
Modelling and Validation of
Concurrent System

António Ravara

May 6, 2024



What drives my research?

How can we (coders) make programs go right?

Let’s take steps to avoid horror stories

2



What drives my research?

How can we (coders) make programs go right?
Let’s take steps to avoid horror stories

2



What drives my research?

How can we (coders) make programs go right?
Let’s take steps to avoid horror stories

2



Scenario under consideration in this course

Modern Software Systems

• Pervasive – our society fundamentally depends on them.

• Crucial ones are huge:
airspace, banking, taxes, telecoms, ...

• Main characteristics:
large-scale, distributed, communication-intensive,
hold critical data.

In short:
no room to failures!

3



Scenario under consideration in this course

Modern Software Systems

• Pervasive – our society fundamentally depends on them.

• Crucial ones are huge:
airspace, banking, taxes, telecoms, ...

• Main characteristics:
large-scale, distributed, communication-intensive,
hold critical data.

In short:
no room to failures!

3



Scenario under consideration in this course

Modern Software Systems

• Pervasive – our society fundamentally depends on them.

• Crucial ones are huge:
airspace, banking, taxes, telecoms, ...

• Main characteristics:
large-scale, distributed, communication-intensive,
hold critical data.

In short:
no room to failures!

3



Scenario under consideration in this course

Modern Software Systems

• Pervasive – our society fundamentally depends on them.

• Crucial ones are huge:
airspace, banking, taxes, telecoms, ...

• Main characteristics:
large-scale, distributed, communication-intensive,
hold critical data.

In short:
no room to failures!

3



Problems/Challenges with modern software systems

• Difficult to build and to maintain.
Blueprints? Development methodology? Updates?

• How to express their goals and intended functionality?
Requirements? Specifications?

• How to ensure them correct?
Do they do what they are supposed to? Will they crash?

• How to keep them safe?
Are they hackable?

4



Problems/Challenges with modern software systems

• Difficult to build and to maintain.
Blueprints? Development methodology? Updates?

• How to express their goals and intended functionality?
Requirements? Specifications?

• How to ensure them correct?
Do they do what they are supposed to? Will they crash?

• How to keep them safe?
Are they hackable?

4



Problems/Challenges with modern software systems

• Difficult to build and to maintain.
Blueprints? Development methodology? Updates?

• How to express their goals and intended functionality?
Requirements? Specifications?

• How to ensure them correct?
Do they do what they are supposed to? Will they crash?

• How to keep them safe?
Are they hackable?

4



Problems/Challenges with modern software systems

• Difficult to build and to maintain.
Blueprints? Development methodology? Updates?

• How to express their goals and intended functionality?
Requirements? Specifications?

• How to ensure them correct?
Do they do what they are supposed to? Will they crash?

• How to keep them safe?
Are they hackable?

4



Modelling and validating (large) software systems

Modelling challenges
Informal lists of requirements in
natural language are not enough.

Validation challenges
Testing/Debugging is not enough.

Viable approach
Mathematical tools:

• represent rigorously the
intended behaviour

• allow to formally verify
correctness.

Dijkstra –’72 Turing award:
“The humble programmer”

“Program testing can be used to
show the presence of bugs, but
never to show their absence!”

5

https://amturing.acm.org/award_winners/dijkstra_1053701.cfm
https://dl.acm.org/ft_gateway.cfm?id=1283927&type=pdf


Modelling and validating (large) software systems

Modelling challenges
Informal lists of requirements in
natural language are not enough.

Validation challenges
Testing/Debugging is not enough.

Viable approach
Mathematical tools:

• represent rigorously the
intended behaviour

• allow to formally verify
correctness.

Dijkstra –’72 Turing award:
“The humble programmer”

“Program testing can be used to
show the presence of bugs, but
never to show their absence!”

5

https://amturing.acm.org/award_winners/dijkstra_1053701.cfm
https://dl.acm.org/ft_gateway.cfm?id=1283927&type=pdf


Modelling and validating (large) software systems

Modelling challenges
Informal lists of requirements in
natural language are not enough.

Validation challenges
Testing/Debugging is not enough.

Viable approach
Mathematical tools:

• represent rigorously the
intended behaviour

• allow to formally verify
correctness.

Dijkstra –’72 Turing award:
“The humble programmer”

“Program testing can be used to
show the presence of bugs, but
never to show their absence!”

5

https://amturing.acm.org/award_winners/dijkstra_1053701.cfm
https://dl.acm.org/ft_gateway.cfm?id=1283927&type=pdf


Are formal tools really needed? What can go wrong...

One striking example

Joshua Bloch, Google Research Blog (2006):
“Nearly All Binary Searches and Mergesorts are Broken”

• A 9 years old bug on binary search in the standard Java Library

• A clear presentation on how to implement:
Jon Bentley - Programming Pearls. 1986 (2nd ed. 2000)
The challenge of binary search

How to avoid these kind of problems:

Hacker-Proof Coding:
https://www.wired.com/2016/09/
computer-scientists-close-perfect-hack-proof-code/

https://cacm.acm.org/magazines/2017/8/
219596-hacker-proof-coding/fulltext

6

https://www.wired.com/2016/09/computer-scientists-close-perfect-hack-proof-code/
https://www.wired.com/2016/09/computer-scientists-close-perfect-hack-proof-code/
https://cacm.acm.org/magazines/2017/8/219596-hacker-proof-coding/fulltext
https://cacm.acm.org/magazines/2017/8/219596-hacker-proof-coding/fulltext


Are formal tools really needed? What can go wrong...

One striking example

Joshua Bloch, Google Research Blog (2006):
“Nearly All Binary Searches and Mergesorts are Broken”

• A 9 years old bug on binary search in the standard Java Library
• A clear presentation on how to implement:

Jon Bentley - Programming Pearls. 1986 (2nd ed. 2000)
The challenge of binary search

How to avoid these kind of problems:

Hacker-Proof Coding:
https://www.wired.com/2016/09/
computer-scientists-close-perfect-hack-proof-code/

https://cacm.acm.org/magazines/2017/8/
219596-hacker-proof-coding/fulltext

6

https://www.wired.com/2016/09/computer-scientists-close-perfect-hack-proof-code/
https://www.wired.com/2016/09/computer-scientists-close-perfect-hack-proof-code/
https://cacm.acm.org/magazines/2017/8/219596-hacker-proof-coding/fulltext
https://cacm.acm.org/magazines/2017/8/219596-hacker-proof-coding/fulltext


Are formal tools really needed? What can go wrong...

One striking example

Joshua Bloch, Google Research Blog (2006):
“Nearly All Binary Searches and Mergesorts are Broken”

• A 9 years old bug on binary search in the standard Java Library
• A clear presentation on how to implement:

Jon Bentley - Programming Pearls. 1986 (2nd ed. 2000)
The challenge of binary search

How to avoid these kind of problems:

Hacker-Proof Coding:
https://www.wired.com/2016/09/
computer-scientists-close-perfect-hack-proof-code/

https://cacm.acm.org/magazines/2017/8/
219596-hacker-proof-coding/fulltext

6

https://www.wired.com/2016/09/computer-scientists-close-perfect-hack-proof-code/
https://www.wired.com/2016/09/computer-scientists-close-perfect-hack-proof-code/
https://cacm.acm.org/magazines/2017/8/219596-hacker-proof-coding/fulltext
https://cacm.acm.org/magazines/2017/8/219596-hacker-proof-coding/fulltext


Are formal tools really needed? What can go wrong...

Pentium 5 bug (1994): rounding error

https://en.wikipedia.org/wiki/Pentium_FDIV_bug

7

https://en.wikipedia.org/wiki/Pentium_FDIV_bug


Formal tools at work

Success stories

• Hardware verification at Intel
https://www.quora.com/
What-does-a-SOC-verification-engineer-at-Intel-or-AMD-actually-do

• Driver verification at Microsoft
https://msdn.microsoft.com/en-us/library/windows/
hardware/ff552806(v=vs.85).aspx

• Specification logic (TLA) at Amazon
http://cacm.acm.org/magazines/2015/4/
184701-how-amazon-web-services-uses-formal-methods/
fulltext

• Code verification at Facebook
http://fbinfer.com

8

https://www.quora.com/What-does-a-SOC-verification-engineer-at-Intel-or-AMD-actually-do
https://www.quora.com/What-does-a-SOC-verification-engineer-at-Intel-or-AMD-actually-do
https://msdn.microsoft.com/en-us/library/windows/hardware/ff552806(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff552806(v=vs.85).aspx
http://cacm.acm.org/magazines/2015/4/184701-how-amazon-web-services-uses-formal-methods/fulltext
http://cacm.acm.org/magazines/2015/4/184701-how-amazon-web-services-uses-formal-methods/fulltext
http://cacm.acm.org/magazines/2015/4/184701-how-amazon-web-services-uses-formal-methods/fulltext
http://fbinfer.com


Formal tools at work

Success stories

• Hardware verification at Intel
https://www.quora.com/
What-does-a-SOC-verification-engineer-at-Intel-or-AMD-actually-do

• Driver verification at Microsoft
https://msdn.microsoft.com/en-us/library/windows/
hardware/ff552806(v=vs.85).aspx

• Specification logic (TLA) at Amazon
http://cacm.acm.org/magazines/2015/4/
184701-how-amazon-web-services-uses-formal-methods/
fulltext

• Code verification at Facebook
http://fbinfer.com

8

https://www.quora.com/What-does-a-SOC-verification-engineer-at-Intel-or-AMD-actually-do
https://www.quora.com/What-does-a-SOC-verification-engineer-at-Intel-or-AMD-actually-do
https://msdn.microsoft.com/en-us/library/windows/hardware/ff552806(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff552806(v=vs.85).aspx
http://cacm.acm.org/magazines/2015/4/184701-how-amazon-web-services-uses-formal-methods/fulltext
http://cacm.acm.org/magazines/2015/4/184701-how-amazon-web-services-uses-formal-methods/fulltext
http://cacm.acm.org/magazines/2015/4/184701-how-amazon-web-services-uses-formal-methods/fulltext
http://fbinfer.com


Formal tools at work

Success stories

• Hardware verification at Intel
https://www.quora.com/
What-does-a-SOC-verification-engineer-at-Intel-or-AMD-actually-do

• Driver verification at Microsoft
https://msdn.microsoft.com/en-us/library/windows/
hardware/ff552806(v=vs.85).aspx

• Specification logic (TLA) at Amazon
http://cacm.acm.org/magazines/2015/4/
184701-how-amazon-web-services-uses-formal-methods/
fulltext

• Code verification at Facebook
http://fbinfer.com

8

https://www.quora.com/What-does-a-SOC-verification-engineer-at-Intel-or-AMD-actually-do
https://www.quora.com/What-does-a-SOC-verification-engineer-at-Intel-or-AMD-actually-do
https://msdn.microsoft.com/en-us/library/windows/hardware/ff552806(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff552806(v=vs.85).aspx
http://cacm.acm.org/magazines/2015/4/184701-how-amazon-web-services-uses-formal-methods/fulltext
http://cacm.acm.org/magazines/2015/4/184701-how-amazon-web-services-uses-formal-methods/fulltext
http://cacm.acm.org/magazines/2015/4/184701-how-amazon-web-services-uses-formal-methods/fulltext
http://fbinfer.com


Formal tools at work

Success stories

• Hardware verification at Intel
https://www.quora.com/
What-does-a-SOC-verification-engineer-at-Intel-or-AMD-actually-do

• Driver verification at Microsoft
https://msdn.microsoft.com/en-us/library/windows/
hardware/ff552806(v=vs.85).aspx

• Specification logic (TLA) at Amazon
http://cacm.acm.org/magazines/2015/4/
184701-how-amazon-web-services-uses-formal-methods/
fulltext

• Code verification at Facebook
http://fbinfer.com

8

https://www.quora.com/What-does-a-SOC-verification-engineer-at-Intel-or-AMD-actually-do
https://www.quora.com/What-does-a-SOC-verification-engineer-at-Intel-or-AMD-actually-do
https://msdn.microsoft.com/en-us/library/windows/hardware/ff552806(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff552806(v=vs.85).aspx
http://cacm.acm.org/magazines/2015/4/184701-how-amazon-web-services-uses-formal-methods/fulltext
http://cacm.acm.org/magazines/2015/4/184701-how-amazon-web-services-uses-formal-methods/fulltext
http://cacm.acm.org/magazines/2015/4/184701-how-amazon-web-services-uses-formal-methods/fulltext
http://fbinfer.com


Plan of the course

Today: concurrent reactive systems

• requirements to model concurrent reactive systems

• the calculus of communicating systems (CCS)

Tomorrow: equivalences for CCS

• requirements for an equivalence notion

• observational behavioural equivalence

Wednesday: dynamic communication topologies

• the pi-calculus (syntax and operational semantics)

• observational behavioural equivalences

Thursday: logics–theory and tools

Friday (optional): Research problems

9



Plan of the course

Today: concurrent reactive systems

• requirements to model concurrent reactive systems

• the calculus of communicating systems (CCS)

Tomorrow: equivalences for CCS

• requirements for an equivalence notion

• observational behavioural equivalence

Wednesday: dynamic communication topologies

• the pi-calculus (syntax and operational semantics)

• observational behavioural equivalences

Thursday: logics–theory and tools

Friday (optional): Research problems

9



Plan of the course

Today: concurrent reactive systems

• requirements to model concurrent reactive systems

• the calculus of communicating systems (CCS)

Tomorrow: equivalences for CCS

• requirements for an equivalence notion

• observational behavioural equivalence

Wednesday: dynamic communication topologies

• the pi-calculus (syntax and operational semantics)

• observational behavioural equivalences

Thursday: logics–theory and tools

Friday (optional): Research problems

9



Plan of the course

Today: concurrent reactive systems

• requirements to model concurrent reactive systems

• the calculus of communicating systems (CCS)

Tomorrow: equivalences for CCS

• requirements for an equivalence notion

• observational behavioural equivalence

Wednesday: dynamic communication topologies

• the pi-calculus (syntax and operational semantics)

• observational behavioural equivalences

Thursday: logics–theory and tools

Friday (optional): Research problems

9



Plan of the course

Today: concurrent reactive systems

• requirements to model concurrent reactive systems

• the calculus of communicating systems (CCS)

Tomorrow: equivalences for CCS

• requirements for an equivalence notion

• observational behavioural equivalence

Wednesday: dynamic communication topologies

• the pi-calculus (syntax and operational semantics)

• observational behavioural equivalences

Thursday: logics–theory and tools

Friday (optional): Research problems 9



Bibliography and resources

• R. Milner: Communication and concurrency.
Prentice Hall 1989

• R. Milner: Communicating and mobile systems - the
Pi-calculus. Cambridge University Press 1999

• L. Aceto, A. Ingólfsdóttir, K. Larsen, J. Srba: Reactive
systems: modelling, specification and verification.
Cambridge University Press 2007

• C. Stirling: Modal and Temporal Properties of Processes.
Texts in Computer Science, Springer 2001

• J. C. Bradfield, C. Stirling: Modal mu-calculi.
Handbook of Modal Logic 2007: 721-756

Slides and exercises

block

10

block


Bibliography and resources

• R. Milner: Communication and concurrency.
Prentice Hall 1989

• R. Milner: Communicating and mobile systems - the
Pi-calculus. Cambridge University Press 1999

• L. Aceto, A. Ingólfsdóttir, K. Larsen, J. Srba: Reactive
systems: modelling, specification and verification.
Cambridge University Press 2007

• C. Stirling: Modal and Temporal Properties of Processes.
Texts in Computer Science, Springer 2001

• J. C. Bradfield, C. Stirling: Modal mu-calculi.
Handbook of Modal Logic 2007: 721-756

Slides and exercises

block

10

block

