Modelling and Validation of Concurrent System

António Ravara May 7, 2024

Labelled Transition Systems

Summary and Plan

Last lecture

1. A new model of computation

Captures the key aspects of concurrent reactive systems, centred on interactive behaviour

2. A new language

The Calculus of Communicating Systems (CCS)

3. Syntax and Operational Semantics of CCS

Summary and Plan

Last lecture

1. A new model of computation

Captures the key aspects of concurrent reactive systems, centred on interactive behaviour

- 2. A new language The Calculus of Communicating Systems (CCS)
- 3. Syntax and Operational Semantics of CCS

This lecture

- 1. Denotational semantics of CCS
- 2. A behavioural congruence relation

Labelled Transition Systems: the notion

Definition

A Labelled Transition System (LTS) is a triple

 $(\mathsf{Proc}, \mathsf{Act}, \stackrel{a}{\longrightarrow})$

- 1. Proc is a set (of states or processes)
- 2. Act is a set (of labels or actions)
- 3. $\xrightarrow{a} \subseteq \operatorname{Proc} \times \operatorname{Act} \times \operatorname{Proc}$ is a relation (the *transition relation*)

For clarity sake, given a transition relation T, we write

$$p \stackrel{a}{\longrightarrow} q \in T$$
 instead of $(p, a, q) \in T$

A *pointed* LTS is a quadruple

$$(\mathsf{Proc},\mathsf{Act},\overset{a}{\longrightarrow},s)$$

where $(\operatorname{Proc}, \operatorname{Act}, \xrightarrow{a})$ is an LTS and a state $s \in \operatorname{Proc}$ is distinguished as the initial state.

The extended transition (or traces) relation $\mathcal{T}^* \subseteq \mathsf{Proc} \times \mathsf{Act}^* \times \mathsf{Proc}$

of a transition relation ${\mathcal T}$ is inductively defined by the rules below

$$(p, \varepsilon, p) \in T^*$$

 $(p, at, q) \in T^* ext{ if } \exists r.((p, a, r) \in T \land (r, t, q) \in T^*)$

Labelled Transition Systems for Concurrency

Accessible LTS

A pointed LTS (Proc, Act, $\stackrel{a}{\longrightarrow}$, s) is accessible if

$$\forall p \in \mathsf{Proc} \, . \, \exists t \in \mathsf{Act}^* . \, s \stackrel{t}{\longrightarrow} p$$

We consider henceforth accessible LTSs only to represent concurrent systems.

An accessible LTS (Proc, Act, \xrightarrow{a} , s) corresponds to a machine:

- 1. with initial state s
- 2. able of executing actions in Act
- 3. whose states are elements of Proc, all accessible by sequences of actions from the initial state

Labelled Transition Systems and CCS

One defines easily an isomorphic function from CCS to LTS (similar to the translation of Finite Automata into Regular Expressions).

- 1. Any CCS term can be described by an accessible LTS
- 2. Any accessible LTS can be described by a CCS term

Labelled Transition Systems as infinite sets/trees

is the graphical representation of a set of transitions:

$$\{(a.0 \mid \overline{a}.0, a, 0 \mid \overline{a}.0), \ldots\}$$

Process A = a.A

is represented as an LTS with a single state and a self-loop with label a (a single transition)

What about AStar = a.(0 | AStar)?

Process A = a.A

is represented as an LTS with a single state and a self-loop with label *a* (a single transition)

What about AStar = a.(0 | AStar)? $AStar \xrightarrow{a} (0 | AStar) \xrightarrow{a} (0 | (0 | AStar)) \cdots$

The LTS has

- an infinite number of states, and
- an infinite number of triples in the transition relation

How can one mathematically define *infinite trees* and relations on them?

On coinduction

Check: Dexter Kozen, Alexandra Silva. "Practical Coinduction". DOI 10.1.1.252.3961

Coinduction defines infinite datastructures streams or infinite trees are not finitely representable

Polymorphic streams

Stream a = S a (Stream a)

where

- a is a generic datatype, and
- S is a (data) constructor

Definition

Stream
$$a = S a$$
 (Stream a)

To manipulate coinductive datatypes one needs "destructors" (operations to observe the values)

Stream destructors

head (S a astream) = a
tail (S a astream) = astream

Consider an ordered alphabet (A, \leq)

The ordering \leq_{lex} on A-streams is maximum relation $\mathcal{R} \subseteq A^{\omega} \times A^{\omega}$ satisfying the following property.

If $\sigma_1 \mathcal{R} \sigma_2$ then

 $head(\sigma_1) \leq head(\sigma_2)$ and

 $head(\sigma_1) = head(\sigma_2) \text{ implies } tail(\sigma_1) \mathcal{R} tail(\sigma_2)$

Consider an ordered alphabet (A, \leq)

The ordering \leq_{lex} on A-streams is maximum relation $\mathcal{R} \subseteq A^{\omega} \times A^{\omega}$ satisfying the following property.

If $\sigma_1 \mathcal{R} \sigma_2$ then

```
head(\sigma_1) \leq head(\sigma_2) and
```

 $head(\sigma_1) = head(\sigma_2) \text{ implies } tail(\sigma_1) \mathcal{R} tail(\sigma_2)$

Theorem: \leq_{lex} is

- 1. reflexive and transitive
- 2. canonic (exists and is unique)
- 3. the union of all relations satisfying the property

Behavioural Equivalence

Why is an equivalence notion needed?

Syntactically different processes may denote the same LTS

Apart from the state names, the LTS (structure and arrows) is the same of that of $a.0 \mid \overline{a}.0$

- Can 0 do anything different from 0 | 0? None have immediate actions available.
- Can ā.0 do anything different from 0 | ā.0?
 Both can only do the action ā and fall in the previous situation.
- Can a.0 do anything different from a.0 | 0?
 Both can only do the action a and fall in the initial situation.
- 4. Can a.0 | ā.0 do anything different from a.ā.0 + ā.a.0 + τ.0? Both can either do the action ā and fall in the second situation or do the action a and fall in the previous situation.

Key ideas

- 1. An external observer should not tell apart equivalent systems All possible sequences of interactive behaviour of one system should be possible in the other.
- 2. The notion should be a congruence relation To allow to substitute equals for equals.

Two systems should be considered behaviourally equivalent if:

- 1. one can be used instead of the other, and
- 2. an external entity, interacting with them, cannot notice the difference.

Definition

A binary relation $\mathcal{R} \subseteq \mathsf{Proc} \times \mathsf{Proc}$ is a *simulation*, if

whenever $(p,q) \in \mathcal{R}$ then, for each $a \in \mathsf{Act}$,

if $p \stackrel{a}{\longrightarrow} p'$ then $q \stackrel{a}{\longrightarrow} q'$ and $(p',q') \in \mathcal{R}$

Definition

A binary relation $\mathcal{R} \subseteq \mathsf{Proc} \times \mathsf{Proc}$ is a simulation, if

whenever $(p,q) \in \mathcal{R}$ then, for each $a \in \mathsf{Act}$,

if
$$p \stackrel{a}{\longrightarrow} p'$$
 then $q \stackrel{a}{\longrightarrow} q'$ and $(p',q') \in \mathcal{R}$

Notice that

1. the definition above is coinductive

Definition

A binary relation $\mathcal{R} \subseteq \mathsf{Proc} \times \mathsf{Proc}$ is a simulation, if

whenever $(p,q) \in \mathcal{R}$ then, for each $a \in \mathsf{Act}$,

if
$$p \stackrel{a}{\longrightarrow} p'$$
 then $q \stackrel{a}{\longrightarrow} q'$ and $(p',q') \in \mathcal{R}$

Notice that

1. the definition above is coinductive Proc has infinite terms

Definition

A binary relation $\mathcal{R} \subseteq \mathsf{Proc} \times \mathsf{Proc}$ is a simulation, if

whenever $(p,q) \in \mathcal{R}$ then, for each $a \in \mathsf{Act}$,

if
$$p \stackrel{a}{\longrightarrow} p'$$
 then $q \stackrel{a}{\longrightarrow} q'$ and $(p',q') \in \mathcal{R}$

Notice that

- 1. the definition above is coinductive Proc has infinite terms
- 2. who are then the destructors of Proc?

Definition

A binary relation $\mathcal{R} \subseteq \mathsf{Proc} \times \mathsf{Proc}$ is a simulation, if

whenever $(p,q) \in \mathcal{R}$ then, for each $a \in \mathsf{Act}$,

if
$$p \stackrel{a}{\longrightarrow} p'$$
 then $q \stackrel{a}{\longrightarrow} q'$ and $(p',q') \in \mathcal{R}$

Notice that

- 1. the definition above is coinductive Proc has infinite terms
- 2. who are then the destructors of Proc? the transition rules

Example

Consider the processes P = coin.tea.pick.0 and Q = coin.(tea.pick.0 + coffee.pick.0)

It is simple to see that P is simulated by Q:

Example

Consider the processes P = coin.tea.pick.0 and Q = coin.(tea.pick.0 + coffee.pick.0)

It is simple to see that P is simulated by Q:

$$P \xrightarrow{coin} tea.pick.0 \text{ and } Q \xrightarrow{coin} (tea.pick.0 + coffee.pick.0)$$
$$tea.pick.0 \xrightarrow{tea} pick.0 \text{ and } (tea.pick.0 + coffee.pick.0) \xrightarrow{tea} pick.0$$
$$pick.0 \xrightarrow{pick} 0 \text{ and } pick.0 \xrightarrow{pick} 0$$

Recall that

P = coin.tea.pick.0 and Q = coin.(tea.pick.0 + coffee.pick.0)

P however, does not simulate Q:

Recall that

P = coin.tea.pick.0 and Q = coin.(tea.pick.0 + coffee.pick.0)

P however, does not simulate Q:

 $Q \xrightarrow{coin} (tea.pick.0 + coffee.pick.0) \text{ and } P \xrightarrow{coin} tea.pick.0$ $(tea.pick.0 + coffee.pick.0) \xrightarrow{coffee} pick.0 \text{ but } tea.pick.0 \xrightarrow{coffee} Pick.0$

Therefore, equivalent systems should simulate each other.

Consider the systems

$$P = coin.tea.pick.0 + coin.tea.pick.0 + Q$$

$$Q = coin.(tea.pick.0 + coffee.pick.0)$$

- 1. It is easy to see that P simulates Q and Q simulates P
- 2. *P* however, has more "non-determinism" than *Q*, what may lead to undesired situations:

$$P \xrightarrow{coin} P' = tea.pick.0 \text{ and}$$
$$Q \xrightarrow{coin} Q' = (tea.pick.0 + coffee.pick.0)$$

Now P' and Q' no longer simulate each other!

A candidate for behavioural equivalence

Symmetric simulation.

Definition

A binary relation $\mathcal{R} \subseteq \mathsf{Proc} \times \mathsf{Proc}$ is a strong bisimulation, if

whenever $(p,q) \in \mathcal{R}$ then, for each $a \in \mathsf{Act}$,

1. if
$$p \xrightarrow{a} p'$$
 then $q \xrightarrow{a} q'$ and $(p', q') \in \mathcal{R}$
2. if $q \xrightarrow{a} q'$ then $p \xrightarrow{a} p'$ and $(p', q') \in \mathcal{R}$

Canonicity: does such a relation always exists? Is it unique?

Strong bisimilarity

Two processes p and q are *strongly bisimilar* $(p \sim q)$, if there exists a strong bisimulation \mathcal{R} such that $(p, q) \in \mathcal{R}$

Let bisimilarity be such that

 $\sim = \bigcup \{ \mathcal{R} \mid \mathcal{R} \text{ is a strong bisimulation} \}$

Theorem

Bisimilarity is the largest bisimulation

Theorem

Bisimilarity is a congruence relation - it is:

- 1. an equivalence relation (reflexive, symmetric, and transitive)
- 2. substitutive: preserved by the operators of the language

Substitutivity / Preservation by the operators

 $P \sim Q$ implies

- $\alpha.P \sim \alpha.Q$
- $P \mid R \sim Q \mid R$ and $P + R \sim Q + R$
- $A\langle a_1, \ldots, a_n \rangle \sim B\langle a_1, \ldots, a_n \rangle$, if $A(x_1, \ldots, x_n) = P$ and $B(y_1, \ldots, y_n) = Q$

Substitutivity / Preservation by the operators

 $P \sim Q$ implies

- $\alpha.P \sim \alpha.Q$
- $P \mid R \sim Q \mid R$ and $P + R \sim Q + R$
- $A\langle a_1, \ldots, a_n \rangle \sim B\langle a_1, \ldots, a_n \rangle$, if $A(x_1, \ldots, x_n) = P$ and $B(y_1, \ldots, y_n) = Q$

Theorem

 $(\mathsf{Proc}, 0, \sim)$ is a commutative monoid.

Recall the definition of capture avoiding substitution and of $\alpha\text{-convertion}.$

Substitution

Let $P\{\vec{a} \leftarrow \vec{b}\}$ denote the simultaneous substitution of the free occurrences of the actions \vec{a} in P for \vec{b} .

$\alpha\text{-convertion}$

The binary relation $=_{\alpha}$ on processes is inductively defined by the rule $(\text{new } a)P =_{\alpha} (\text{new } b)P\{a \leftarrow b\}$ if $b \notin bn(P)$, and homomorphic rules on the remaining process constructs.

Theorem

 $\alpha\text{-convertion}$ is a congruence relation and a bisimulation.

One only needs to present a bisimulation.

Example

$$P = coin.P' \text{ and } P' = tea.P'' \text{ and } P'' = pick.0$$
$$Q = coin.Q' \text{ and } Q' = (tea.Q'' + tea.Q''') \text{ where }$$
$$Q'' = pick.0 \text{ and } Q''' = pick.(0 \mid 0)$$

The binary relation

 $\{(P,Q), (P',Q'), (P'',Q''), (P'',Q'''), (0,0), (0,0 \mid 0)\}$

is a bisimulation.

One needs to show that no binary relation between them including the initial states is a bisimulation.

How can one do this?

- Enumerating all relations can be very inefficient There are 2^{|Proc|²} relations!
- Use a characterisation: the strong bisimulation game:
 - consider a "board" with two LTSs, each with a pin
 - consider two players, a defender, aiming at proving the systems bisimilar, and an attacker, aiming at the oposite.

The game is played in rounds:

- the attacker moves the pin in one LTS following an *a*-arrow (for some *a* ∈ Act
- the defender must respond moving the other pin in the other LTS following an *a*-arrow with the same *a* ∈ Act

Winning conditions of the bisimulation game

- if a player cannot move, the other wins
- if the game is infinite, the defender wins

Theorem

- Processes P and Q are strongly bisimilar, if and only if, the defender has a universal winning strategy starting the game from (P, Q)
- Processes P and Q are NOT strongly bisimilar, if and only if, the attacker has a universal winning strategy starting the game from (P, Q)

Example Let P = a.(b.c.0 + b.d.0) and Q = a.b.c.0 + a.b.d.0

- 1. The attacker starts and moves P with a to b.c.0 + b.d.0
- 2. The defender responds moving Q with a to b.c.0
- 3. The attacker now moves b.c.0 + b.d.0 with b to d.0
- 4. The defender responds moving b.c.0 with b to c.0
- 5. The attacker now moves d.0 with d to 0
- 6. The defender cannot respond and looses the game