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Motivation



The “classical” models, according to Chomsky hierarchy

Operational / Denotational Models

1. Finite Automata / Regular Languages
Represent finite-state systems

2. Push-Down Automata / Context-Free Languages
Represent finite-state systems with a memory stack

3. Linear-Bounded Automata / Context-Sensitive Languages
Represent finite-state systems with a finitely-long list as store

4. Turing Machines / Unrestricted Languages
Represent finite-state systems with a infinitely-long list as store

Isn’t this enough? Turing Machines are universal

Implement any computable function
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One model per expressiveness class is enough, right?

If Turing Machines have all the power we need and are universal,
why bother inventing other languages?

Programming Languages

• Low / High level

• General purpose / DSLs

• Imperative / Functional / Logic

• Object-Oriented / Aspect-Oriented / Service-Oriented

The intended system matters!
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What aspects consider when modelling concurrent systems?

(Non-)Termination

• Sequential programs implement “functionalities”
• One expects them to terminate and (sometimes) return a result
• Examples: factorial, bank account, queue

• Concurrent programs implement “behaviour”
• One expects them to (often) run forever, being reactive and

responsive
• Examples: operating system, cloud storage, social network
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What aspects consider when modelling concurrent systems?

Reactiveness is key

Sequential programs implement “functionalities”

• Run on demand, receiving input data and returning results

• Examples: factorial, bank account, queue

Concurrent programs implement “behaviour”

• Are often idle (or with invisible activity), reacting to stimula

• Examples: ATM machine, sensor network, alarm system
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How to consider...

Non-Termination

• Key aspect: accept infinite words

• (Simplest) Operational / Denotational Model
Büchi Automata / ω-Regular Languages

Interaction

• Key aspects: communication and parallelism

• (Simplest) Operational / Denotational Model
Calculus of Communicating Systems (CCS) / Labelled
Transition Systems

6
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Modelling and reasoning about reactive systems

Consider a vending machine

(a typical non-terminating reactive machine):

• Intended (user) behaviour:
insert a coin; choose coffee or tea; pick the beverage

1start 2

3

4

coin

tea

coffee

pick

pick

• Denotational model: coin.(coffee + tea).pick
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Modelling and reasoning about reactive systems

• A regular expression specifies the intended system behaviour

• An automaton implements the intended system behaviour

System Correctness: back to basics

The program (automaton) is correct if it implements (accepts)
exactly the intended behaviour (the language of the regular
expression).

Is the vending machine correct?

• Language of the vending machine, by converting the
automaton

coin.(coffee.pick + tea.pick)

• coin.(coffee + tea).pick = coin.(coffee.pick + tea.pick)
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Is the vending machine correct?

• In the previous example we used the Kleene algebra
distribution law (of sequencing over choice) to conclude the
correctness of the automaton
Kleene algebra transforms expressions preserving their language

• The equivalence principle:
two automaton / regular expression are equivalent if they
accept / denote the same language

coin.(coffee + tea).pick = coin.(coffee.pick + tea.pick)

So, the language of the automata is the same of that of the
expression specifying the intended behaviour

The vending machine is correct
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Is the equivalence notion the right one for reactive systems?

An equivalent vending machine

coin.(coffee.pick + tea.pick) = coin.coffee.pick + coin.tea.pick

1 2

3

4

5

coin

teapick

coin

coffee pick

Does it have the same intended behaviour?

• When the user inserts the coin, the automaton
non-deterministically decides to go to the left or to the right

• The user no longer can choose between tea or coffee...
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Are automata adequate to reactive systems?

• Imagine a streaming system like a internet TV channel
It should never terminate

An automata modelling it has final states?
• Imagine the authentication phase of interacting with an ATM

1start 2 3 4
card pin

ko

ok

card and pin are user’s actions; ok and ko are ATM’s actions
An automaton does not distinguish input from output actions

• Imagine a synchronous like VOIP
The interacting parties need to communicate synchronously,
with the input on one side match by output on the other
An automaton does not represent synchronous communication
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Requirements for an adequate model of reactive systems

In short

• Represent non-terminating behaviour
without considering necessarily final states

• Distinguish input and output actions
and allow the input of one party to be the output of another

• Support parallelism and communication
systems composed by (a)synchronous interactive components
interacting with their environment

• Use a finer notion of equivalence
taking choice into consideration

What is an appropriate operational / denotational model?
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Calculus of Communicating
Systems (CCS)



Calculus of Communicating Systems (CCS)

CCS: a process algebra

• Syntax: a language defined by a regular grammar

• Operational semantics: a transition relation

• Denotational semantics: a mathematical representation of
non-terminating reactive systems

Mathematical interpretation

Labelled Transition Systems, equipped with a congruence relation

Congruence

Substitutive equivalence preserved by the operations of the language
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Calculus of Communicating Systems (CCS)

Why calculus?

A minimal mathematical language for calculations and reasoning

Examples:

• Leibniz’s infinitesimal calculus

• Newton’s integral calculus

Why minimal?

Ockham’s razor Principle: lex parsimoniae

Shaves off unnecessary hair – the best definition/explanation is the
simplest one
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Calculus of Communicating Systems (CCS)

Basically, what is a reactive system?

A process able of performing (interactive) actions and after each
one, becoming another process

Motto (Tony Hoare and Robin Milner)

(In reactive systems) Everything is a process!

Remember set theory? In Mathematics, everything is a set
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Calculus of Communicating Systems (CCS)

Assume a countable set N of action names; then CCS actions are
defined as follows:

α ::= Actions

a Input action

| a Output action

| τ Silent (internal) action

a and a are observable actions, while τ is an unobservable action.

Processes

A computing agent able of performing internal computation and of
interacting with its environment via communicating actions.
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Syntax of CCS

Processes

Consider for each process variable A a defining equation
A(x1, . . . , xn) = P where the name variables x1, . . . , xn occur
(bound) in P .

P,Q,R ::= Processes

0 Empty process

| A⟨a1, . . . , an⟩ process definition

| α.P action prefix

| (new a)P action hiding

| P | Q parallel composition

| P + Q (non-deterministic) choice
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Ingredients of CCS

• Actions are
• offers (inputs)
• selections (outputs),
• or idle (invisible)

• Hiding makes actions invisible
• Parallel composition allows synchronous (by handshake)

communication between two processes
• Definitions support generic processes and recursion

Precedence in decreasing order

• hiding

• prefixing

• parallel composition

• choice

18
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Vending Machine

In a process equation A(x1, . . . , xn) or definition A⟨a1, . . . , an⟩, if
n = 0 we simply write A

Version 1

• VM = coin.(tea.pick .VM + coffee.pick.VM)

• Client = coin.coffee.pick .0

• System = VM | Client

Version 2

• VM = coin.sugar .(yes.fill .Serve + no.Serve)

• Serve = (tea.pick.VM + coffee.pick .VM)
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ATM

• Box = card .Session

• Session = (pin.(ok.Serve + ko.Session) + exit.card .Box)

• Serve = (balance.pick .Session +

deposit.amount.pick.Session+withdraw .amount.pick .Session)

• Client = card .pin.Use

• Use =

(ok.balance.pick .pin.ok.withdraw .Fifty .pick.exit.card .0 +

ko.exit.card .0)

• System = Box | Client
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Actions, free and bound actions, and action substitution

Actions of a process Act(P) ⊆ Act

is a set inductively defined by the following rules.

Act(A⟨a1, . . . , an⟩) = {a1, . . . , an}
Act(α.P) = {a} ∪ Act(P), if α = a or α = a

Act((new a)P) = {a} ∪ Act(P)

Act(P | Q) = Act(P) ∪ Act(Q)

Act(P + Q) = Act(P) ∪ Act(Q)
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Actions, free and bound actions, and action substitution

Free and bound actions

• fn(P) = Act(P)\ bn(P)
• bn(P) ⊆ Act is a set inductively defined by the rules

bn(A⟨a1, . . . , an⟩) = ∅
bn(α.P) = bn(P)

bn((new a)P) = {a} ∪ bn(P)

bn(P | Q) = bn(P) ∪ bn(Q)

bn(P + Q) = bn(P) ∪ bn(Q)

22



Actions, free and bound actions, and action substitution

Substitution

Let P{a⃗← b⃗} denote the simultaneous substitution of the free
occurrences of the actions a⃗ in P for b⃗.

Example

{water ← coffee}{cola← tea}(tea.pick .VM + coffee.pick .VM)

{water ← coffee}(cola.pick .VM + coffee.pick .VM)

(cola.pick .VM + water .pick .VM)

23



Actions, free and bound actions, and action substitution

It is sometimes necessary to rename bound actions to avoid clashes.

((new a)a.b.0){a← b} = (new a)a.a.0

The free action b became a, which is bound...

Alpha-congruence

The binary relation =α on processes is inductively defined by the
rule (new a)P =α (new b)P{a← b} if b /∈ bn(P), and
homomorphic rules on the remaining process constructs.
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Structural Operational Semantics of CCS

• Syntax-driven proof rules to infer the behaviour of a system
(Gordon Plotkin, 1981)

• Rules describe single computational steps, explaining the effect
of executing a particular (syntactic) construct of the language

Transition Relation

Given a set of CCS defining equations P specifying a system, the
transition relation of the system is defined by a set of triples

{ a−→ ∈ P × P | a ∈ Act}

In the next slide we inductively define the Structural Operational
Semantics of CCS
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SOS proof rules of CCS

PA{a⃗← b⃗} α−→ P ′

A⟨b⃗⟩ α−→ P ′ A(a⃗)
def
= PA [Def]

α.P
α−→ P

[Pre]

P
α−→ P ′

(new a)P
α−→ (new a)P ′

α ̸∈ {a, a} [Res] P
α−→ P ′

Q
α−→ P ′

P =αQ [Alpha]

Q
α−→ Q ′

(Q | P) α−→ (Q ′ | P)
[L-Par] P

α−→ P ′

P + Q
α−→ P ′

[L-Sum]

Q
a−→ Q ′ P

a−→ P ′

(Q | P) τ−→ (Q ′ | P ′)
[L-Sync]

Par, Sum and Sync have right rules.
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Running one example

Recall that

Serve = (tea.pick.VM + coffee.pick .VM)

and VM | Client =

coin.sugar .(yes.fill .Serve + no.Serve)|coin.sugar .no.coffee.pick .0

So,

VM|Client τ−→ sugar .(yes.fill .Serve + no.Serve)|sugar .no.coffee.pick .0
τ−→ (yes.fill .Serve + no.Serve) | no.coffee.pick.0
τ−→ Serve | coffee.pick.0
τ−→ pick .VM | pick.0
τ−→ VM | 0

27



How to justify each step?

Steps 4 and 5 are direct applications of the [Sync] rule.

Step 1

Let Decide = sugar .(yes.fill .Serve + no.Serve) and
BCoffee = sugar .no.coffee.pick.0

coin.Decide
coin−→ Decide

[Pre]

VM
coin−→ Decide

[Def]
coin.BCoffee

coin−→ BCoffee

[Pre]

Client
coin−→ BCoffee

[Def]

VM | Client τ−→ Decide | BCoffee
[Sync]

Step 2 is similar to step 1
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How to justify each step?

Step 3

Let Coffee = coffee.pick .0

no.Serve
no−→ Serve

[Pre]

yes.fill .Serve + no.Serve
no−→ Serve

[Sum]
no.Coffee

no−→ Coffee
[Pre]

yes.fill .Serve + no.Serve | no.Coffee τ−→ Serve | Coffee
[Sync]
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