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Set Notation

A ⊆ B every element of A is in B

A ⊂ B if A ⊆ B and there is one element of B not in A

A ⊆ B and B ⊆ A implies A = B

A ∪ B = {x | x ∈ A or x ∈ B} (
�

i∈I Ai )

A ∩ B = {x | x ∈ A and x ∈ B} (
�

i∈I Ai )

A \ B = {x | x ∈ A and x �∈ B}
A × B = {(a, b) | a ∈ A and b ∈ B} ordered pairs (×n

i=1Ai )

2A = {X | X ⊆ A} powerset
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Relations

R ⊆ A × B is a relation on sets A and B (R ⊆ ×n
i=1Ai )

(a, b)∈R ≡ R(a, b) ≡ aRb notation

IdA = {(a, a) | a∈A} (identity)

R−1 = {(y , x) | (x , y)∈R} ⊆ B × A (inverse)

R1 · R2 = {(x , z) | ∃ y ∈B. (x , y)∈R1 ∧∧ (y , z)∈R2} ⊆ A × C (composition)

Some basic constructions

R0 = IdA
Rn+1 = R · Rn

R∗ =
�

n≥0 Rn

R+ =
�

n≥1 Rn

Note that: R1 = R · R0 = R, R∗ = IdA ∪ R+ and

R+ = {(x , y) | ∃n, ∃x1, . . . , xn with xiRxi+1 (1 ≤ i ≤ n − 1), x1 = x , xn = y}
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Properties of Relations

Binary Relations

A binary relation R ⊆ A × A is (same set A)

reflexive: ∀x ∈ A: (x , x) ∈ R,
symmetric: ∀x , y ∈ A: (x , y) ∈ R ⇒ (y , x) ∈ R,
antisymmetric: ∀x , y ∈ A: (x , y) ∈ R ∧∧ (y , x) ∈ R ⇒ x = y ;
transitive: ∀x , y , z ∈ A: (x , y) ∈ R ∧∧ (y , z) ∈ R ⇒ (x , z) ∈ R

Closure of Relations
S = R ∪ IdA the reflexive closure of R
S = R ∪ R−1 the symmetric closure of R
S = R+ the transitive closure of R
S = R∗ the reflexive and transitive closure of R
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Special Relations

A relation R is

� an order if it is reflexive, antisymmetric and transitive

� an equivalence if it is reflexive, symmetric and transitive

� a preorder if it is reflexive and transitive

Examples

� orders: less-than-or-equal-to (�) on R, set inclusion (⊆),. . .

� equivalences: equal-to (=) on R, congruent-mod-n (≡ mod n),. . .

� preorders: reachability in graphs, subtyping or behavioural relations, . . .

Kernel relation

� Given a preorder R its kernel, K = R ∩ R−1, is an equivalence relation
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Equivalence Classes and Quotient Set

Example: R = {(x , y) ∈ N×N | (x ≡ y) mod 3}
R( 7, 7), R(7,1), R(1, 7), R(7,10), R(1,10), . . .

[0] = {0, 3, 6, 9, . . .} equivalence classes:

[1] = {1, 4, 7, 10, . . .} - have a representative

[2] = {2, 5, 8, 11, . . .} - are disjoint

An equivalence class is a subset C of A such that

x , y ∈C ⇒ (x , y) ∈ R consistent and

x ∈C ∧∧ (x , y)∈R ⇒ y ∈C saturated

The quotient set QR
A of A modulo R is a partition of A

is the set of equivalence classes induced by R on A
Example: R = {(x , y) ∈ N×N | (x ≡ y) mod 3}

QR
N = { [0], [1], [2] }
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Functions

Partial Functions
A partial function is a relation f ⊆ A × B such that

∀x , y , z. (x , y)∈ f ∧∧ (x , z)∈ f ⇒ y = z

We denote partial function by f : A � B

Total Functions
A (total) function is a partial function f : A � B such that

∀x ∃y . (x , y)∈ f

We denote total function by f : A → B

Functions (total or partial) can be monotone, continuous, injective, surjective,
bijective, invertible...
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Induction Principle

Mathematical Induction

To prove that P(n) holds for every natural number n ∈ N, prove

1. P(0)

2. for any k ∈ N, P(k) implies P(k + 1)

Example: Show that sum(n) =
�n

i=1 i = n(n+1)
2 for every n ∈ N

(1) sum(0) = 0(0+1)
2 = 0 base case

(2) to show:
�n

i=1 i = n(n+1)
2 implies

�n+1
i=1 i = (n+1)(n+2)

2

assume sum(n) = n(n+1)
2 , for a generic n

sum(n + 1) = sum(n) + (n + 1) = properties of summation

= n(n+1)
2 + (n + 1) inductive hypothesis

= (n+1)(n+2)
2
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Playful digression

Some “advanced” proof methods

1. Proof by obviousness: So evident it need not to be mentioned
2. Proof by general agreement: All in favor?
3. Proof by majority: When general agreement fails
4. Proof by plausibility: It sounds good
5. Proof by intuition: I have this feeling. . .
6. Proof by lost reference: I saw it somewhere
7. Proof by obscure reference: It appeared in the Annals of

Polish Math. Soc. (1854, in polish)
8. Proof by logic: It is on the textbook, hence it must be true
9. Proof by intimidation: Who is saying that it is false!?

10. Proof by authority: Don Knuth said it was true
11. Proof by deception: Everybody please turn their backs . . .
12. Proof by divine word: Lord said let it be true
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Inductively Defined Sets

basis: the set I of initial elements of S
induction: rules R for constructing elements in S from elements in S
closure: S is the least set containing I and closed w.r.t. R

N = Natural numbers

I = {0}, R1 : if X ∈ N then s(X ) ∈ N

N = {0, s(0), s(s(0)), . . .}

LN = lists of elements of N
I = {[ ]}, R1 : if X ∈ LN and n ∈ N then [n|X ] ∈ LN

LN = {[ ], [0], [1], [2], . . . , [0, 0], [0, 1], [0, 2], . . . , [1, 0], [1, 1], [1, 2], . . .}

Tr = n-ary trees

I = {ε}, R1 : if X1, . . . , Xn ∈ Tr for any n, then t(X1, . . . , Xn) ∈ Tr

Tr = {ε, t(ε), t(ε, ε), . . . , t(t(ε)), . . . , t(ε, t(t(ε), ε), t(ε, ε, ε)), . . .}
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Structural Induction

Let us consider a set S inductively defined by a set C = {c1, . . . , cn} of
constructors of arity {a1, . . . , an} with
� I = {ci( ) | ai = 0}
� Ri : if X1, . . . , Xai ∈ S then ci(X1, . . . , Xai ) ∈ S

Principle of Structural Induction

To prove that P(x) holds for every x of a structurally defined set S, it is
sufficient to prove that

P(s1), . . . , P(sk ) =⇒ P
�
ck (s1, . . . , sk )

�
if

� for every constructor ck ∈ C and

� for every s1, . . . , sk ∈ S, where k is the arity of ck

The base case is the one dealing with constructors of arity 0, i.e. with
constants
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Structural Induction – exercise

Prove that sum(�) ≤ max(�) ∗ len(�), for every � ∈ Lists(N)

where

� sum(�) is the sum of all elements in list �

� max(�) is the greatest element in � (with max([ ]) = 0)

� len(�) is the number of elements in �
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A refresher on induction
The induction principle is very useful, as you all probably know. Let's refresh it.

Proof method
To show that a property, say P, holds of every natural number n (i.e., to prove P(n) for all n) it suffices to show that

- P(0) is true     &
- for all k, P(k) implies P(n+1) 

Example: for all n, sum(n) = n(n+1)/2 where sum(k) = 1 + ... + k
- sum(0) = 0 = 0(0+1)/2
- for all k, if sum(k) = k(k+1)/2  then

sum(k+1) = sum(k) + (k+1) by definition
  = k(k+1)/2 + (k+1) by inductive hypothesis
  = (k(k+1) + 2(k + 1)) / 2 by arithmetic laws
  = (k + 1)(k+2)/2 by distributivity of multiplication over sum on natural numbers

Definitional mechanism
To define a set S inductively using a finite number of constructors f1,....,fn each with a finite arity on a set of
'basic elements' 

- fix a set I of basic elements (you can think of the elements in I as constructors of arity 0) basis
- if e1,...,ek are in S and  f is a constructor of arity k then f(e1,...,ek) is an element of S induction
- nothing else can be an element of S closure

Example: I ={0} and s(_) is a constructor of arity 1, then the inductively defined set S = {0, s(0), s(s(0)), ...} is 
isomorphic to natural numbers
(Indeed basis / induction / and closure boil down to the axioms of Peano).
 



An exercise in axiomatic semantics
m1: map f [] = []                                                 Example: double x = x+x => map double [1,2,3] = [2,4,6]
m2: map f a:as = f(a):(map f as)

i1: inverse [] = []                                                 Example: inverse [1,2,3] = [3,2,1]
i2: inverse a:as = (inverse as) ++ [a]

Exercise 1
Give an inductive definition of the set of lists of natural numbers. 

Prove that for all functions f and all lists as,           inverse (map f as) = map f (inverse as)

inverse (map f []) = inverse []        by m1                    map f (inverse []) = map f []          by i1 
                                = []               by i1                                                      = []                by m1

inverse (map f a:as) = inverse (f(a):(map f as))                         by m2
    = (inverse (map f as)) ++ [f(a)])           by i2
    = (map f (inverse as)) ++ [f(a)]            by inductive hypothesis 
    = map f ((inverse as) ++ [a])                by lemma1: (map f as) ++ (map f bs) = map f (as ++ bs)
    = map f (inverse as) ++ (inverse [a]))   by lemma2: if len(as) = 1 then inverse as = as
    = map f (inverse a: as)                          by lemma3: (inverse as) ++ (inverse bs) = inverse (bs ++ as) 

Exercise 2
Prove lemmas 1, 2, and 3 above.


