
Modelling and Validation of
Concurrent System:
the calculus of communicating systems
(CCS)

António Ravara

May 6, 2024

Motivation

The “classical” models, according to Chomsky hierarchy

Operational / Denotational Models

1. Finite Automata / Regular Languages
Represent finite-state systems

2. Push-Down Automata / Context-Free Languages
Represent finite-state systems with a memory stack

3. Linear-Bounded Automata / Context-Sensitive Languages
Represent finite-state systems with a finitely-long list as store

4. Turing Machines / Unrestricted Languages
Represent finite-state systems with a infinitely-long list as store

Isn’t this enough? Turing Machines are universal

Implement any computable function

2

The “classical” models, according to Chomsky hierarchy

Operational / Denotational Models

1. Finite Automata / Regular Languages
Represent finite-state systems

2. Push-Down Automata / Context-Free Languages
Represent finite-state systems with a memory stack

3. Linear-Bounded Automata / Context-Sensitive Languages
Represent finite-state systems with a finitely-long list as store

4. Turing Machines / Unrestricted Languages
Represent finite-state systems with a infinitely-long list as store

Isn’t this enough? Turing Machines are universal

Implement any computable function

2

One model per expressiveness class is enough, right?

If Turing Machines have all the power we need and are universal,
why bother inventing other languages?

Programming Languages

• Low / High level

• General purpose / DSLs

• Imperative / Functional / Logic

• Object-Oriented / Aspect-Oriented / Service-Oriented

The intended system matters!

3

One model per expressiveness class is enough, right?

If Turing Machines have all the power we need and are universal,
why bother inventing other languages?

Programming Languages

• Low / High level

• General purpose / DSLs

• Imperative / Functional / Logic

• Object-Oriented / Aspect-Oriented / Service-Oriented

The intended system matters!

3

One model per expressiveness class is enough, right?

If Turing Machines have all the power we need and are universal,
why bother inventing other languages?

Programming Languages

• Low / High level

• General purpose / DSLs

• Imperative / Functional / Logic

• Object-Oriented / Aspect-Oriented / Service-Oriented

The intended system matters!

3

What aspects consider when modelling concurrent systems?

(Non-)Termination

• Sequential programs implement “functionalities”
• One expects them to terminate and (sometimes) return a result
• Examples: factorial, bank account, queue

• Concurrent programs implement “behaviour”
• One expects them to (often) run forever, being reactive and

responsive
• Examples: operating system, cloud storage, social network

4

What aspects consider when modelling concurrent systems?

(Non-)Termination

• Sequential programs implement “functionalities”
• One expects them to terminate and (sometimes) return a result
• Examples: factorial, bank account, queue

• Concurrent programs implement “behaviour”
• One expects them to (often) run forever, being reactive and

responsive
• Examples: operating system, cloud storage, social network

4

What aspects consider when modelling concurrent systems?

Reactiveness is key

Sequential programs implement “functionalities”

• Run on demand, receiving input data and returning results

• Examples: factorial, bank account, queue

Concurrent programs implement “behaviour”

• Are often idle (or with invisible activity), reacting to stimula

• Examples: ATM machine, sensor network, alarm system

5

What aspects consider when modelling concurrent systems?

Reactiveness is key

Sequential programs implement “functionalities”

• Run on demand, receiving input data and returning results

• Examples: factorial, bank account, queue

Concurrent programs implement “behaviour”

• Are often idle (or with invisible activity), reacting to stimula

• Examples: ATM machine, sensor network, alarm system

5

How to consider...

Non-Termination

• Key aspect: accept infinite words

• (Simplest) Operational / Denotational Model
Büchi Automata / ω-Regular Languages

Interaction

• Key aspects: communication and parallelism

• (Simplest) Operational / Denotational Model
Calculus of Communicating Systems (CCS) / Labelled
Transition Systems

6

How to consider...

Non-Termination

• Key aspect: accept infinite words

• (Simplest) Operational / Denotational Model
Büchi Automata / ω-Regular Languages

Interaction

• Key aspects: communication and parallelism

• (Simplest) Operational / Denotational Model
Calculus of Communicating Systems (CCS) / Labelled
Transition Systems

6

Modelling and reasoning about reactive systems

Consider a vending machine

(a typical non-terminating reactive machine):

• Intended (user) behaviour:
insert a coin; choose coffee or tea; pick the beverage

1start 2

3

4

coin

tea

coffee

pick

pick

• Denotational model: coin.(coffee + tea).pick

7

Modelling and reasoning about reactive systems

Consider a vending machine

(a typical non-terminating reactive machine):

• Intended (user) behaviour:
insert a coin; choose coffee or tea; pick the beverage

1start 2

3

4

coin

tea

coffee

pick

pick

• Denotational model: coin.(coffee + tea).pick

7

Modelling and reasoning about reactive systems

Consider a vending machine

(a typical non-terminating reactive machine):

• Intended (user) behaviour:
insert a coin; choose coffee or tea; pick the beverage

1start 2

3

4

coin

tea

coffee

pick

pick

• Denotational model: coin.(coffee + tea).pick

7

Modelling and reasoning about reactive systems

• A regular expression specifies the intended system behaviour

• An automaton implements the intended system behaviour

System Correctness: back to basics

The program (automaton) is correct if it implements (accepts)
exactly the intended behaviour (the language of the regular
expression).

Is the vending machine correct?

• Language of the vending machine, by converting the
automaton

coin.(coffee.pick + tea.pick)

• coin.(coffee + tea).pick = coin.(coffee.pick + tea.pick)

8

Modelling and reasoning about reactive systems

• A regular expression specifies the intended system behaviour

• An automaton implements the intended system behaviour

System Correctness: back to basics

The program (automaton) is correct if it implements (accepts)
exactly the intended behaviour (the language of the regular
expression).

Is the vending machine correct?

• Language of the vending machine, by converting the
automaton

coin.(coffee.pick + tea.pick)

• coin.(coffee + tea).pick = coin.(coffee.pick + tea.pick)

8

Modelling and reasoning about reactive systems

• A regular expression specifies the intended system behaviour

• An automaton implements the intended system behaviour

System Correctness: back to basics

The program (automaton) is correct if it implements (accepts)
exactly the intended behaviour (the language of the regular
expression).

Is the vending machine correct?

• Language of the vending machine, by converting the
automaton

coin.(coffee.pick + tea.pick)

• coin.(coffee + tea).pick = coin.(coffee.pick + tea.pick)

8

Is the vending machine correct?

• In the previous example we used the Kleene algebra
distribution law (of sequencing over choice) to conclude the
correctness of the automaton
Kleene algebra transforms expressions preserving their language

• The equivalence principle:
two automaton / regular expression are equivalent if they
accept / denote the same language

coin.(coffee + tea).pick = coin.(coffee.pick + tea.pick)

So, the language of the automata is the same of that of the
expression specifying the intended behaviour

The vending machine is correct

9

Is the vending machine correct?

• In the previous example we used the Kleene algebra
distribution law (of sequencing over choice) to conclude the
correctness of the automaton
Kleene algebra transforms expressions preserving their language

• The equivalence principle:
two automaton / regular expression are equivalent if they
accept / denote the same language

coin.(coffee + tea).pick = coin.(coffee.pick + tea.pick)

So, the language of the automata is the same of that of the
expression specifying the intended behaviour

The vending machine is correct

9

Is the vending machine correct?

• In the previous example we used the Kleene algebra
distribution law (of sequencing over choice) to conclude the
correctness of the automaton
Kleene algebra transforms expressions preserving their language

• The equivalence principle:
two automaton / regular expression are equivalent if they
accept / denote the same language

coin.(coffee + tea).pick = coin.(coffee.pick + tea.pick)

So, the language of the automata is the same of that of the
expression specifying the intended behaviour

The vending machine is correct

9

Is the vending machine correct?

• In the previous example we used the Kleene algebra
distribution law (of sequencing over choice) to conclude the
correctness of the automaton
Kleene algebra transforms expressions preserving their language

• The equivalence principle:
two automaton / regular expression are equivalent if they
accept / denote the same language

coin.(coffee + tea).pick = coin.(coffee.pick + tea.pick)

So, the language of the automata is the same of that of the
expression specifying the intended behaviour

The vending machine is correct

9

Is the equivalence notion the right one for reactive systems?

An equivalent vending machine

coin.(coffee.pick + tea.pick) = coin.coffee.pick + coin.tea.pick

1 2

3

4

5

coin

teapick

coin

coffee pick

Does it have the same intended behaviour?

• When the user inserts the coin, the automaton
non-deterministically decides to go to the left or to the right

• The user no longer can choose between tea or coffee...

10

Is the equivalence notion the right one for reactive systems?

An equivalent vending machine

coin.(coffee.pick + tea.pick) = coin.coffee.pick + coin.tea.pick

1 2

3

4

5

coin

teapick

coin

coffee pick

Does it have the same intended behaviour?

• When the user inserts the coin, the automaton
non-deterministically decides to go to the left or to the right

• The user no longer can choose between tea or coffee...

10

Is the equivalence notion the right one for reactive systems?

An equivalent vending machine

coin.(coffee.pick + tea.pick) = coin.coffee.pick + coin.tea.pick

1 2

3

4

5

coin

teapick

coin

coffee pick

Does it have the same intended behaviour?

• When the user inserts the coin, the automaton
non-deterministically decides to go to the left or to the right

• The user no longer can choose between tea or coffee...

10

Are automata adequate to reactive systems?

• Imagine a streaming system like a internet TV channel
It should never terminate

An automata modelling it has final states?
• Imagine the authentication phase of interacting with an ATM

1start 2 3 4
card pin

ko

ok

card and pin are user’s actions; ok and ko are ATM’s actions
An automaton does not distinguish input from output actions

• Imagine a synchronous like VOIP
The interacting parties need to communicate synchronously,
with the input on one side match by output on the other
An automaton does not represent synchronous communication

11

Are automata adequate to reactive systems?

• Imagine a streaming system like a internet TV channel
It should never terminate

An automata modelling it has final states?

• Imagine the authentication phase of interacting with an ATM

1start 2 3 4
card pin

ko

ok

card and pin are user’s actions; ok and ko are ATM’s actions
An automaton does not distinguish input from output actions

• Imagine a synchronous like VOIP
The interacting parties need to communicate synchronously,
with the input on one side match by output on the other
An automaton does not represent synchronous communication

11

Are automata adequate to reactive systems?

• Imagine a streaming system like a internet TV channel
It should never terminate

An automata modelling it has final states?
• Imagine the authentication phase of interacting with an ATM

1start 2 3 4
card pin

ko

ok

card and pin are user’s actions; ok and ko are ATM’s actions
An automaton does not distinguish input from output actions

• Imagine a synchronous like VOIP
The interacting parties need to communicate synchronously,
with the input on one side match by output on the other
An automaton does not represent synchronous communication

11

Are automata adequate to reactive systems?

• Imagine a streaming system like a internet TV channel
It should never terminate

An automata modelling it has final states?
• Imagine the authentication phase of interacting with an ATM

1start 2 3 4
card pin

ko

ok

card and pin are user’s actions; ok and ko are ATM’s actions

An automaton does not distinguish input from output actions
• Imagine a synchronous like VOIP

The interacting parties need to communicate synchronously,
with the input on one side match by output on the other
An automaton does not represent synchronous communication

11

Are automata adequate to reactive systems?

• Imagine a streaming system like a internet TV channel
It should never terminate

An automata modelling it has final states?
• Imagine the authentication phase of interacting with an ATM

1start 2 3 4
card pin

ko

ok

card and pin are user’s actions; ok and ko are ATM’s actions
An automaton does not distinguish input from output actions

• Imagine a synchronous like VOIP
The interacting parties need to communicate synchronously,
with the input on one side match by output on the other
An automaton does not represent synchronous communication

11

Are automata adequate to reactive systems?

• Imagine a streaming system like a internet TV channel
It should never terminate

An automata modelling it has final states?
• Imagine the authentication phase of interacting with an ATM

1start 2 3 4
card pin

ko

ok

card and pin are user’s actions; ok and ko are ATM’s actions
An automaton does not distinguish input from output actions

• Imagine a synchronous like VOIP
The interacting parties need to communicate synchronously,
with the input on one side match by output on the other

An automaton does not represent synchronous communication

11

Are automata adequate to reactive systems?

• Imagine a streaming system like a internet TV channel
It should never terminate

An automata modelling it has final states?
• Imagine the authentication phase of interacting with an ATM

1start 2 3 4
card pin

ko

ok

card and pin are user’s actions; ok and ko are ATM’s actions
An automaton does not distinguish input from output actions

• Imagine a synchronous like VOIP
The interacting parties need to communicate synchronously,
with the input on one side match by output on the other
An automaton does not represent synchronous communication

11

Requirements for an adequate model of reactive systems

In short

• Represent non-terminating behaviour
without considering necessarily final states

• Distinguish input and output actions
and allow the input of one party to be the output of another

• Support parallelism and communication
systems composed by (a)synchronous interactive components
interacting with their environment

• Use a finer notion of equivalence
taking choice into consideration

What is an appropriate operational / denotational model?

12

Requirements for an adequate model of reactive systems

In short

• Represent non-terminating behaviour
without considering necessarily final states

• Distinguish input and output actions
and allow the input of one party to be the output of another

• Support parallelism and communication
systems composed by (a)synchronous interactive components
interacting with their environment

• Use a finer notion of equivalence
taking choice into consideration

What is an appropriate operational / denotational model?

12

Calculus of Communicating
Systems (CCS)

Calculus of Communicating Systems (CCS)

CCS: a process algebra

• Syntax: a language defined by a regular grammar

• Operational semantics: a transition relation

• Denotational semantics: a mathematical representation of
non-terminating reactive systems

Mathematical interpretation

Labelled Transition Systems, equipped with a congruence relation

Congruence

Substitutive equivalence preserved by the operations of the language

13

Calculus of Communicating Systems (CCS)

CCS: a process algebra

• Syntax: a language defined by a regular grammar

• Operational semantics: a transition relation

• Denotational semantics: a mathematical representation of
non-terminating reactive systems

Mathematical interpretation

Labelled Transition Systems, equipped with a congruence relation

Congruence

Substitutive equivalence preserved by the operations of the language

13

Calculus of Communicating Systems (CCS)

CCS: a process algebra

• Syntax: a language defined by a regular grammar

• Operational semantics: a transition relation

• Denotational semantics: a mathematical representation of
non-terminating reactive systems

Mathematical interpretation

Labelled Transition Systems, equipped with a congruence relation

Congruence

Substitutive equivalence preserved by the operations of the language

13

Calculus of Communicating Systems (CCS)

Why calculus?

A minimal mathematical language for calculations and reasoning

Examples:

• Leibniz’s infinitesimal calculus

• Newton’s integral calculus

Why minimal?

Ockham’s razor Principle: lex parsimoniae

Shaves off unnecessary hair – the best definition/explanation is the
simplest one

14

Calculus of Communicating Systems (CCS)

Why calculus?

A minimal mathematical language for calculations and reasoning

Examples:

• Leibniz’s infinitesimal calculus

• Newton’s integral calculus

Why minimal?

Ockham’s razor Principle: lex parsimoniae

Shaves off unnecessary hair – the best definition/explanation is the
simplest one

14

Calculus of Communicating Systems (CCS)

Why calculus?

A minimal mathematical language for calculations and reasoning

Examples:

• Leibniz’s infinitesimal calculus

• Newton’s integral calculus

Why minimal?

Ockham’s razor Principle: lex parsimoniae

Shaves off unnecessary hair – the best definition/explanation is the
simplest one

14

Calculus of Communicating Systems (CCS)

Why calculus?

A minimal mathematical language for calculations and reasoning

Examples:

• Leibniz’s infinitesimal calculus

• Newton’s integral calculus

Why minimal?

Ockham’s razor Principle: lex parsimoniae

Shaves off unnecessary hair – the best definition/explanation is the
simplest one

14

Calculus of Communicating Systems (CCS)

Basically, what is a reactive system?

A process able of performing (interactive) actions and after each
one, becoming another process

Motto (Tony Hoare and Robin Milner)

(In reactive systems) Everything is a process!

Remember set theory? In Mathematics, everything is a set

15

Calculus of Communicating Systems (CCS)

Assume a countable set N of action names; then CCS actions are
defined as follows:

α ::= Actions

a Input action

| a Output action

| τ Silent (internal) action

a and a are observable actions, while τ is an unobservable action.

Processes

A computing agent able of performing internal computation and of
interacting with its environment via communicating actions.

16

Calculus of Communicating Systems (CCS)

Assume a countable set N of action names; then CCS actions are
defined as follows:

α ::= Actions

a Input action

| a Output action

| τ Silent (internal) action

a and a are observable actions, while τ is an unobservable action.

Processes

A computing agent able of performing internal computation and of
interacting with its environment via communicating actions.

16

Syntax of CCS

Processes

Consider for each process variable A a defining equation
A(x1, . . . , xn) = P where the name variables x1, . . . , xn occur
(bound) in P .

P,Q,R ::= Processes

0 Empty process

| A⟨a1, . . . , an⟩ process definition

| α.P action prefix

| (new a)P action hiding

| P | Q parallel composition

| P + Q (non-deterministic) choice

17

Syntax of CCS

Processes

Consider for each process variable A a defining equation
A(x1, . . . , xn) = P where the name variables x1, . . . , xn occur
(bound) in P .

P,Q,R ::= Processes

0 Empty process

| A⟨a1, . . . , an⟩ process definition

| α.P action prefix

| (new a)P action hiding

| P | Q parallel composition

| P + Q (non-deterministic) choice

17

Ingredients of CCS

• Actions are
• offers (inputs)
• selections (outputs),
• or idle (invisible)

• Hiding makes actions invisible
• Parallel composition allows synchronous (by handshake)

communication between two processes
• Definitions support generic processes and recursion

Precedence in decreasing order

• hiding

• prefixing

• parallel composition

• choice

18

Ingredients of CCS

• Actions are
• offers (inputs)
• selections (outputs),
• or idle (invisible)

• Hiding makes actions invisible
• Parallel composition allows synchronous (by handshake)

communication between two processes
• Definitions support generic processes and recursion

Precedence in decreasing order

• hiding

• prefixing

• parallel composition

• choice
18

Vending Machine

In a process equation A(x1, . . . , xn) or definition A⟨a1, . . . , an⟩, if
n = 0 we simply write A

Version 1

• VM = coin.(tea.pick .VM + coffee.pick.VM)

• Client = coin.coffee.pick .0

• System = VM | Client

Version 2

• VM = coin.sugar .(yes.fill .Serve + no.Serve)

• Serve = (tea.pick.VM + coffee.pick .VM)

19

Vending Machine

In a process equation A(x1, . . . , xn) or definition A⟨a1, . . . , an⟩, if
n = 0 we simply write A

Version 1

• VM = coin.(tea.pick .VM + coffee.pick.VM)

• Client = coin.coffee.pick .0

• System = VM | Client

Version 2

• VM = coin.sugar .(yes.fill .Serve + no.Serve)

• Serve = (tea.pick.VM + coffee.pick .VM)

19

ATM

• Box = card .Session

• Session = (pin.(ok.Serve + ko.Session) + exit.card .Box)

• Serve = (balance.pick .Session +

deposit.amount.pick.Session+withdraw .amount.pick .Session)

• Client = card .pin.Use

• Use =

(ok.balance.pick .pin.ok.withdraw .Fifty .pick.exit.card .0 +

ko.exit.card .0)

• System = Box | Client

20

Actions, free and bound actions, and action substitution

Actions of a process Act(P) ⊆ Act

is a set inductively defined by the following rules.

Act(A⟨a1, . . . , an⟩) = {a1, . . . , an}
Act(α.P) = {a} ∪ Act(P), if α = a or α = a

Act((new a)P) = {a} ∪ Act(P)

Act(P | Q) = Act(P) ∪ Act(Q)

Act(P + Q) = Act(P) ∪ Act(Q)

21

Actions, free and bound actions, and action substitution

Free and bound actions

• fn(P) = Act(P)\ bn(P)
• bn(P) ⊆ Act is a set inductively defined by the rules

bn(A⟨a1, . . . , an⟩) = ∅
bn(α.P) = bn(P)

bn((new a)P) = {a} ∪ bn(P)

bn(P | Q) = bn(P) ∪ bn(Q)

bn(P + Q) = bn(P) ∪ bn(Q)

22

Actions, free and bound actions, and action substitution

Substitution

Let P{a⃗← b⃗} denote the simultaneous substitution of the free
occurrences of the actions a⃗ in P for b⃗.

Example

{water ← coffee}{cola← tea}(tea.pick .VM + coffee.pick .VM)

{water ← coffee}(cola.pick .VM + coffee.pick .VM)

(cola.pick .VM + water .pick .VM)

23

Actions, free and bound actions, and action substitution

It is sometimes necessary to rename bound actions to avoid clashes.

((new a)a.b.0){a← b} = (new a)a.a.0

The free action b became a, which is bound...

Alpha-congruence

The binary relation =α on processes is inductively defined by the
rule (new a)P =α (new b)P{a← b} if b /∈ bn(P), and
homomorphic rules on the remaining process constructs.

24

Structural Operational Semantics of CCS

• Syntax-driven proof rules to infer the behaviour of a system
(Gordon Plotkin, 1981)

• Rules describe single computational steps, explaining the effect
of executing a particular (syntactic) construct of the language

Transition Relation

Given a set of CCS defining equations P specifying a system, the
transition relation of the system is defined by a set of triples

{ a−→ ∈ P × P | a ∈ Act}

In the next slide we inductively define the Structural Operational
Semantics of CCS

25

SOS proof rules of CCS

PA{a⃗← b⃗} α−→ P ′

A⟨b⃗⟩ α−→ P ′ A(a⃗)
def
= PA [Def]

α.P
α−→ P

[Pre]

P
α−→ P ′

(new a)P
α−→ (new a)P ′

α ̸∈ {a, a} [Res] P
α−→ P ′

Q
α−→ P ′

P =αQ [Alpha]

Q
α−→ Q ′

(Q | P) α−→ (Q ′ | P)
[L-Par] P

α−→ P ′

P + Q
α−→ P ′

[L-Sum]

Q
a−→ Q ′ P

a−→ P ′

(Q | P) τ−→ (Q ′ | P ′)
[L-Sync]

Par, Sum and Sync have right rules.

26

Running one example

Recall that

Serve = (tea.pick.VM + coffee.pick .VM)

and VM | Client =

coin.sugar .(yes.fill .Serve + no.Serve)|coin.sugar .no.coffee.pick .0

So,

VM|Client τ−→ sugar .(yes.fill .Serve + no.Serve)|sugar .no.coffee.pick .0
τ−→ (yes.fill .Serve + no.Serve) | no.coffee.pick.0
τ−→ Serve | coffee.pick.0
τ−→ pick .VM | pick.0
τ−→ VM | 0

27

How to justify each step?

Steps 4 and 5 are direct applications of the [Sync] rule.

Step 1

Let Decide = sugar .(yes.fill .Serve + no.Serve) and
BCoffee = sugar .no.coffee.pick.0

coin.Decide
coin−→ Decide

[Pre]

VM
coin−→ Decide

[Def]
coin.BCoffee

coin−→ BCoffee

[Pre]

Client
coin−→ BCoffee

[Def]

VM | Client τ−→ Decide | BCoffee
[Sync]

Step 2 is similar to step 1

28

How to justify each step?

Step 3

Let Coffee = coffee.pick .0

no.Serve
no−→ Serve

[Pre]

yes.fill .Serve + no.Serve
no−→ Serve

[Sum]
no.Coffee

no−→ Coffee
[Pre]

yes.fill .Serve + no.Serve | no.Coffee τ−→ Serve | Coffee
[Sync]

29

	Motivation
	Models of Computation
	More models of Computation
	Example of a non-terminating reactive systems
	Limitations of the automata-based models

	Calculus of Communicating Systems (CCS)
	Syntax
	Examples
	Operational Semantics

