
Modelling and Validation of
Concurrent System

António Ravara

May 7, 2024

Labelled Transition Systems

Summary and Plan

Last lecture

1. A new model of computation
Captures the key aspects of concurrent reactive systems,
centred on interactive behaviour

2. A new language
The Calculus of Communicating Systems (CCS)

3. Syntax and Operational Semantics of CCS

This lecture

1. Denotational semantics of CCS

2. A behavioural congruence relation

2

Summary and Plan

Last lecture

1. A new model of computation
Captures the key aspects of concurrent reactive systems,
centred on interactive behaviour

2. A new language
The Calculus of Communicating Systems (CCS)

3. Syntax and Operational Semantics of CCS

This lecture

1. Denotational semantics of CCS

2. A behavioural congruence relation

2

Labelled Transition Systems: the notion

Definition

A Labelled Transition System (LTS) is a triple

(Proc,Act, a−→)

1. Proc is a set (of states or processes)

2. Act is a set (of labels or actions)

3. a−→ ⊆ Proc× Act× Proc is a relation
(the transition relation)

For clarity sake, given a transition relation T , we write

p
a−→ q ∈ T instead of (p, a, q) ∈ T

3

Labelled Transition Systems: auxiliary notions

A pointed LTS is a quadruple

(Proc,Act, a−→, s)

where (Proc,Act, a−→) is an LTS and a state s ∈ Proc is
distinguished as the initial state.

The extended transition (or traces) relation

T ∗ ⊆ Proc× Act∗ × Proc

of a transition relation T is inductively defined by the rules below

(p, ε, p) ∈ T ∗

(p, at, q) ∈ T ∗ if ∃r .((p, a, r) ∈ T ∧ (r , t, q) ∈ T ∗)

4

Labelled Transition Systems for Concurrency

Accessible LTS

A pointed LTS (Proc,Act, a−→, s) is accessible if

∀p ∈ Proc .∃t ∈ Act∗. s t−→ p

We consider henceforth accessible LTSs only to represent
concurrent systems.

An accessible LTS (Proc,Act, a−→, s) corresponds to a machine:

1. with initial state s

2. able of executing actions in Act

3. whose states are elements of Proc, all accessible by sequences
of actions from the initial state

5

Labelled Transition Systems and CCS

One defines easily an isomorphic function from CCS to LTS (similar
to the translation of Finite Automata into Regular Expressions).

1. Any CCS term can be described by an accessible LTS
2. Any accessible LTS can be described by a CCS term

a.0 | a.0

a

||

a

""
τ

��

0 | a.0

a

""

a.0 | 0

a

||
0 | 0

6

Labelled Transition Systems as infinite sets/trees

a.0 | a.0

a

||

a

""
τ

��

0 | a.0

a

""

a.0 | 0

a

||
0 | 0

is the graphical representation of a set of transitions:

{(a.0 | a.0, a, 0 | a.0), . . .}

7

Labelled Transition Systems as infinite sets/trees

Process A = a.A

is represented as an LTS with a single state and a self-loop with
label a (a single transition)

What about AStar = a.(0 | AStar)?

AStar
a−→ (0 | AStar) a−→ (0 | (0 | AStar)) · · ·

The LTS has

• an infinite number of states, and

• an infinite number of triples in the transition relation

How can one mathematically define infinite trees and
relations on them?

8

Labelled Transition Systems as infinite sets/trees

Process A = a.A

is represented as an LTS with a single state and a self-loop with
label a (a single transition)

What about AStar = a.(0 | AStar)?

AStar
a−→ (0 | AStar) a−→ (0 | (0 | AStar)) · · ·

The LTS has

• an infinite number of states, and

• an infinite number of triples in the transition relation

How can one mathematically define infinite trees and
relations on them?

8

On coinduction

Basic concepts

Check: Dexter Kozen, Alexandra Silva. "Practical Coinduction".
DOI 10.1.1.252.3961

Coinduction defines infinite datastructures

streams or infinite trees are not finitely representable

Polymorphic streams

Stream a = S a (Stream a)

where

• a is a generic datatype, and

• S is a (data) constructor

9

Polymorphic streams

Definition

Stream a = S a (Stream a)

To manipulate coinductive datatypes one needs “destructors”
(operations to observe the values)

Stream destructors

head (S a astream) = a

tail (S a astream) = astream

10

Lexicographic order on streams

Consider an ordered alphabet (A,≤)
The ordering ≤lex on A-streams is maximum relation R ⊆ Aω × Aω

satisfying the following property.

If σ1Rσ2 then

head(σ1) ≤ head(σ2) and

head(σ1) = head(σ2) implies tail(σ1)R tail(σ2)

Theorem: ≤lex is

1. reflexive and transitive

2. canonic (exists and is unique)

3. the union of all relations satisfying the property

11

Lexicographic order on streams

Consider an ordered alphabet (A,≤)
The ordering ≤lex on A-streams is maximum relation R ⊆ Aω × Aω

satisfying the following property.

If σ1Rσ2 then

head(σ1) ≤ head(σ2) and

head(σ1) = head(σ2) implies tail(σ1)R tail(σ2)

Theorem: ≤lex is

1. reflexive and transitive

2. canonic (exists and is unique)

3. the union of all relations satisfying the property

11

Behavioural Equivalence

Why is an equivalence notion needed?

Syntactically different processes may denote the same LTS

a.a.0 + a.a.0 + τ.0

a

vv

a

((
τ

��

a.0

a

((

a.0

a

vv0

Apart from the state names, the LTS (structure and arrows) is the
same of that of a.0 | a.0

12

Interactive behaviour

1. Can 0 do anything different from 0 | 0?
None have immediate actions available.

2. Can a.0 do anything different from 0 | a.0?
Both can only do the action a and fall in the previous situation.

3. Can a.0 do anything different from a.0 | 0?
Both can only do the action a and fall in the initial situation.

4. Can a.0 | a.0 do anything different from a.a.0 + a.a.0 + τ.0?
Both can either do the action a and fall in the second situation
or do the action a and fall in the previous situation.

13

Requirement to equate interactive behaviour

Key ideas

1. An external observer should not tell apart equivalent systems
All possible sequences of interactive behaviour of one system
should be possible in the other.

2. The notion should be a congruence relation
To allow to substitute equals for equals.

Two systems should be considered behaviourally equivalent if:

1. one can be used instead of the other, and

2. an external entity, interacting with them, cannot notice the
difference.

14

Simulation

First idea: let one system imitate the other.

Definition

A binary relation R ⊆ Proc× Proc is a simulation, if

whenever (p, q) ∈ R then, for each a ∈ Act,

if p a−→ p′ then q
a−→ q′ and (p′, q′) ∈ R

Notice that

1. the definition above is coinductive
Proc has infinite terms

2. who are then the destructors of Proc?
the transition rules

15

Simulation

First idea: let one system imitate the other.

Definition

A binary relation R ⊆ Proc× Proc is a simulation, if

whenever (p, q) ∈ R then, for each a ∈ Act,

if p a−→ p′ then q
a−→ q′ and (p′, q′) ∈ R

Notice that

1. the definition above is coinductive

Proc has infinite terms

2. who are then the destructors of Proc?
the transition rules

15

Simulation

First idea: let one system imitate the other.

Definition

A binary relation R ⊆ Proc× Proc is a simulation, if

whenever (p, q) ∈ R then, for each a ∈ Act,

if p a−→ p′ then q
a−→ q′ and (p′, q′) ∈ R

Notice that

1. the definition above is coinductive
Proc has infinite terms

2. who are then the destructors of Proc?
the transition rules

15

Simulation

First idea: let one system imitate the other.

Definition

A binary relation R ⊆ Proc× Proc is a simulation, if

whenever (p, q) ∈ R then, for each a ∈ Act,

if p a−→ p′ then q
a−→ q′ and (p′, q′) ∈ R

Notice that

1. the definition above is coinductive
Proc has infinite terms

2. who are then the destructors of Proc?

the transition rules

15

Simulation

First idea: let one system imitate the other.

Definition

A binary relation R ⊆ Proc× Proc is a simulation, if

whenever (p, q) ∈ R then, for each a ∈ Act,

if p a−→ p′ then q
a−→ q′ and (p′, q′) ∈ R

Notice that

1. the definition above is coinductive
Proc has infinite terms

2. who are then the destructors of Proc?
the transition rules

15

Simulation

Example

Consider the processes P = coin.tea.pick .0 and
Q = coin.(tea.pick .0 + coffee.pick .0)

It is simple to see that P is simulated by Q:

P
coin−→ tea.pick.0 and Q

coin−→ (tea.pick .0 + coffee.pick.0)

tea.pick.0 tea−→ pick .0 and (tea.pick .0 + coffee.pick.0) tea−→ pick .0

pick .0
pick−→ 0 and pick .0

pick−→ 0

16

Simulation

Example

Consider the processes P = coin.tea.pick .0 and
Q = coin.(tea.pick .0 + coffee.pick .0)

It is simple to see that P is simulated by Q:

P
coin−→ tea.pick.0 and Q

coin−→ (tea.pick .0 + coffee.pick.0)

tea.pick.0 tea−→ pick .0 and (tea.pick .0 + coffee.pick.0) tea−→ pick .0

pick .0
pick−→ 0 and pick .0

pick−→ 0

16

Simulation

Recall that

P = coin.tea.pick .0 and Q = coin.(tea.pick .0 + coffee.pick .0)

P however, does not simulate Q:

Q
coin−→ (tea.pick.0 + coffee.pick .0) and P

coin−→ tea.pick.0

(tea.pick.0 + coffee.pick.0) coffee−→ pick .0 but tea.pick .0 ̸coffee−→

Therefore, equivalent systems should simulate each other.

17

Simulation

Recall that

P = coin.tea.pick .0 and Q = coin.(tea.pick .0 + coffee.pick .0)

P however, does not simulate Q:

Q
coin−→ (tea.pick.0 + coffee.pick .0) and P

coin−→ tea.pick.0

(tea.pick.0 + coffee.pick.0) coffee−→ pick .0 but tea.pick .0 ̸coffee−→

Therefore, equivalent systems should simulate each other.

17

Mutual simulations

Consider the systems

P = coin.tea.pick.0 + coin.tea.pick .0 + Q

Q = coin.(tea.pick .0 + coffee.pick .0)

1. It is easy to see that P simulates Q and Q simulates P

2. P however, has more “non-determinism” than Q, what may
lead to undesired situations:

P
coin−→ P ′ = tea.pick .0 and

Q
coin−→ Q ′ = (tea.pick.0 + coffee.pick .0)

Now P ′ and Q ′ no longer simulate each other!

18

Bisimulation: a co-inductive behavioural equivalence

A candidate for behavioural equivalence

Symmetric simulation.

Definition

A binary relation R ⊆ Proc× Proc is a strong bisimulation, if

whenever (p, q) ∈ R then, for each a ∈ Act,

1. if p a−→ p′ then q
a−→ q′ and (p′, q′) ∈ R

2. if q a−→ q′ then p
a−→ p′ and (p′, q′) ∈ R

Canonicity: does such a relation always exists? Is it unique?

Strong bisimilarity

Two processes p and q are strongly bisimilar (p ∼ q), if there exists
a strong bisimulation R such that (p, q) ∈ R

19

Properties of Bisimilarity

Let bisimilarity be such that

∼ =
⋃
{R | R is a strong bisimulation}

Theorem

Bisimilarity is the largest bisimulation

Theorem

Bisimilarity is a congruence relation – it is:

1. an equivalence relation (reflexive, symmetric, and transitive)

2. substitutive: preserved by the operators of the language

20

Properties of Bisimilarity

Substitutivity / Preservation by the operators

P ∼ Q implies

• α.P ∼ α.Q

• P | R ∼ Q | R and P + R ∼ Q + R

• A⟨a1, . . . , an⟩ ∼ B⟨a1, . . . , an⟩, if
A(x1, . . . , xn) = P and B(y1, . . . , yn) = Q

Theorem

(Proc, 0,∼) is a commutative monoid.

21

Properties of Bisimilarity

Substitutivity / Preservation by the operators

P ∼ Q implies

• α.P ∼ α.Q

• P | R ∼ Q | R and P + R ∼ Q + R

• A⟨a1, . . . , an⟩ ∼ B⟨a1, . . . , an⟩, if
A(x1, . . . , xn) = P and B(y1, . . . , yn) = Q

Theorem

(Proc, 0,∼) is a commutative monoid.

21

Properties of Bisimilarity

Recall the definition of capture avoiding substitution and
of α-convertion.

Substitution

Let P{a⃗← b⃗} denote the simultaneous substitution of the free
occurrences of the actions a⃗ in P for b⃗.

α-convertion

The binary relation =α on processes is inductively defined by the
rule (new a)P =α (new b)P{a← b} if b /∈ bn(P), and
homomorphic rules on the remaining process constructs.

Theorem

α-convertion is a congruence relation and a bisimulation.

22

How to prove systems bisimilar?

One only needs to present a bisimulation.

Example

P = coin.P ′ and P ′ = tea.P ′′ and P ′′ = pick .0

Q = coin.Q ′ and Q ′ = (tea.Q ′′ + tea.Q ′′′) where

Q ′′ = pick .0 and Q ′′′ = pick .(0 | 0)

The binary relation

{(P,Q), (P ′,Q ′), (P ′′,Q ′′), (P ′′,Q ′′′), (0, 0), (0, 0 | 0)}

is a bisimulation.

23

How to prove systems not bisimilar?

One needs to show that no binary relation between them including
the initial states is a bisimulation.

How can one do this?

• Enumerating all relations can be very inefficient
There are 2|Proc|2 relations!

• Use a characterisation: the strong bisimulation game:
• consider a “board” with two LTSs, each with a pin
• consider two players, a defender, aiming at proving the systems

bisimilar, and an attacker, aiming at the oposite.

The game is played in rounds:
• the attacker moves the pin in one LTS following an a-arrow

(for some a ∈ Act
• the defender must respond moving the other pin in the other

LTS following an a-arrow with the same a ∈ Act
24

How to prove systems not bisimilar?

Winning conditions of the bisimulation game

• if a player cannot move, the other wins

• if the game is infinite, the defender wins

Theorem

• Processes P and Q are strongly bisimilar, if and only if, the
defender has a universal winning strategy starting the game
from (P,Q)

• Processes P and Q are NOT strongly bisimilar, if and only if,
the attacker has a universal winning strategy starting the game
from (P,Q)

25

How to prove systems not bisimilar?

Example
Let P = a.(b.c .0 + b.d .0) and Q = a.b.c .0 + a.b.d .0

1. The attacker starts and moves P with a to b.c .0 + b.d .0

2. The defender responds moving Q with a to b.c .0

3. The attacker now moves b.c .0 + b.d .0 with b to d .0

4. The defender responds moving b.c .0 with b to c .0

5. The attacker now moves d .0 with d to 0

6. The defender cannot respond and looses the game

26

	Labelled Transition Systems
	Definitions
	LTS vs CCS

	On coinduction
	Behavioural Equivalence
	Motivation
	Candidate notions
	Showing systems (not) bisimilar

