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Modern Software Systems
e Pervasive — our society fundamentally depends on them.

e Crucial ones are huge:
airspace, banking, taxes, telecoms, ...

e Main characteristics:
large-scale, distributed, communication-intensive,
hold critical data.

In short:
no room to failures!
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e Difficult to build and to maintain.
Blueprints? Development methodology? Updates?

e How to express their goals and intended functionality?
Requirements? Specifications?

e How to ensure them correct?
Do they do what they are supposed to? Will they crash?

e How to keep them safe?
Are they hackable?



Modelling and validating (large) software systems

Modelling challenges
Informal lists of requirements in

natural language are not enough.
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Modelling and validating (large) software systems

Modelling challenges
Informal lists of requirements in

natural language are not enough.

Validation challenges
Testing/Debugging is not enough.

Viable approach
Mathematical tools:

e represent rigorously the
Dijkstra —'72 Turing award:

“The humble programmer”

intended behaviour

e allow to formally verify

correctness. Program testing can be used to

show the presence of bugs, but
never to show their absence!”
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Are formal tools really needed? What can go wrong...

One striking example

Joshua Bloch, Google Research Blog (2006):
“Nearly All Binary Searches and Mergesorts are Broken”
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Joshua Bloch, Google Research Blog (2006):
“Nearly All Binary Searches and Mergesorts are Broken”
e A 9 years old bug on binary search in the standard Java Library
e A clear presentation on how to implement:
Jon Bentley - Programming Pearls. 1986 (2nd ed. 2000)
The challenge of binary search

How to avoid these kind of problems:

Hacker-Proof Coding:
https://www.wired.com/2016/09/

computer-scientists-close-perfect-hack-proof-code/

https://cacm.acm.org/magazines/2017/8/
219596-hacker-proof-coding/fulltext


https://www.wired.com/2016/09/computer-scientists-close-perfect-hack-proof-code/
https://www.wired.com/2016/09/computer-scientists-close-perfect-hack-proof-code/
https://cacm.acm.org/magazines/2017/8/219596-hacker-proof-coding/fulltext
https://cacm.acm.org/magazines/2017/8/219596-hacker-proof-coding/fulltext

Are formal tools really needed? What can go wrong...

Pentium 5 bug (1994): rounding error

Correct value:
4,195,835

T 1.333820449136241002

Value returned by a faulty Pentium processor:

4,195,835

SIETE 1.333739068902037589

https://en.wikipedia.org/wiki/Pentium_FDIV_bug
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Success stories
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https://www.quora.com/
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https://www.quora.com/What-does-a-SOC-verification-engineer-at-Intel-or-AMD-actually-do
https://www.quora.com/What-does-a-SOC-verification-engineer-at-Intel-or-AMD-actually-do
https://msdn.microsoft.com/en-us/library/windows/hardware/ff552806(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff552806(v=vs.85).aspx
http://cacm.acm.org/magazines/2015/4/184701-how-amazon-web-services-uses-formal-methods/fulltext
http://cacm.acm.org/magazines/2015/4/184701-how-amazon-web-services-uses-formal-methods/fulltext
http://cacm.acm.org/magazines/2015/4/184701-how-amazon-web-services-uses-formal-methods/fulltext
http://fbinfer.com

Formal tools at work

Success stories

e Hardware verification at Intel
https://www.quora.com/
What-does-a-S0C-verification-engineer-at-Intel-or-AMD-:
e Driver verification at Microsoft
https://msdn.microsoft.com/en-us/library/windows/
hardware/f£552806 (v=vs.85) .aspx


https://www.quora.com/What-does-a-SOC-verification-engineer-at-Intel-or-AMD-actually-do
https://www.quora.com/What-does-a-SOC-verification-engineer-at-Intel-or-AMD-actually-do
https://msdn.microsoft.com/en-us/library/windows/hardware/ff552806(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff552806(v=vs.85).aspx
http://cacm.acm.org/magazines/2015/4/184701-how-amazon-web-services-uses-formal-methods/fulltext
http://cacm.acm.org/magazines/2015/4/184701-how-amazon-web-services-uses-formal-methods/fulltext
http://cacm.acm.org/magazines/2015/4/184701-how-amazon-web-services-uses-formal-methods/fulltext
http://fbinfer.com

Formal tools at work

Success stories

e Hardware verification at Intel
https://www.quora.com/
What-does-a-S0C-verification-engineer-at-Intel-or-AMD-:
e Driver verification at Microsoft
https://msdn.microsoft.com/en-us/library/windows/
hardware/f£552806 (v=vs.85) .aspx

e Specification logic (TLA) at Amazon
http://cacm.acm.org/magazines/2015/4/
184701-how-amazon-web-services-uses-formal-methods/
fulltext


https://www.quora.com/What-does-a-SOC-verification-engineer-at-Intel-or-AMD-actually-do
https://www.quora.com/What-does-a-SOC-verification-engineer-at-Intel-or-AMD-actually-do
https://msdn.microsoft.com/en-us/library/windows/hardware/ff552806(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff552806(v=vs.85).aspx
http://cacm.acm.org/magazines/2015/4/184701-how-amazon-web-services-uses-formal-methods/fulltext
http://cacm.acm.org/magazines/2015/4/184701-how-amazon-web-services-uses-formal-methods/fulltext
http://cacm.acm.org/magazines/2015/4/184701-how-amazon-web-services-uses-formal-methods/fulltext
http://fbinfer.com

Formal tools at work

Success stories

e Hardware verification at Intel
https://www.quora.com/
What-does-a-S0C-verification-engineer-at-Intel-or-AMD-:
e Driver verification at Microsoft
https://msdn.microsoft.com/en-us/library/windows/
hardware/f£552806 (v=vs.85) .aspx

e Specification logic (TLA) at Amazon
http://cacm.acm.org/magazines/2015/4/
184701-how-amazon-web-services-uses-formal-methods/
fulltext

e Code verification at Facebook
http://fbinfer.com


https://www.quora.com/What-does-a-SOC-verification-engineer-at-Intel-or-AMD-actually-do
https://www.quora.com/What-does-a-SOC-verification-engineer-at-Intel-or-AMD-actually-do
https://msdn.microsoft.com/en-us/library/windows/hardware/ff552806(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff552806(v=vs.85).aspx
http://cacm.acm.org/magazines/2015/4/184701-how-amazon-web-services-uses-formal-methods/fulltext
http://cacm.acm.org/magazines/2015/4/184701-how-amazon-web-services-uses-formal-methods/fulltext
http://cacm.acm.org/magazines/2015/4/184701-how-amazon-web-services-uses-formal-methods/fulltext
http://fbinfer.com

Plan of the course

Today: concurrent reactive systems
e requirements to model concurrent reactive systems

e the calculus of communicating systems (CCS)



Plan of the course

Today: concurrent reactive systems
e requirements to model concurrent reactive systems

e the calculus of communicating systems (CCS)

Tomorrow: equivalences for CCS

e requirements for an equivalence notion

e observational behavioural equivalence



Plan of the course

Today: concurrent reactive systems
e requirements to model concurrent reactive systems

e the calculus of communicating systems (CCS)
Tomorrow: equivalences for CCS

e requirements for an equivalence notion

e observational behavioural equivalence

Wednesday: dynamic communication topologies

e the pi-calculus (syntax and operational semantics)

e observational behavioural equivalences



Plan of the course

Today: concurrent reactive systems
e requirements to model concurrent reactive systems

e the calculus of communicating systems (CCS)

Tomorrow: equivalences for CCS
e requirements for an equivalence notion
e observational behavioural equivalence
Wednesday: dynamic communication topologies
e the pi-calculus (syntax and operational semantics)

e observational behavioural equivalences

Thursday: logics—theory and tools
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Today: concurrent reactive systems

e requirements to model concurrent reactive systems

e the calculus of communicating systems (CCS)
Tomorrow: equivalences for CCS

e requirements for an equivalence notion

e observational behavioural equivalence
Wednesday: dynamic communication topologies

e the pi-calculus (syntax and operational semantics)

e observational behavioural equivalences

Thursday: logics—theory and tools

Friday (optional): Research problems
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