message received is processed; the subsequent are
just acknowledge.

2. S stops transmitting a message when it receives an
acknowledgement with the same bit.
Then it flips the bit and starts transmitting another message.

How can we implement it in CCS? We need to be able of sending
values (the bit, in this case).

6

The Alternating-Bit Protocol

The protocol at work

1. R sends an acknowledgement message to S (with the same
bit) as soon as it receives the first message.
The first message received is processed; the subsequent are
just acknowledge.

2. S stops transmitting a message when it receives an
acknowledgement with the same bit.
Then it flips the bit and starts transmitting another message.

How can we implement it in CCS? We need to be able of sending
values (the bit, in this case).

6

The Alternating-Bit Protocol

The protocol at work

1. R sends an acknowledgement message to S (with the same
bit) as soon as it receives the first message.
The first message received is processed; the subsequent are
just acknowledge.

2. S stops transmitting a message when it receives an
acknowledgement with the same bit.

Then it flips the bit and starts transmitting another message.

How can we implement it in CCS? We need to be able of sending
values (the bit, in this case).

6

The Alternating-Bit Protocol

The protocol at work

1. R sends an acknowledgement message to S (with the same
bit) as soon as it receives the first message.
The first message received is processed; the subsequent are
just acknowledge.

2. S stops transmitting a message when it receives an
acknowledgement with the same bit.
Then it flips the bit and starts transmitting another message.

How can we implement it in CCS? We need to be able of sending
values (the bit, in this case).

6

Value-passing CCS

Let us consider a straightforward extension of CCS where, apart
from names, we also use value expressions (integer, boolean, etc).

To support communication of values

1. Outputs may send values: consider that the expression e

evaluates to value v (denoted) e ⇓ v :

a⟨e⟩.0 a⟨v⟩−→ 0

2. The correspondent inputs have a formal parameter:

a(x).P
a(x)−→ P

3. Communication happens as follows
a⟨e⟩.0 | a(x).P τ−→ 0 | P{x ← v}

Example: one place buffer (memory cell)

Cell = in(x).out⟨x⟩.Cell

7

Value-passing CCS

Let us consider a straightforward extension of CCS where, apart
from names, we also use value expressions (integer, boolean, etc).

To support communication of values

1. Outputs may send values: consider that the expression e

evaluates to value v (denoted) e ⇓ v :

a⟨e⟩.0 a⟨v⟩−→ 0

2. The correspondent inputs have a formal parameter:

a(x).P
a(x)−→ P

3. Communication happens as follows
a⟨e⟩.0 | a(x).P τ−→ 0 | P{x ← v}

Example: one place buffer (memory cell)

Cell = in(x).out⟨x⟩.Cell

7

Value-passing CCS

Let us consider a straightforward extension of CCS where, apart
from names, we also use value expressions (integer, boolean, etc).

To support communication of values

1. Outputs may send values: consider that the expression e

evaluates to value v (denoted) e ⇓ v :

a⟨e⟩.0 a⟨v⟩−→ 0

2. The correspondent inputs have a formal parameter:

a(x).P
a(x)−→ P

3. Communication happens as follows
a⟨e⟩.0 | a(x).P τ−→ 0 | P{x ← v}

Example: one place buffer (memory cell)

Cell = in(x).out⟨x⟩.Cell

7

Value-passing CCS

Let us consider a straightforward extension of CCS where, apart
from names, we also use value expressions (integer, boolean, etc).

To support communication of values

1. Outputs may send values: consider that the expression e

evaluates to value v (denoted) e ⇓ v :

a⟨e⟩.0 a⟨v⟩−→ 0

2. The correspondent inputs have a formal parameter:

a(x).P
a(x)−→ P

3. Communication happens as follows
a⟨e⟩.0 | a(x).P τ−→ 0 | P{x ← v}

Example: one place buffer (memory cell)

Cell = in(x).out⟨x⟩.Cell

7

Value-passing CCS

Let us consider a straightforward extension of CCS where, apart
from names, we also use value expressions (integer, boolean, etc).

To support communication of values

1. Outputs may send values: consider that the expression e

evaluates to value v (denoted) e ⇓ v :

a⟨e⟩.0 a⟨v⟩−→ 0

2. The correspondent inputs have a formal parameter:

a(x).P
a(x)−→ P

3. Communication happens as follows
a⟨e⟩.0 | a(x).P τ−→ 0 | P{x ← v}

Example: one place buffer (memory cell)

Cell = in(x).out⟨x⟩.Cell
7

Value-passing CCS

It is also useful to include a conditional process, to encode decisions:

if (e)P elseQ

executes either P or Q,
depending on the boolean value obtained from e

Example: natural addition

(parameters x and y , reply name r)

Sum(x , y , r) = if (y = 0) r⟨x⟩ elseSum(x + 1, y − 1, r)

8

Value-passing CCS

It is also useful to include a conditional process, to encode decisions:

if (e)P elseQ

executes either P or Q,
depending on the boolean value obtained from e

Example: natural addition

(parameters x and y , reply name r)

Sum(x , y , r) = if (y = 0) r⟨x⟩ elseSum(x + 1, y − 1, r)

8

Value-passing CCS

Example: n-place buffer (parametric definition)

Starts empty; it is able of storing n values. Let k ≥ 1.

ECell(n) = in(x).Buf (x , n)

Buf (x1, . . . , xk , n) = if (k = n)Out⟨x1, . . . , xk , n⟩ else
if (k < n) IO⟨x1, . . . , xk , n⟩ else 0

Out(x1, . . . , xk , n) = out⟨xk⟩Buf ⟨x1, . . . , xk−1, n⟩
In(x1, . . . , xk , n) = in(x).Buf ⟨x , x1, . . . , xk , n⟩
IO(x1, . . . , xk , n) = In⟨x1, . . . , xk , n⟩+ Out⟨x1, . . . , xk , n⟩

9

The Alternating-Bit Protocol in CCS

Description

• The medium starts with no message in transit;

• The Sender may receive (old) acknowledgement messages (of
a message already delivered) or accept a new message;

• once Sender accepts a new message it flips the bit (to
distinguish its acknowledgements from those of the previous
message) and starts repeatedly sending the message; or,

• if the received acknowledgement message contains the right
bit, then the deliver of the message is confirmed and Sender is
ready again to accept a new message.

10

The Alternating-Bit Protocol in CCS

Description

• The medium starts with no message in transit;

• The Sender may receive (old) acknowledgement messages (of
a message already delivered) or accept a new message;

• once Sender accepts a new message it flips the bit (to
distinguish its acknowledgements from those of the previous
message) and starts repeatedly sending the message; or,

• if the received acknowledgement message contains the right
bit, then the deliver of the message is confirmed and Sender is
ready again to accept a new message.

10

The Alternating-Bit Protocol in CCS

Description

• The medium starts with no message in transit;

• The Sender may receive (old) acknowledgement messages (of
a message already delivered) or accept a new message;

• once Sender accepts a new message it flips the bit (to
distinguish its acknowledgements from those of the previous
message) and starts repeatedly sending the message; or,

• if the received acknowledgement message contains the right
bit, then the deliver of the message is confirmed and Sender is
ready again to accept a new message.

10

The Alternating-Bit Protocol in CCS

Description

• The medium starts with no message in transit;

• The Sender may receive (old) acknowledgement messages (of
a message already delivered) or accept a new message;

• once Sender accepts a new message it flips the bit (to
distinguish its acknowledgements from those of the previous
message) and starts repeatedly sending the message; or,

• if the received acknowledgement message contains the right
bit, then the deliver of the message is confirmed and Sender is
ready again to accept a new message.

10

The Alternating-Bit Protocol in CCS

Let us ignore the content of the messages, assume b is the current
bit in use, and define the system as

System(b) = (new ack , rec , reply , send)

(Sender⟨b⟩ |Medium | Receiver⟨b⟩)

Sender(b) = accept.Sending⟨b + 1⟩+ ack(x).Sender⟨b⟩

with

Sending(b) = send⟨b⟩.Sending⟨b⟩+
ack(x).if (x = b) Sender⟨b⟩ elseSending⟨b⟩

Recall bit addition: 0 + 1 = 1 and 1 + 1 = 0

11

The Alternating-Bit Protocol in CCS

The Receiver has the following definition:

Receiver(b) =

rec(x).if (x = b + 1)Received⟨x , b + 1⟩ elseReceiver⟨b⟩

where

Received(x , b) = reply⟨b⟩.Received⟨x , b⟩+
rec(x).

if (x = b) deliver .Receiver⟨b⟩ elseReceived⟨x , b⟩

Medium connects Sender and Receiver , forwarding messages back
and forth, but in an unreliable way (may loose some messages):

Medium = StoR | RtoS ,where

StoR = send(x).(rec⟨x⟩.StoR + τ.StoR)

RtoS = reply(x).(ack⟨x⟩.RtoS + τ.RtoS)

12

The Alternating-Bit Protocol in CCS

The Receiver has the following definition:

Receiver(b) =

rec(x).if (x = b + 1)Received⟨x , b + 1⟩ elseReceiver⟨b⟩

where

Received(x , b) = reply⟨b⟩.Received⟨x , b⟩+
rec(x).

if (x = b) deliver .Receiver⟨b⟩ elseReceived⟨x , b⟩

Medium connects Sender and Receiver , forwarding messages back
and forth, but in an unreliable way (may loose some messages):

Medium = StoR | RtoS ,where

StoR = send(x).(rec⟨x⟩.StoR + τ.StoR)

RtoS = reply(x).(ack⟨x⟩.RtoS + τ.RtoS)
12

Correctness of the Alternating-Bit Protocol in CCS

Our implementation of ABP:

System(b) = (new ack , rec , reply , send)

(Sender⟨b⟩ |Medium | Receiver⟨b⟩)

• The initial state of the system behaves like a one-place buffer
(remembering the last used bit), ready to accept a message
and meanwhile discarding old acknowledgements.

• In spite of losses or of duplication of messages, exactly one
message should be transmitted.

Ideal system (not considering the content of the message)
Spec = accept.deliver .Spec

Correctness criterion
System(b) and Spec should be equivalent (for any b).

13

How to prove correct our implementation of the ABP?

Do we want to show that System(b) ∼ Spec ? This obviously does
not hold:

1. System(b) transits by accept to

(new ack , rec , reply , send)(Sending⟨b + 1⟩|Medium|Receiver⟨b⟩)

2. Spec transits by accept to deliver .Spec

3. System(b) can now do a (possibly infinite) sequence of
τ -steps, and then may do deliver

4. Spec can only do deliver

So, an attacker easily wins the bisimulation game...

However, the problem is that the bisimilarity relation discriminates
too much: the internal actions of System are not relevant as are
not observable and should be discarded.

14

How to prove correct our implementation of the ABP?

Do we want to show that System(b) ∼ Spec ? This obviously does
not hold:

1. System(b) transits by accept to

(new ack , rec , reply , send)(Sending⟨b + 1⟩|Medium|Receiver⟨b⟩)

2. Spec transits by accept to deliver .Spec

3. System(b) can now do a (possibly infinite) sequence of
τ -steps, and then may do deliver

4. Spec can only do deliver

So, an attacker easily wins the bisimulation game...

However, the problem is that the bisimilarity relation discriminates
too much: the internal actions of System are not relevant as are
not observable and should be discarded.

14

Weak bisimilarity

Again, a behavioural equivalence for concurrency...

Problem

Strong bisimilarity does not abstract away from τ actions.

a.τ.0 ?∼ a.0

a
��

a
��

τ.0 ̸∼ 0

We need to (carefully) disregard silent actions.

15

Again, a behavioural equivalence for concurrency...

Problem

Strong bisimilarity does not abstract away from τ actions.

a.τ.0 ?∼ a.0

a
��

a
��

τ.0 ̸∼ 0

We need to (carefully) disregard silent actions.

15

Again, a behavioural equivalence for concurrency...

Problem

Strong bisimilarity does not abstract away from τ actions.

a.τ.0 ?∼ a.0

a
��

a
��

τ.0 ̸∼ 0

We need to (carefully) disregard silent actions.

15

Weak bisimulation - a naïve approach

Let (Proc,Act, { a−→ | a ∈ Act}) be an LTS such that τ ∈ Act.

Weak Transition Relation
a

=⇒ =

{
(

τ−→)∗◦ a−→ ◦(τ−→)∗, if a ̸= τ

(
τ−→)∗, otherwise

• p
τ

=⇒ q denotes a transition from p to q by
zero or more τ actions.

• If a ̸= τ then p
a

=⇒ q denotes a transition from p to q by:
1. zero or more τ actions, followed by
2. a (strong) a transition, followed by
3. zero or more τ actions

16

Weak bisimulation - a naïve approach

Let (Proc,Act, { a−→ | a ∈ Act}) be an LTS such that τ ∈ Act.

Weak Transition Relation
a

=⇒ =

{
(

τ−→)∗◦ a−→ ◦(τ−→)∗, if a ̸= τ

(
τ−→)∗, otherwise

• p
τ

=⇒ q denotes a transition from p to q by
zero or more τ actions.

• If a ̸= τ then p
a

=⇒ q denotes a transition from p to q by:
1. zero or more τ actions, followed by
2. a (strong) a transition, followed by
3. zero or more τ actions

16

Weak bisimulation - a naïve approach

Let (Proc,Act, { a−→ | a ∈ Act}) be an LTS such that τ ∈ Act.

Weak Transition Relation
a

=⇒ =

{
(

τ−→)∗◦ a−→ ◦(τ−→)∗, if a ̸= τ

(
τ−→)∗, otherwise

• p
τ

=⇒ q denotes a transition from p to q by
zero or more τ actions.

• If a ̸= τ then p
a

=⇒ q denotes a transition from p to q by:
1. zero or more τ actions, followed by
2. a (strong) a transition, followed by
3. zero or more τ actions

16

Weak bisimilarity

Weak Simulation

A binary relation R ⊆ Proc× Proc is a weak simulation, if
whenever (p, q) ∈ R then for each a ∈ Act:

if p a−→ p′ then q
a

=⇒ q′ for some q′ such that (p′, q′) ∈ R

A weak simulation R is a weak bisimulation,

if R−1 is also a weak simulation.

Weak Bisimilarity

Two processes p, q ∈ Proc are weakly bisimilar (p1 ≈ p2), if there
exists a weak bisimulation R such that (p, q) ∈ R.

≈ = ∪{R | R is a weak bisimulation}

17

Weak bisimilarity

Weak Simulation

A binary relation R ⊆ Proc× Proc is a weak simulation, if
whenever (p, q) ∈ R then for each a ∈ Act:

if p a−→ p′ then q
a

=⇒ q′ for some q′ such that (p′, q′) ∈ R

A weak simulation R is a weak bisimulation,

if R−1 is also a weak simulation.

Weak Bisimilarity

Two processes p, q ∈ Proc are weakly bisimilar (p1 ≈ p2), if there
exists a weak bisimulation R such that (p, q) ∈ R.

≈ = ∪{R | R is a weak bisimulation}

17

Weak bisimilarity

Weak Simulation

A binary relation R ⊆ Proc× Proc is a weak simulation, if
whenever (p, q) ∈ R then for each a ∈ Act:

if p a−→ p′ then q
a

=⇒ q′ for some q′ such that (p′, q′) ∈ R

A weak simulation R is a weak bisimulation,

if R−1 is also a weak simulation.

Weak Bisimilarity

Two processes p, q ∈ Proc are weakly bisimilar (p1 ≈ p2), if there
exists a weak bisimulation R such that (p, q) ∈ R.

≈ = ∪{R | R is a weak bisimulation}
17

Properties of weak bisimilarity

• It includes strong bisimulation.
• It is the largest bisimulation.
• It is an equivalence relation.
• (Proc, |, 0) and (Proc,+, 0) are commutative monoïds.
• a.τ.P ≈ a.P , P + τ.P ≈ τ.P , and
a.(P + τ.Q)≈ a.(P + τ.Q) + a.Q

• It is preserved by prefixing, parallel composition and restriction.

What about choice?

Consider the processes τ.a.0 and a.0

• One easily shows that τ.a.0≈ a.0

• However, one also shows easily that

τ.a.0 + b.0 ̸≈ a.0 + b.0

18

Properties of weak bisimilarity

• It includes strong bisimulation.
• It is the largest bisimulation.
• It is an equivalence relation.
• (Proc, |, 0) and (Proc,+, 0) are commutative monoïds.
• a.τ.P ≈ a.P , P + τ.P ≈ τ.P , and
a.(P + τ.Q)≈ a.(P + τ.Q) + a.Q

• It is preserved by prefixing, parallel composition and restriction.

What about choice?

Consider the processes τ.a.0 and a.0

• One easily shows that τ.a.0≈ a.0

• However, one also shows easily that

τ.a.0 + b.0 ̸≈ a.0 + b.0

18

Properties of weak bisimilarity

• It includes strong bisimulation.
• It is the largest bisimulation.
• It is an equivalence relation.
• (Proc, |, 0) and (Proc,+, 0) are commutative monoïds.
• a.τ.P ≈ a.P , P + τ.P ≈ τ.P , and
a.(P + τ.Q)≈ a.(P + τ.Q) + a.Q

• It is preserved by prefixing, parallel composition and restriction.

What about choice?

Consider the processes τ.a.0 and a.0

• One easily shows that τ.a.0≈ a.0

• However, one also shows easily that

τ.a.0 + b.0 ̸≈ a.0 + b.0
18

Weak bisimilarity is not a congruence relation

Choice does not preserve weak bisimilarity.

Source of the Problem

A τ transition can be matched by no transition.

A Solution

A τ -transition must be matched by at least a τ -transition.

Then, τ.a.0 is not equated with a.0

Observational Equivalence

Processes p and q are observationally equivalent (p = q), whenever:

1. p ≈ q

2. if p τ−→ p′ then q
τ−→ q′′

τ
=⇒ q′ and p′ ≈ q′

3. if q τ−→ q′ then p
τ−→ p′′

τ
=⇒ p′ and p′ ≈ q′

Observational equivalence is a congruence relation.

19

Weak bisimilarity is not a congruence relation

Choice does not preserve weak bisimilarity.

Source of the Problem

A τ transition can be matched by no transition.

A Solution

A τ -transition must be matched by at least a τ -transition.

Then, τ.a.0 is not equated with a.0

Observational Equivalence

Processes p and q are observationally equivalent (p = q), whenever:

1. p ≈ q

2. if p τ−→ p′ then q
τ−→ q′′

τ
=⇒ q′ and p′ ≈ q′

3. if q τ−→ q′ then p
τ−→ p′′

τ
=⇒ p′ and p′ ≈ q′

Observational equivalence is a congruence relation.

19

Weak bisimilarity is not a congruence relation

Choice does not preserve weak bisimilarity.

Source of the Problem

A τ transition can be matched by no transition.

A Solution

A τ -transition must be matched by at least a τ -transition.

Then, τ.a.0 is not equated with a.0

Observational Equivalence

Processes p and q are observationally equivalent (p = q), whenever:

1. p ≈ q

2. if p τ−→ p′ then q
τ−→ q′′

τ
=⇒ q′ and p′ ≈ q′

3. if q τ−→ q′ then p
τ−→ p′′

τ
=⇒ p′ and p′ ≈ q′

Observational equivalence is a congruence relation.

19

Weak bisimilarity is not a congruence relation

Choice does not preserve weak bisimilarity.

Source of the Problem

A τ transition can be matched by no transition.

A Solution

A τ -transition must be matched by at least a τ -transition.

Then, τ.a.0 is not equated with a.0

Observational Equivalence

Processes p and q are observationally equivalent (p = q), whenever:

1. p ≈ q

2. if p τ−→ p′ then q
τ−→ q′′

τ
=⇒ q′ and p′ ≈ q′

3. if q τ−→ q′ then p
τ−→ p′′

τ
=⇒ p′ and p′ ≈ q′

Observational equivalence is a congruence relation.

19

Weak bisimilarity is not a congruence relation

Choice does not preserve weak bisimilarity.

Source of the Problem

A τ transition can be matched by no transition.

A Solution

A τ -transition must be matched by at least a τ -transition.

Then, τ.a.0 is not equated with a.0

Observational Equivalence

Processes p and q are observationally equivalent (p = q), whenever:

1. p ≈ q

2. if p τ−→ p′ then q
τ−→ q′′

τ
=⇒ q′ and p′ ≈ q′

3. if q τ−→ q′ then p
τ−→ p′′

τ
=⇒ p′ and p′ ≈ q′

Observational equivalence is a congruence relation.

19

Weak bisimilarity is not a congruence relation

Choice does not preserve weak bisimilarity.

Source of the Problem

A τ transition can be matched by no transition.

A Solution

A τ -transition must be matched by at least a τ -transition.

Then, τ.a.0 is not equated with a.0

Observational Equivalence

Processes p and q are observationally equivalent (p = q), whenever:

1. p ≈ q

2. if p τ−→ p′ then q
τ−→ q′′

τ
=⇒ q′ and p′ ≈ q′

3. if q τ−→ q′ then p
τ−→ p′′

τ
=⇒ p′ and p′ ≈ q′

Observational equivalence is a congruence relation. 19

	Applications
	Representing the Behaviour of Concurrent Systems
	The Alternating-Bit Protocol

	Weak bisimilarity
	Motivation
	A first attempt
	Definitions and properties

