Modelling and Validation of
Concurrent System

Anténio Ravara
May 6, 2024

What drives my research?

How can we (coders) make programs go right?

What drives my research?

How can we (coders) make programs go right?

Let's take steps to avoid horror stories

What drives my research?

How can we (coders) make programs go right?

Let's take steps to avoid horror stories

3?5;15?: 99 little bugs in the code,
; 99 little bugs s Sj
‘E(ﬁé Take one down, patch it around...

127 little bugs in the code!

149

I HAVE NO IDEA.
BUT IT DOES NOT
WORK WITHOLIT

14 1

Scenario under consideration in this course

Modern Software Systems

e Pervasive — our society fundamentally depends on them.

Scenario under consideration in this course

Modern Software Systems
e Pervasive — our society fundamentally depends on them.

e Crucial ones are huge:
airspace, banking, taxes, telecoms, ...

Scenario under consideration in this course

Modern Software Systems
e Pervasive — our society fundamentally depends on them.

e Crucial ones are huge:
airspace, banking, taxes, telecoms, ...

e Main characteristics:
large-scale, distributed, communication-intensive,
hold critical data.

Scenario under consideration in this course

Modern Software Systems
e Pervasive — our society fundamentally depends on them.

e Crucial ones are huge:
airspace, banking, taxes, telecoms, ...

e Main characteristics:
large-scale, distributed, communication-intensive,
hold critical data.

In short:
no room to failures!

Problems/Challenges with modern software systems

e Difficult to build and to maintain.
Blueprints? Development methodology? Updates?

Problems/Challenges with modern software systems

e Difficult to build and to maintain.
Blueprints? Development methodology? Updates?

e How to express their goals and intended functionality?
Requirements? Specifications?

Problems/Challenges with modern software systems

e Difficult to build and to maintain.
Blueprints? Development methodology? Updates?

e How to express their goals and intended functionality?
Requirements? Specifications?

e How to ensure them correct?
Do they do what they are supposed to? Will they crash?

Problems/Challenges with modern software systems

e Difficult to build and to maintain.
Blueprints? Development methodology? Updates?

e How to express their goals and intended functionality?
Requirements? Specifications?

e How to ensure them correct?
Do they do what they are supposed to? Will they crash?

e How to keep them safe?
Are they hackable?

Modelling and validating (large) software systems

Modelling challenges
Informal lists of requirements in

natural language are not enough.

https://amturing.acm.org/award_winners/dijkstra_1053701.cfm
https://dl.acm.org/ft_gateway.cfm?id=1283927&type=pdf

Modelling and validating (large) software systems

Modelling challenges
Informal lists of requirements in

natural language are not enough.

Validation challenges
Testing/Debugging is not enough.

https://amturing.acm.org/award_winners/dijkstra_1053701.cfm
https://dl.acm.org/ft_gateway.cfm?id=1283927&type=pdf

Modelling and validating (large) software systems

Modelling challenges
Informal lists of requirements in

natural language are not enough.

Validation challenges
Testing/Debugging is not enough.

Viable approach
Mathematical tools:

e represent rigorously the
Dijkstra —'72 Turing award:

“The humble programmer”

intended behaviour

e allow to formally verify

correctness. Program testing can be used to

show the presence of bugs, but
never to show their absence!”

https://amturing.acm.org/award_winners/dijkstra_1053701.cfm
https://dl.acm.org/ft_gateway.cfm?id=1283927&type=pdf

Are formal tools really needed? What can go wrong...

One striking example

Joshua Bloch, Google Research Blog (2006):
“Nearly All Binary Searches and Mergesorts are Broken”

https://www.wired.com/2016/09/computer-scientists-close-perfect-hack-proof-code/
https://www.wired.com/2016/09/computer-scientists-close-perfect-hack-proof-code/
https://cacm.acm.org/magazines/2017/8/219596-hacker-proof-coding/fulltext
https://cacm.acm.org/magazines/2017/8/219596-hacker-proof-coding/fulltext

Are formal tools really needed? What can go wrong...

One striking example

Joshua Bloch, Google Research Blog (2006):
“Nearly All Binary Searches and Mergesorts are Broken”

e A 9 years old bug on binary search in the standard Java Library
e A clear presentation on how to implement:

Jon Bentley - Programming Pearls. 1986 (2nd ed. 2000)
The challenge of binary search

https://www.wired.com/2016/09/computer-scientists-close-perfect-hack-proof-code/
https://www.wired.com/2016/09/computer-scientists-close-perfect-hack-proof-code/
https://cacm.acm.org/magazines/2017/8/219596-hacker-proof-coding/fulltext
https://cacm.acm.org/magazines/2017/8/219596-hacker-proof-coding/fulltext

Are formal tools really needed? What can go wrong...

One striking example

Joshua Bloch, Google Research Blog (2006):
“Nearly All Binary Searches and Mergesorts are Broken”
e A 9 years old bug on binary search in the standard Java Library
e A clear presentation on how to implement:
Jon Bentley - Programming Pearls. 1986 (2nd ed. 2000)
The challenge of binary search

How to avoid these kind of problems:

Hacker-Proof Coding:
https://www.wired.com/2016/09/

computer-scientists-close-perfect-hack-proof-code/

https://cacm.acm.org/magazines/2017/8/
219596-hacker-proof-coding/fulltext

https://www.wired.com/2016/09/computer-scientists-close-perfect-hack-proof-code/
https://www.wired.com/2016/09/computer-scientists-close-perfect-hack-proof-code/
https://cacm.acm.org/magazines/2017/8/219596-hacker-proof-coding/fulltext
https://cacm.acm.org/magazines/2017/8/219596-hacker-proof-coding/fulltext

Are formal tools really needed? What can go wrong...

Pentium 5 bug (1994): rounding error

Correct value:
4,195,835

T 1.333820449136241002

Value returned by a faulty Pentium processor:

4,195,835

SIETE 1.333739068902037589

https://en.wikipedia.org/wiki/Pentium_FDIV_bug

https://en.wikipedia.org/wiki/Pentium_FDIV_bug

Formal tools at work

Success stories

e Hardware verification at Intel
https://www.quora.com/

What-does-a-S0C-verification-engineer-at-Intel-or-AMD-:

https://www.quora.com/What-does-a-SOC-verification-engineer-at-Intel-or-AMD-actually-do
https://www.quora.com/What-does-a-SOC-verification-engineer-at-Intel-or-AMD-actually-do
https://msdn.microsoft.com/en-us/library/windows/hardware/ff552806(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff552806(v=vs.85).aspx
http://cacm.acm.org/magazines/2015/4/184701-how-amazon-web-services-uses-formal-methods/fulltext
http://cacm.acm.org/magazines/2015/4/184701-how-amazon-web-services-uses-formal-methods/fulltext
http://cacm.acm.org/magazines/2015/4/184701-how-amazon-web-services-uses-formal-methods/fulltext
http://fbinfer.com

Formal tools at work

Success stories

e Hardware verification at Intel
https://www.quora.com/
What-does-a-S0C-verification-engineer-at-Intel-or-AMD-:
e Driver verification at Microsoft
https://msdn.microsoft.com/en-us/library/windows/
hardware/f£552806 (v=vs.85) .aspx

https://www.quora.com/What-does-a-SOC-verification-engineer-at-Intel-or-AMD-actually-do
https://www.quora.com/What-does-a-SOC-verification-engineer-at-Intel-or-AMD-actually-do
https://msdn.microsoft.com/en-us/library/windows/hardware/ff552806(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff552806(v=vs.85).aspx
http://cacm.acm.org/magazines/2015/4/184701-how-amazon-web-services-uses-formal-methods/fulltext
http://cacm.acm.org/magazines/2015/4/184701-how-amazon-web-services-uses-formal-methods/fulltext
http://cacm.acm.org/magazines/2015/4/184701-how-amazon-web-services-uses-formal-methods/fulltext
http://fbinfer.com

Formal tools at work

Success stories

e Hardware verification at Intel
https://www.quora.com/
What-does-a-S0C-verification-engineer-at-Intel-or-AMD-:
e Driver verification at Microsoft
https://msdn.microsoft.com/en-us/library/windows/
hardware/f£552806 (v=vs.85) .aspx

e Specification logic (TLA) at Amazon
http://cacm.acm.org/magazines/2015/4/
184701-how-amazon-web-services-uses-formal-methods/
fulltext

https://www.quora.com/What-does-a-SOC-verification-engineer-at-Intel-or-AMD-actually-do
https://www.quora.com/What-does-a-SOC-verification-engineer-at-Intel-or-AMD-actually-do
https://msdn.microsoft.com/en-us/library/windows/hardware/ff552806(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff552806(v=vs.85).aspx
http://cacm.acm.org/magazines/2015/4/184701-how-amazon-web-services-uses-formal-methods/fulltext
http://cacm.acm.org/magazines/2015/4/184701-how-amazon-web-services-uses-formal-methods/fulltext
http://cacm.acm.org/magazines/2015/4/184701-how-amazon-web-services-uses-formal-methods/fulltext
http://fbinfer.com

Formal tools at work

Success stories

e Hardware verification at Intel
https://www.quora.com/
What-does-a-S0C-verification-engineer-at-Intel-or-AMD-:
e Driver verification at Microsoft
https://msdn.microsoft.com/en-us/library/windows/
hardware/f£552806 (v=vs.85) .aspx

e Specification logic (TLA) at Amazon
http://cacm.acm.org/magazines/2015/4/
184701-how-amazon-web-services-uses-formal-methods/
fulltext

e Code verification at Facebook
http://fbinfer.com

https://www.quora.com/What-does-a-SOC-verification-engineer-at-Intel-or-AMD-actually-do
https://www.quora.com/What-does-a-SOC-verification-engineer-at-Intel-or-AMD-actually-do
https://msdn.microsoft.com/en-us/library/windows/hardware/ff552806(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff552806(v=vs.85).aspx
http://cacm.acm.org/magazines/2015/4/184701-how-amazon-web-services-uses-formal-methods/fulltext
http://cacm.acm.org/magazines/2015/4/184701-how-amazon-web-services-uses-formal-methods/fulltext
http://cacm.acm.org/magazines/2015/4/184701-how-amazon-web-services-uses-formal-methods/fulltext
http://fbinfer.com

Plan of the course

Today: concurrent reactive systems
e requirements to model concurrent reactive systems

e the calculus of communicating systems (CCS)

Plan of the course

Today: concurrent reactive systems
e requirements to model concurrent reactive systems

e the calculus of communicating systems (CCS)

Tomorrow: equivalences for CCS

e requirements for an equivalence notion

e observational behavioural equivalence

Plan of the course

Today: concurrent reactive systems
e requirements to model concurrent reactive systems

e the calculus of communicating systems (CCS)
Tomorrow: equivalences for CCS

e requirements for an equivalence notion

e observational behavioural equivalence

Wednesday: dynamic communication topologies

e the pi-calculus (syntax and operational semantics)

e observational behavioural equivalences

Plan of the course

Today: concurrent reactive systems
e requirements to model concurrent reactive systems

e the calculus of communicating systems (CCS)

Tomorrow: equivalences for CCS
e requirements for an equivalence notion
e observational behavioural equivalence
Wednesday: dynamic communication topologies
e the pi-calculus (syntax and operational semantics)

e observational behavioural equivalences

Thursday: logics—theory and tools

Plan of the course

Today: concurrent reactive systems

e requirements to model concurrent reactive systems

e the calculus of communicating systems (CCS)
Tomorrow: equivalences for CCS

e requirements for an equivalence notion

e observational behavioural equivalence
Wednesday: dynamic communication topologies

e the pi-calculus (syntax and operational semantics)

e observational behavioural equivalences

Thursday: logics—theory and tools

Friday (optional): Research problems

Bibliography and resources

e R. Milner: Communication and concurrency.
Prentice Hall 1989
R. Milner: Communicating and mobile systems - the

Pi-calculus. Cambridge University Press 1999
L. Aceto, A. Ingoélfsdéttir, K. Larsen, J. Srba: Reactive

systems: modelling, specification and verification.
Cambridge University Press 2007
C. Stirling: Modal and Temporal Properties of Processes.

Texts in Computer Science, Springer 2001
J. C. Bradfield, C. Stirling: Modal mu-calculi.
Handbook of Modal Logic 2007: 721-756

10

block

Bibliography and resources

e R. Milner: Communication and concurrency.
Prentice Hall 1989
R. Milner: Communicating and mobile systems - the

Pi-calculus. Cambridge University Press 1999
L. Aceto, A. Ingoélfsdéttir, K. Larsen, J. Srba: Reactive

systems: modelling, specification and verification.
Cambridge University Press 2007
C. Stirling: Modal and Temporal Properties of Processes.

Texts in Computer Science, Springer 2001
J. C. Bradfield, C. Stirling: Modal mu-calculi.
Handbook of Modal Logic 2007: 721-756

Slides and exercises

block
10

block

