A Taxonomy of $L T$ propertics

Inveriant

An LT property $P_{\text {lwr }}$ is an inssriont. if there is a propositional formula φ s.t. for all $\sigma \in P_{\text {lav }}$ and all $i \geqslant 0, \quad \sigma[i] \leqslant \varphi$

Given that

$$
\begin{aligned}
& T S \in P_{\text {inv }} \Leftrightarrow T_{\text {races }}(T S) \leq P_{\text {inv }} \\
& \Leftrightarrow \text { troce }(\pi) \text { e Pinv } \forall \pi \text { peth of } G(T S) \\
& \Leftrightarrow L(S)+\phi \quad \forall \text { s on a peth of } u(T S) \\
& \Leftrightarrow L(s) F \phi \quad \forall s \in \operatorname{Reach}(T S) \text { all reachable } \\
& \text { state of TS seetisfy } \phi
\end{aligned}
$$

we can cuachode that en inveriant is on "stete-property; in fact, inceriant proferties con be limeorly checked on trousition systems whose stete grefh is furite.

Exercise show thet $P_{\text {mutex }}$ is an inverient $\phi=7$ crit $_{1} \vee \neg$ crit

Safety
In general safety proferties impose condifious on fimite poth tref fenerts of execations e.g.
"before witholvaring money, a conrect $P I D$ is entered"
Intrition: en infuiste execution vidating (*t has or firite prefix vioboing it "bed Prefix" puff $(\sigma)=\bigcup_{n \in \omega}^{\sigma_{<n}}$
Sefety Psefe $\forall \sigma \in\left(2^{A P}\right)^{\omega}$, $P_{\text {sefe }} \exists_{n \geqslant 0}=\sigma_{<n}\left(2^{A P}\right)^{\omega} \cap P_{\text {sefe }}=\phi$

$$
\text { Badiaf }(P)=\left\{\sigma \in\left(2^{A P}\right)^{\star}, \exists \sigma^{\prime} \in\left(2^{2 A}\right)^{\omega}, p: \sigma \in \operatorname{prf}\left(\sigma^{\prime}\right) \wedge \sigma\left(2^{A P}\right)^{\omega} \cap P=\varnothing\right\}
$$

Lemme $T S=P_{\text {safe }} \leftrightarrow T_{\text {rear fin }}(T S) \cap$ Bed $P_{\text {ref }}\left(P_{\text {safe }}\right)=\varnothing$

Proof (\Rightarrow) if $\hat{\sigma} \in T_{\text {racosfin }}$ (Ts) \cap Bad $P_{\text {ref }}\left(P_{\text {safe }}\right)$

$$
\begin{aligned}
& \Rightarrow \exists \sigma \in T_{r a c e s}(T s), n \geq 0: \hat{\sigma}=\sigma_{<n} \\
& \Rightarrow \sigma \notin P_{\text {safe }} \\
& \Rightarrow T S \not \models P_{\text {safe }} \\
&\left(\Leftrightarrow \text { If } T S \notin P_{\text {sefe }}\right. \stackrel{d d f}{\Rightarrow} \exists_{\sigma \in} T_{\text {races }}(T S): \sigma \notin P_{\text {sefe }} \\
& \Rightarrow \exists n \geqslant 0: \sigma_{<n} \in \text { Bed } P_{\text {ref }}\left(P_{\text {safe }}\right) \\
& \Rightarrow \sigma_{<n} \quad \in T_{\text {races }}^{\text {fin }}(T S) \cap \text { Bed Pref }\left(P_{\text {jefe }}\right)
\end{aligned}
$$

weaker than fuel
trace inclusion
\Rightarrow good to show the t
refinement is ok
tho Traces $_{\text {fin }}(T S) \subseteq T_{\text {racespin }}\left(T s^{\prime}\right) \Longleftrightarrow$
\forall safety properties $P \quad T S^{\prime} \vDash P \Rightarrow T S=P$
Proof $(\Rightarrow) P$ is a safety prop $\underset{\Longrightarrow}{L}$ Traces fir $^{\Rightarrow}\left(T S^{\prime}\right) \cap$ Bed Pref $(P)=\phi$
$\stackrel{h_{y P}}{\Rightarrow}$ Traces fir $(T S) \cap$ Bed Pref $(P)=\phi \stackrel{L}{\Longleftrightarrow}$
(k) Take $P=$ closure (Traces (TS'))
P is a safety property and $T S^{\prime} F P$
$\stackrel{\text { hyp }}{\Rightarrow}$ Traces $(T S) \subseteq P \Rightarrow$ pref (Traces $(T S)) \subseteq$ pref (P)
\wedge Traces fin $(T S)=$ pref $($ Traces $(T S))$
$\subseteq \operatorname{pref}(P)^{\operatorname{pref}}\left(T_{\text {races }}\left(T S^{\prime}\right)\right)=$ Traces $_{\text {fin }}\left(T S^{\prime}\right)$

Given an LT prop. $P, \quad \operatorname{closure}(P)=\left\{\sigma \in\left(2^{\Lambda^{P}}\right)^{\omega} \mid \operatorname{pref}(\sigma) \leq\right.$ pref $\left.(P)\right\}$

Exercise: show the ta prop P is safe $\Leftrightarrow P=$ closure (P)

Safety "constraints" finite behaviour while liveners imposes conolitions on infinite behaviour
Liveness $P_{\text {live }} \forall w \in\left(2^{A P}\right)^{*} \nexists \sigma \in\left(2^{A P}\right)^{w}: w \sigma \in P_{\text {live }}$ ζ "something good happens"

$$
\text { pref }\left(P_{\text {live }}\right)=\left(2^{A P}\right)^{*}
$$

Exercise Give the properties informally specified es

1. "each process eventually inters the critical section" 2. "each process enters the critical section infinitely often" 3 "each waiting process eventually enters the critical section"

$$
\begin{aligned}
& P_{3}=\left\{\sigma \in\left(2^{A^{p}}\right)^{\omega} \mid \bigwedge_{1 \leq h \leq h} \forall i \geq 0: \omega_{h} \in \sigma[i] \Rightarrow \exists j>i: c_{h \in \sigma[j]}\right\} \\
& \left.P_{2}=\left\{\sigma \in\left(2^{A \rho}\right)^{\omega} \mid \bigwedge_{1 \leq h \leq h} \forall i \geqslant 0\right] j>i: \omega \quad c_{h} \in \sigma[j]\right\} \\
& P_{4}=\left\{\sigma \in\left(2^{\Delta p}\right)^{\omega} \mid \bigwedge_{1 \leq h \leq n} \exists j \geq 0: c_{h} \in \sigma[j]\right\}
\end{aligned}
$$

there are LT prop that are neither safety nor liveness prof., but: Decomposition theorem $H L T$ prop $P \exists P_{s}$ safety, P_{l} liveners: $P=P_{S} \cap P_{l}$

safety and liveness property

Figure 3.11: Classification of linear-time properties.

Fairness
usually liveness properties do not h. ld, unless fairness assumptions are

Example 3.44. A Simple Shared-Variable Concurrent Program
Consider the following two processes that run in parallel and share an integer variable x that initially has value 0 :

$$
\begin{aligned}
\text { proc Inc } & =\text { while }\langle x \geqslant 0 \text { do } x:=x+1\rangle \text { od } \\
\text { proc Reset } & =x:=-1
\end{aligned}
$$

The pair of brackets $\langle\ldots\rangle$ embraces an atomic section, i.e., process Inc performs the check whether x is positive and the increment of x (if the guard holds) as one atomic step. Does this parallel program terminate? When no fairness constraints are imposed, it is possible that process Inc is permanently executing, i.e., process Reset never gets its turn, and the assignment $x=-1$ is not executed. In this case, termination is thus not guaranteed, and the property is refuted. If, however, we require unconditional process fairness, then every process gets its turn, and termination is guaranteed.

$$
\begin{aligned}
& A \leq A_{c} t \\
& \text { An execution (fragment) } p=s_{0} \alpha_{1} \\
& \alpha_{2}
\end{aligned}{ }_{2}^{\alpha_{2}} \ldots \text { is }
$$

- uncondidianally A-feir $\quad \exists j \geqslant 0: \alpha_{j} \in A$ "Every process gets its tum infinitely often"
- strongly A. fair

$$
\exists j \geqslant 0: A \cap A_{c}+\left(s_{j}\right) \neq \phi \Rightarrow \exists_{j \geqslant 0}: \alpha_{j} \in A
$$

"Every process enabled infinitely often gets its turn infinitely often"

- weekly A-fair

$$
\forall^{\infty} j \geqslant 0: A \cap A_{c} t\left(s_{j}\right) \neq \phi \Rightarrow \exists_{j \geqslant 0}: \alpha_{j} \in A
$$

"Every process continuously enabled from a certain time instant on gets its tum infinitely often"
Checking livens property is flem made by restricting to fair executions: $T S E_{E} P \Leftrightarrow F_{i z} T_{\text {Feces }}(T S) \leq P$

Here, $\stackrel{\infty}{\exists} j$ stands for "there are infinitely many j " and $\forall \underset{\forall}{\forall}$ for "for nearly all j " in the sense of "for all, except for finitely many j ". The variable j, of course, ranges over the natural numbers.

