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SCHOOL

IMT e Set Notation

A C Bevery element of Aisin B
A C Bif AC B and there is one element of Bnotin A

ACBand BC Aimplies A=B

AUB={x|xcAorxec B} (Ui, A
ANB={x|xcAand x € B} (Nies A
A\B={x|xeAand x ¢ B}

Ax B={(a,b)|acAand be B} ordered pairs (X, A)
24 = {X | X C A} powerset
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SCHOOL

IMT | Relations

R C A x Bis arelation on sets Aand B (RC < A)
(a,b)e R = R(a,b) = aRb notation

lda = {(a,a) | acA} (identity)
R1'={(y,x) | (x,y)ER}CBxA (inverse)
Ri-Ro={(x,2)| dyeB. (x,y)eR:1 A (y,2)eR} CAx C  (composition)

Some basic constructions

RO = Idy
R = R.R"
R _ Unzo R"
R* - Un21 R"

Notethat: R'=R-R°=R, R*=IdqUR" and
Rt ={(x,y)| 3n,3x1,...,xp withx;Rx;,.1 (1 <i<n—1), x1=x, Xp =y}
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SCHOOL

IMT ™ Properties of Relations

Binary Relations
A binary relation RC Ax Ais (same set A)
reflexive: Vx € A: (x,x) € R,
symmetric: Vx,y € A:(x,y) € R= (y,x) € R,
antisymmetric. Vx,y € A:(x,y) € R A (y,x) € R=x=y;
transitive: Vx,y,z € A:(x,¥y) € Ra(y,z) € R=(x,z) € R

Closure of Relations
S=RUId, the reflexive closure of R
S=RUR™ the symmetric closure of R
S=Rt the transitive closure of R
S=R* the reflexive and transitive closure of R

Rocco De Nicola 12/35



SCHOOL

IMT R~ Special Relations

A relation R is
» an order if it is reflexive, antisymmetric and transitive
» an equivalence if it is reflexive, symmetric and transitive

» a preorder if it is reflexive and transitive

Examples
» orders: less-than-or-equal-to (<) on R, set inclusion (C),. ..
» equivalences: equal-to (=) on R, congruent-mod-n (= mod n),. ..

» preorders: reachability in graphs, subtyping or behavioural relations, ...

Kernel relation

Given a preorder R its kernel, K = Rn R, is an equivalence relation
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SCHOOL

IMT| ™ Equivalence Classes and Quotient Set

Example: R = {(x,y) e NxN | (x=y) mod 3}
R(7,7), R(7,1), R(1,7), R(7,10), R(1,10), ...

[0] ={0,3,6,9,...} equivalence classes:
[1] ={1,4,7,10,...} - have a representative
2] =1{2,5,8,11,...} - are disjoint

An equivalence class is a subset C of A such that

x,yeC = (x,y)e R consistent and

xeC A (x,y)eR = yeC saturated

The quotient set Q4 of A modulo R is a partition of A
is the set of equivalence classes induced by R on A

Example: R={(x,y) e NxN | (x=y) mod 3}
Qy ={[0], [1], [2]}
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SCHOOL

IMT | Functions

Partial Functions
A partial function is a relation f C A x B such that

Vx,y,z. (x,y)ef A (X,2)ef=y=2Z

We denote partial functionby f: A— B

Total Functions
A (total) function is a partial function f: A — B such that

Vx 3y. (x,y)ef

We denote total functionby 7: A— B

Functions (total or partial) can be monotone, continuous, injective, surjective,
bijective, invertible...
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SCHOOL

IMT]is™ Induction Principle

Mathematical Induction
To prove that P(n) holds for every natural number n € N, prove

1. P(0)
2. forany k € N, P(k) implies P(k + 1)

Example: Show that sum(n) = 37, i = 221) forevery ne N

0(0-+1
(1) sum(0) = 2% — o base case

(2) to show: Y7, i = M%) implies S j = (2£1(0+2)

assume sum(n) = 2 for a generic n
sum(n+1) =sum(n)+ (n+1) = properties of summation
= @ +(n+1) inductive hypothesis
(n+1)(n+2) 0

= 2
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SCHOOL

IMT 5 Playful digression

Some “advanced” proof methods

Proof by obviousness: So evident it need not to be mentioned
Proof by general agreement: All in favor?

Proof by majority: When general agreement fails

Proof by plausibility: It sounds good

Proof by intuition: | have this feeling. . .

Proof by lost reference: | saw it somewhere

Proof by obscure reference: It appeared in the Annals of
Polish Math. Soc. (1854, in polish)

8. Proof by logic: It is on the textbook, hence it must be true
9. Proof by intimidation: Who is saying that it is false!?
10. Proof by authority: Don Knuth said it was true
11. Proof by deception: Everybody please turn their backs ...
12. Proof by divine word: Lord said let it be true
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SCHOOL

IMT] ™ Inductively Defined Sets

basis: the set / of initial elements of S
induction: rules R for constructing elements in S from elements in S
closure: Sis the least set containing / and closed w.r.t. R

N = Natural numbers
I={0}, Rj: if X €Nthens(X)eN
N = {0, s(0), s(s(0)), - - -}

Ly = lists of elements of N
I={[]}, Ri:if X € lLyandne Nthen [n|X] € Ly

Ly ={[],[0],[1],[2],---,][0,0],[0,1],[0,2],...,[1,0],[1,1],[1,2],...}
Ir = n-ary trees

I={e}, Ri:itXy,..., X, € Trforanyn, then t(Xi,..., X,) € Tr

Ir={e,t(e), t(g,e),..., t(t(e)),..., e, t(t(e),e), t(e,e,€)),...}




SCHOOL

IMT o™ Structural Induction

LUCCA

Let us consider a set S inductively defined by a set C = {c¢y, ..., c,} of
constructors of arity {ay, ..., a,} with

> I={ci()|a =0}
> R if Xi,....X5 €S then c(Xi,...,X5) €S

Principle of Structural Induction

To prove that P(x) holds for every x of a structurally defined set S, it is
sufficient to prove that

P(s1),...,P(sk) = P(ck(s1,...,5k)) if

» for every constructor ¢x € C and

» for every sq,...,8¢ € S, where k is the arity of ¢k

The base case is the one dealing with constructors of arity 0, i.e. with
constants
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SCHOOL

IMT oo™ Structural Induction — exercise

LUCCA

Prove that sum(¢) < max(¢) = len(¢), for every ¢ € Lists(N)

where
sum(?) is the sum of all elements in list ¢

max({) is the greatest element in ¢ (with max([]) = 0)

len(?) is the number of elements in ¢
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A refresher on induction

The induction principle is very useful, as you all probably know. Let's refresh it.

Proof method

To show that a property, say P, holds of every natural number n (i.e., to prove P(n) for all n) it suffices to show that
-P(0)istrue &
- for all k, P(k) implies P(n+1)

Example: for all n, sum(n) = n(n+1)/2 where sum(k) =1 +..+k
-sum(0) = 0 = 0(0+1)/2
- for all k, if sum(k) = k(k+1)/2 then

sum(k+1) = sum(k) + (k+1) by definition
= k(k+1)/2 + (k+1) by inductive hypothesis
= (k(k+1) +2(k+ 1)) /2 by arithmetic laws
=(k+ 1)(k+2)/2 by distributivity of multiplication over sum on natural numbers

Definitional mechanism
To define a set S inductively using a finite number of constructors f1,....,fn each with a finite arity on a set of
'basic elements’

- fix a set I of basic elements (you can think of the elements in I as constructors of arity 0) basis
-ifel,..,ekareinSand fis a constructor of arity k then f(e1,...,ek) is an element of S induction
- nothing else can be an element of S closure

Example: I={0} and s(_) is a constructor of arity 1, then the inductively defined set S = {0, s(0), s(s(0)), ...} is
isomorphic to natural numbers
(Indeed basis / induction / and closure boil down to the axioms of Peano).



An exercise in axiomatic semantics

m1: mapf[]=1[] Example: double x = x+x => map double [1,2,3] = [2,4,6]
m2: map f a:as = f(a):(map f as)

i1:inverse [1=1] Example: inverse [1,2,3]1 =[3,2,1]

i2:inverse a:as = (inverse as) ++ [a]

Exercise 1 .
Give an inductive definition of the set of lists of natural numbers.

Prove that for all functions f and all lists as, inverse (map f as) = map f (inverse as)
inverse (map f[]) = inverse [] by m1 map f (inverse [1) = map f[] by i1
=[] by i1 =0 by m1
inverse (map f a:as) = inverse (f(a):(map f as)) by m2
= (inverse (map f as)) ++ [f(a)]) by i2
= (map f (inverse as)) ++ [f(a)] by inductive hypothesis
=map f((inverse as) ++ [a]) by lemma1: (map f as) ++ (map f bs) = map f (as ++ bs)
=map f(inverse as) ++ (inverse [a])) by lemmaz2:if len(as) = 1 then inverse as = as
=map f(inverse a: as) by lemma3: (inverse as) ++ (inverse bs) = inverse (bs ++ as)
Exercise 2

Prove lemmas 1, 2, and 3 above.



