
Regular expressions

Exercise 6
Prove or disprove that (a + b)* = (a* + b*)*

Grammars

Exercise 6
Find two derivations of the regular expression 1 + a . b using the grammar of regular expressions on page 16.

Term Algebras & Structural Induction

Exercise 3
Explain why in the above definition it is essential to require that is the smallest set TermΣ,V

TermΣ,V

TermΣ,V

TermΣ,VTermΣ,∅

TermΣ,V

Exercise 4
Give the term algebra for regular expressions

Structural Induction (in general)

TermΣ,∅

TermΣ,∅

Exercise 5
Prove that, for every list l of natural numbers, sum(l) <= max(l)*len(l) where sum(l) is the sum of the elements of l, max(l) is the greateast element in l
(assume max([]) = 0), and len(l) is the lenght of l

What do we mean by correctness?

Safety: "nothing bad happens"
Examples:
 - if a number is printed, then it is a prime lower than 10^10

 - deadlock freedom

Liveness: "something good happens"
Examples:
 - All robots looking for a recharge eventually find a charge station
 - if a thread tries to get a number to check for primality, it will get one

By the way:
sequential programs can be thought of as multi-threaded programs made of a single thread
BUT

- testing is hard with concurrency because of heisenbugs
 - poor reproducibility
 - failed tests hardly help bug localisation
- non-determinism is both a blessing and a curse

Modelling behaviour

Of course this idea is hardly new and examples can be found in any book on automata or formal languages. Its application to the definition of
programming languages can be found in the work of Landin and the Vienna Group [Lan,Oll,Weg].

[Lan] Landin, P.J. (1966) A Lambda-calculus Approach, Advances in Programming and Non-numerical Computation, ed. L. Fox,
 Chapter 5, pp. 97–154, Pergamon Press.

[Weg] Wegner, P. (1972) The Vienna Definition Language, ACM Computing Surveys 4(1):5–63.

[Oll] Ollengren, A. (1976) Definition of Programming Languages by Interpreting Automata, Academic Press.

The evolution of a system can be described in terms of state transitions
 - states represent the possible configurations the system can be in
 - transitions represent the possible evolution from a given configuration.

In its simplest form, such models can be mathematically rendered as
binary relations

Another (important) variant of TS

Communication-based concurrency

The set of labels is the union of

- {b_low, b_ok} internal actions

- {?charge, ?offer} input actions

Exercise 4
Give an LTS modelling the behaviour of a robot offering a recharge.
Reflect about the "compatibility" between your solution and the LTS (*) above

A robotic scenario:
Some mobile robots need to manage their energy in order to accoplish their task (e.g., patrolling some premises).

- When their batteries deplete, robots look for a recharge.
- Recharges are offered by recharge stations or other robots.

We can model this behaviour using an LTS capturing the observable features we are interested in: in this case communication
For instance, the behaviour of a robot seeking for a recharge is

- {!req, !no_tnx} output actions

