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1 Introduction

In process algebra, a (potentially) infinite process is usually represented as the so-
lution of a system of guarded recursive equations, and proof theory and verification
tend to focus on reasoning about such recursive systems. Although specification and
verification of concurrent processes defined in this way serve their purposes well, re-
cursive operations give a more direct representation and are easier to comprehend.
The Kleene star ∗ can be considered as the most fundamental recursive operation.
In process algebra, the defining equation for the binary Kleene star reads

x∗y = x · (x∗y) + y

where · models sequential composition and + models non-deterministic choice (·
binds stronger than +). In terms of operational semantics, the process x∗y chooses
between x and y, and upon termination of x has this choice again. For example, the
expression a∗b for atomic actions a and b can be depicted by

º
¹¸

a∗b
6

- √b

a

where
√

expresses successful termination. This chapter discusses the Kleene star
in the setting of process algebra, and considers some derived recursive operations,
with a focus on axiomatisations and expressiveness hierarchies.

In the summer of 1951, S.C. Kleene was supported by the RAND Corporation,
leading to Research Memorandum “Representation of Events in Nerve Nets and
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Finite Automata” [53]. The material in that paper, based on the fundamental
paper [65]1, was republished under the same title five years later [54]. In this seminal
work, Kleene introduced the binary operation ∗ for describing ‘regular events’. He
defined regular expressions, which correspond to finite automata, and gave algebraic
transformation rules for these, notably

E∗F = E(E∗F ) ∨ F

(E∗F being the iterate of E on F ). Kleene noted the correspondence with conven-
tions of algebra, treating E ∨ F as the analogue of E + F , and EF as the product
of E and F .

In 1958, Copi, Elgot, and Wright [34] showed interest in the results from [54].
However, they judged Kleene’s theorems on analysis2 and synthesis3 obscured both
by the complexity of his basic concepts and by the nature of the elements used in his
nets. They introduced simpler and stronger nets (in a sense weakening Kleene’s
synthesis result, but stating that this “brings the essential nature of the result into
sharper focus”), and simpler operations. In particular they introduced a unary ∗
operation

“[...] because the operation Kleene uses seems “essentially” singulary and be-
cause the singulary operation simplifies the algebra of regular events. It should
be noted that the singulary and binary star operations are interdefinable.” [34,
page 195]

This contradicts Kleene’s original argument in [53, page 50] that the length of
an event is at least one, and that for this reason he did not define E∗ as a unary
operation.

Four years later, Redko [69] proved that there does not exist a sound and complete
finite equational axiomatisation for regular expressions. (This proof was simplified
and corrected by Pilling; see [35, Chapter 11].) In 1966, Salomaa [70] presented
a sound and complete finite axiomatisation for regular expressions, with as basic
ingredient an implicational axiom dating back to Arden [9], namely (in process
algebra notation):

x = (y · x) + z =⇒ x = y∗z

if y does not have the so-called empty word property. According to Kozen [56],
this last property is not algebraic, in the sense that it is not preserved under action
refinement; he proposed two alternative implicational axioms that do not have this

1Kleene judged the theory for nerve nets with circles in [65] (McCulloch and Pitts, 1943) to be
obscure, and proceeded independently. He came up with “regular events” and the major correspon-
dence results in automata theory.

2Theorem 5, stating that finite automata model regular events.
3Theorem 3, stating that each regular event can be described by a finite automaton (“nerve

net”).
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drawback. Krob [57] settled two conjectures by Conway [35], to obtain an infinite
sound and complete equational axiomatisation for regular expressions. Bloom and
Ésik [14] developed an alternative infinite equational axiomatisation for regular
expressions, within the framework of iteration theories.

In 1984, Milner [61] was the first to consider the unary Kleene star in process
algebra, modulo strong bisimulation equivalence [66]. In contrast with regular ex-
pressions, this setting is not sufficiently expressive to describe all regular (i.e., finite-
state) processes. Moreover, the merge operator x ‖ y [59] that executes its two
arguments in parallel, and which is fundamental to process algebra, cannot always
be eliminated from process terms in the presence of the Kleene star. Milner pre-
sented an axiomatisation for the unary Kleene star in strong bisimulation semantics,
being a subset of Salomaa’s axiomatisation, and asked whether his axiomatisation
is complete. Fokkink [40] solved this question for no-exit iteration x∗δ, where the
special constant δ, called deadlock, does not exhibit any behaviour; since δ blocks the
exit, x∗δ executes x infinitely often. Bloom, Ésik, and Taubner [15] presented
a complete axiomatisation for regular synchronisation trees modulo strong bisimu-
lation equivalence, within the framework of iteration theories. Milner also asked
for a characterisation of those recursive specifications that can be described modulo
strong bisimulation semantics in process algebra with the unary Kleene star. Boss-
cher [24] solved this question in the absence of the deadlock. The two questions by
Milner in their full generality remain unsolved.

The unary Kleene star naturally gives rise to the empty process [74], which does
not combine well with the merge operator. Therefore, Bergstra, Bethke, and
Ponse [12, 13] returned in 1993 to the binary version x∗y of the Kleene star in
process algebra, naming the operator after its discoverer. Troeger [73] introduced
a process specification language with iteration, in which he introduced a striking
axiom for the binary Kleene star, here presented in process algebra notation:

x∗(y · ((x+ y)∗z) + z) = (x+ y)∗z.

Fokkink and Zantema [39, 44] gave an affirmative answer to an open question
from [13], namely, that the defining axiom and Troeger’s axiom for the binary
Kleene star, together with

x∗(y · z) = (x∗y) · z

and the five standard axioms on + and · for basic process algebra [18], provide an
equational characterisation of strong bisimulation equivalence.

Corradini, De Nicola, and Labella studied the unary Kleene star in the pres-
ence of deadlock modulo resource bisimulation equivalence. In [31, 32] they presented
a complete axiomatisation based on Kozen’s conditional axioms. In [33] they came
up with a complete equational axiomatisation including Troeger’s axiom.

Aceto, Fokkink, and Ingólfsdóttir [4] proved that a whole range of process
semantics coarser than strong bisimulation do not allow a finite equational charac-
terisation of the binary Kleene star. Furthermore, Sewell [72] showed that there
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does not exist a finite equational characterisation of the binary Kleene star modulo
strong bisimulation equivalence in the presence of the deadlock δ, due to the fact
that (ak)∗δ is strongly bisimilar to a∗δ for positive integers k.

Several variations of the binary Kleene star were introduced, to obtain particular
desirable properties.

• In order to increase the expressive power of the binary Kleene star in strong
bisimulation semantics, Bergstra, Bethke, and Ponse [12] proposed multi-
exit iteration (x1, . . . , xk)

∗(y1, . . . , yk) for positive integers k, with as defining
equation

(x1, . . . , xk)
∗(y1, . . . , yk) = x1 · ((x2, . . . , xk, x1)

∗(y2, . . . , yk, y1)) + y1.

Aceto and Fokkink [1] presented an axiomatic characterisation of multi-exit
iteration in basic process algebra, modulo strong bisimulation equivalence.

• Prefix iteration (similar to the delay operation from Hennessy [51]) is ob-
tained by restricting the left-hand side of the binary Kleene star to atomic
actions. Aceto, Fokkink, and Ingólfsdóttir [5, 37] presented finite equa-
tional characterisations of prefix iteration in basic CCS [59], modulo a whole
range of process semantics.

• String iteration [7] is obtained by restricting the left-hand side of the binary
Kleene star to non-empty finite strings of atomic actions. Aceto andGroote

[7] presented an equational characterisation of string iteration in basic CCS,
modulo strong bisimulation equivalence.

• Bergstra, Bethke, and Ponse [12] introduced flat iteration, which is ob-
tained by restricting the left-hand side of the binary Kleene star to sums of
atomic actions. Unlike the binary Kleene star, the merge operator can be
eliminated from process terms in the presence of flat iteration. In [48], van
Glabbeek presented a complete finite equational characterisation of flat it-
eration in basic CCS extended with the silent step τ [59], modulo four rooted
weak bisimulation semantics that take into account the silent nature of the
special constant τ (identifying xτ and x).

This chapter also concerns expressivity of (subsystems of) the algebra of communi-
cating processes (ACP) [18] extended with the constant τ and abstraction operators
[19], and enriched with the binary Kleene star or variants thereof. The τ , which
represents a silent step, in combination with abstraction operators, which rename
actions into τ , enables one to abstract from internal behaviour. In weaker seman-
tics that identify xτ and x, each regular process can be specified in ACPτ (i.e.,
ACP with abstraction) and the binary Kleene star, using only handshaking (i.e.,
two-party communication) [21] and some auxiliary actions. Furthermore, in such a
semantics, each computable process can be specified in ACPτ with abstraction and a
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single recursive, non-regular operation, using only handshaking and some auxiliary
actions.

This chapter is set up as follows. Section 2 introduces the preliminaries. Section 3
contains an exposition on axiomatisations for the binary Kleene star, while Section 4
discusses axiomatisations for related iterative operations. Section 5 compares the
expressivity of these iterative operations, and Section 6 studies the expressivity of
some non-regular recursive operations. Finally, Section 7 touches upon topics such
as fairness and the empty process.

Acknowledgements. We thank Faron Moller for providing useful comments.

2 Preliminaries: Axioms and Operational Semantics

In this section we recall various process algebra axiom systems, structural opera-
tional semantics, behavioural equivalences, and recursive specifications. For a de-
tailed introduction to these matters see, e.g., Baeten and Weijland [28].

2.1 ACP-Based Systems

Let A be a finite set of atomic actions a, b, c, . . ., and let δ be a constant not in A.
We write Aδ for A ∪ {δ}. Let furthermore | : Aδ ×Aδ → Aδ be a communication
function that is commutative,

a | b = b | a for all a, b ∈ Aδ,

associative,

a | (b | c) = (a | b) | c for all a, b, c ∈ Aδ,

and that satisfies δ | a = δ for all a ∈ Aδ. The communication function | will be used
to define communication actions: in the case that a | b = c ∈ A, the simultaneous
execution of actions a and b results in communication action c. The actions in A and
the communication function | can be regarded as parameters of the process algebra
axiom systems that are presented below.

The process algebraic framework ACP(A, |, τ) stands for a particular signature over
fixed A and communication function |, and a set of axioms over this signature. Let
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P denote the set of process terms over this signature:

sorts: A (the given, finite set of atomic actions),

P (the set of process terms; A ⊆ P),

operations: + : P × P → P (non-deterministic choice or sum),

· : P × P → P (sequential composition),

‖ : P × P → P (merge),

‖ : P × P → P (left merge),

| : P × P → P (communication merge, extending

the given communication function),

∂H : P → P (encapsulation, H ⊆ A),

τI : P → P (abstraction, I ⊆ A),

constants: δ ∈ P (deadlock),

τ ∈ P (silent step).

Intuitively, an action a represents indivisible behaviour, δ represents inaction, and
τ represents invisible internal behaviour. Moreover, P + Q executes either P or
Q, P · Q first executes P and at its successful termination proceeds to execute Q,
and P ‖ Q executes P and Q in parallel allowing communication of actions from
P and Q. The operators P ‖ Q and P | Q both capture part of the behaviour of
P ‖ Q: P ‖ Q takes its first transition from P , while the first transition of P | Q is
a communication of actions from P and Q. Finally, in ∂H(P ) all actions from H in
P are blocked, while in τI(P ) all actions from I in P are renamed into τ .

We take · to be the operation that binds strongest, and + the one that binds weakest.
As usual in algebra, we tend to write xy instead of x · y. For 2 ∈ {+, ·, ‖, |} we will
assume that expressions P02 · · ·2Pn associate to the right. Furthermore, for k ≥ 1
we define xk+1 as x · xk, and x1 as x.

In Table 1 the axioms of the system ACP(A, |, τ) are collected. Note that + and ·
are associative, and that + is moreover commutative and idempotent. In the case
that a | (b | c) = δ for all a, b, c ∈ A, while | itself defines a communication, we speak
of handshaking. We will study the following subsystems of ACP(A, |, τ):

• BPA(A). The signature of BPA(A) contains the elements ofA, non-deterministic
choice, and sequential composition. The axioms of BPA(A) are (A1)–(A5).

• BPAδ(A). The signature of BPAδ(A) is the signature of BPA(A) extended
with the deadlock. The axioms of BPAδ(A) are (A1)–(A7).

• PA(A). The signature of PA(A) is the signature of BPA(A) extended with the
merge and left merge. The axioms of PA(A) are (A1)–(A5), (CM2)–(CM4)
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(with a ranging over A), and

(M1) x ‖ y = x ‖ y + y ‖ x.

• PAδ(A). The signature of PAδ(A) is the signature of PA(A) extended with
the deadlock. The axioms of PA(A) are (A1)–(A7), (M1), and (CM2)–(CM4)
(with a ranging over Aδ).

• ACP(A, |). The signature of ACP(A, |) is the signature of ACP(A, |, τ) without
the silent step and abstraction operators. The axioms of ACP(A, |) are (A1)–
(A7), (CF1)–(CF2), (CM1)–(CM9), and (D1)–(D4) (with a, b ranging over
Aδ).

We note that in PA(A) and PAδ(A), commutativity of the merge (x ‖ y = y ‖ x)
can be derived from axioms (A1) and (M1).

The binary equality relation = on process terms induced by an axiom system is ob-
tained by taking all closed instantiations of axioms, and closing it under equivalence
(i.e., under reflexivity, symmetry, and transitivity) and under contexts.

2.2 Transition Rules and Operational Semantics

We define a structural operational semantics in the style of Plotkin [68], to relate
each process term to a labelled transition system. Then we define strong bisimulation
as an equivalence between labelled transition systems, which carries over to process
terms. The operational semantics and strong bisimulation are used in the proofs on
axiomatisations in Sections 3 and 4, and on classification results in Section 5.

A labelled transition system (LTS) is a tuple 〈S, { a−→, a−→ √ | a ∈ A}, s〉, where

S is a set of states,
a−→ for a ∈ A is a binary relation between states,
a−→ √

for a ∈ A is a unary predicate on states,
s ∈ S is the initial state.

Expressions s a−→ s′ and s a−→ √
are called transitions. Intuitively, s a−→ s′ denotes

that from state s one can evolve to state s′ by the execution of action a, while
s a−→ √

denotes that from state s one can terminate successfully by the execution
of action a (

√
is pronounced “tick”).

Consider one of the process algebra axiom systems BPA(A)−ACP(A, |, τ), and let
P represent all process terms given by its signature. We want to relate each process
term in P to a labelled transition system. We take the process terms in P as the
set of states, and the atomic actions in A as the set of labels. (Note that atomic
actions can denote both states and labels.) Exploiting the syntactic structure of
process terms, the transition relations a−→ and a−→ √

for a ∈ A are defined by
means of inductive proof rules called transition rules S

c
. Validity of the premises in
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Table 1: The axioms for ACP(A, |, τ), where a, b ∈ Aδτ and H, I ⊆ A.

(A1) x+ y = y + x

(A2) x+ (y + z) = (x+ y) + z

(A3) x+ x = x

(A4) (x+ y)z = xz + yz

(A5) (xy)z = x(yz)

(A6) x+ δ = x

(A7) δx = δ

(C1) a | b = b | a
(C2) (a | b) | c = a | (b | c)
(C3) δ | a = δ

(CM1) x ‖ y = (x ‖ y + y ‖ x) + x | y
(CM2) a ‖ x = ax

(CM3) ax ‖ y = a(x ‖ y)
(CM4) (x+ y) ‖ z = x ‖ z + y ‖ z

(CM5) ax | b = (a | b)x
(CM6) a | bx = (a | b)x
(CM7) ax | by = (a | b)(x ‖ y)
(CM8) (x+ y) | z = x | z + y | z
(CM9) x | (y + z) = x | y + x | z
(D1) ∂H(a) = a if a 6∈ H
(D2) ∂H(a) = δ if a ∈ H
(D3) ∂H(x+ y) = ∂H(x) + ∂H(y)

(D4) ∂H(xy) = ∂H(x)∂H(y)

(B1) xτ = x

(TI1) τI(a) = a if a 6∈ I
(TI2) τI(a) = τ if a ∈ I
(TI3) τI(x+ y) = τI(x) + τI(y)

(TI4) τI(xy) = τI(x)τI(y)
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S, under a certain substitution, implies validity of the conclusion c under the same
substitution.

The transition rules in Table 2 define the labelled transition system associated to a
process term in ACP(A, |, τ). The signature and parameters of P (possibly including
a communication function |) determine which transition rules are appropriate. For
example, the last two transition rules for ‖ (i.e., with x ‖ y in the left-hand sides
of their conclusions) are not relevant for PAδ(A). Note that the deadlock δ has no
outgoing transitions. The labelled transition system related to process term P has
P itself as initial state. Often we will write simply P for the labelled transition
system related to P .

Intuitively, strong bisimulation relates two states if the LTSs rooted at these states
have the same branching structure. This semantics does not take into account the
silent nature of τ .

Definition 2.2.1. [Strong bisimulation] A strong bisimulation is a binary, symmetric
relation R over the set of states that satisfies

P RQ ∧ P a−→ P ′ =⇒ ∃Q′ (Q a−→ Q′ ∧ P ′RQ′)

P RQ ∧ P a−→ √
=⇒ Q a−→ √

Two states P and Q are strongly bisimilar, notation P ↔ Q, if there exists a strong
bisimulation relation R with P RQ. 2

Theorem 2.2.2.

1. (Equivalence) It is not hard to see that strong bisimulation is an equivalence
relation over ACP(A, |).

2. (Congruence) Strong bisimulation equivalence is a congruence relation up to
ACP(A, |), meaning that P0 ↔ Q0 and P1 ↔ Q1 implies P0 + P1 ↔ Q0 +Q1,
P0P1 ↔ Q0Q1, P0 ‖ P1 ↔ Q0 ‖ Q1, P0 ‖ P1 ↔ Q0 ‖ Q1, P0 | P1 ↔ Q0 | Q1,
and ∂H(P0)↔ ∂H(Q0). This follows from the fact that the transition rules in
Table 2 are in path format; see [27, 36, 49, 6].

3. (Soundness) Up to and including ACP(A, |), all axiom systems are sound with
respect to strong bisimilation equivalence, meaning that P = Q implies P ↔ Q.
Since strong bisimulation is a congruence, soundness follows from the fact that
all closed instantiations of axioms in ACP(A, |) are valid in strong bisimulation
semantics.

4. (Completeness) Up to and including ACP(A, |), all axiom systems are complete
with respect to strong bisimilation equivalence, meaning that P ↔ Q implies
P = Q; see, e.g., [28, 43].
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Table 2: Transition rules for ACP(A, |, τ), where a, b ∈ Aτ , H, I ⊆ A.

a a−→ √
, a ∈ Aτ

x a−→ x′

x+ y a−→ x′
y a−→ y′

x+ y a−→ y′
x a−→ √

x+ y a−→ √ y a−→ √

x+ y a−→ √

x a−→ x′

xy a−→ x′y

x a−→ √

xy a−→ y

x a−→ x′

x ‖ y a−→ x′ ‖ y
y a−→ y′

x ‖ y a−→ x ‖ y′
x a−→ √

x ‖ y a−→ y

y a−→ √

x ‖ y a−→ x

x a−→ x′ y b−→ y′

x ‖ y a|b−−→ x′ ‖ y′
if a | b ∈ A x a−→ √

y b−→ √

x ‖ y a|b−−→ √ if a | b ∈ A

x a−→ √
y b−→ y′

x ‖ y a|b−−→ y′
if a | b ∈ A x a−→ x′ y b−→ √

x ‖ y a|b−−→ x′
if a | b ∈ A

x a−→ x′

x ‖ y a−→ x′ ‖ y
x a−→ √

x ‖ y a−→ y

x
a−→ x′ y

b−→ y′

x | y a|b−−→ x′ ‖ y′
x

a−→ √
y

b−→ y′

x | y a|b−−→ y′

x
a−→ x′ y

b−→ √

x | y a|b−−→ x′

x
a−→ √

y
b−→ √

x | y a|b−−→ √

x a−→ x′

∂H(x) a−→ ∂H(x′)
if a 6∈ H x a−→ √

∂H(x) a−→ √ if a 6∈ H

x a−→ x′

τI(x)
τ−→ τI(x

′)
if a ∈ I x a−→ √

τI(x)
τ−→ √ if a ∈ I

x a−→ x′

τI(x)
a−→ τI(x

′)
if a 6∈ I x a−→ √

τI(x)
a−→ √ if a 6∈ I



12 2 PRELIMINARIES: AXIOMS AND OPERATIONAL SEMANTICS

We proceed to define some more semantic equivalence relations on states in a la-
belled transition system that do not take into account the silent nature of τ . These
definitions use the following notions, assuming an underlying LTS.

Let P σ−→→ Q for σ ∈ A∗ denote that state P can evolve to state Q by the execution
of the sequence of actions σ. This binary relation on states is defined as follows
(with ε denoting the empty string):

- P ε−→→ P ;

-
P σ−→→ Q Q a−→ R

P σa−−→→ R
;

-
P σ−→→ Q Q a−→ √

P σa−−→→ √ .

A string σ ∈ A∗ is a trace of P if P σ−→→ Q for some state Q or P σ−→→ √
.

Definition 2.2.3. [Substate] Q is a substate of P if P σ−→→ Q for some σ ∈ A∗. Q is
a proper substate of P if P σ−→→ Q for some σ ∈ A∗ \ {ε}. 2

Definition 2.2.4. [Ready simulation] A simulation is a binary relation R over the
set of states that satisfies:

P RQ ∧ P a−→ P ′ =⇒ ∃Q′ (Q a−→ Q′ ∧ P ′RQ′)

P RQ ∧ P a−→ √
=⇒ Q a−→ √

A simulation R is a ready simulation if whenever P RQ and a is a trace of Q, then
a is a trace of P .

Two states P and Q are simulation equivalent, notation P 'S Q, if P R1Q and
QR2 P for simulations R1 and R2.

Two states P and Q are ready simulation equivalent, notation P 'RS Q, if P R1Q
and QR2 P for ready simulations R1 and R2. 2

Definition 2.2.5. [Language equivalence] Two states P and Q are language equiv-
alent, notation P 'L Q, if for each trace P σ−→→ √

there is a trace Q σ−→→ √
, and vice

versa. 2

Definition 2.2.6. [Trace equivalence] Two states P and Q are trace equivalent,
notation P 'T Q, if they give rise to the same set of traces. 2
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In [45], van Glabbeek gave a comparison of a wide range of behavioural equiva-
lences and preorders (i.e., relations that are in general not symmetric) that do not
take into account the silent nature of τ . Apart from the equivalence relation dis-
cussed above, he studied completed trace preorder and a variety of decorated trace
preorders, which are based on decorated versions of traces. These preorders are
coarser than strong bisimulation and ready simulation, but more refined than lan-
guage and trace equivalence. In Section 4.3, prefix iteration is axiomatised with
respect to some of the decorated trace preorders. The reader is referred to [45] for
the definitions of these preorders.

Four standard semantic equivalences that take into account the silent nature of τ
(and that constitute congruence relations over ACP(A, |, τ)) are rooted branching
bisimulation [50], rooted delay bisimulation [60], rooted η-bisimulation [16], and
rooted weak bisimulation [62]. Of these four semantics, rooted branching bisimula-
tion constitutes the finest relation, while rooted weak bisimulation constitutes the
coarsest relation. In all four semantics the axiom (B1) (i.e., xτ = x) is valid, and
that is all that is needed for the expressivity results concerning ACP(A, |, τ) dis-
cussed in this chapter. In [47], van Glabbeek gave a comparison of a wide range
of process semantics that take into account the silent nature of τ .

2.3 Recursive Specifications

Although iterative operations are recursive by nature, we will use recursive specifica-
tions and associated notions to prove some of the results concerning these operations.

Definition 2.3.1. [Recursion] We assume a set of recursion variables {Xj | j ∈ J}
for some index set J . A recursive specification E is a set of recursive equations
Xj = Tj for j ∈ J , where Tj is an ACP(A, |, τ)-term in which the recursion variables
Xi for i ∈ J may occur.

Given some process semantics, processes Pj (for j ∈ J) form a solution of E if
substitution of Pj for Xj in the recursive equations of E yields equations that hold
in this semantics. 2

If a recursive specification has solutions, then these solutions are often referred to
by the names of the corresponding recursion variables in E. Table 3 presents the
transition rules for recursive specifications.

Table 3: Transition rules for recursion.

T a−→ x′

X a−→ x′
if X = T ∈ E T a−→ √

X a−→ √ if X = T ∈ E
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If for instance E = {X = aX + b}, then X a−→ X by the first transition rule, and

X b−→ √
by the second transition rule.

Recursive specifications need not have unique solutions in any reasonable process
semantics, examples being {X = X} and {X = τX}. The following two definitions
are sufficient to remedy this imperfection.

Definition 2.3.2. [τ -Guardedness] Let P be an expression containing a recursion
variable X.

An occurrence of X in P is τ -guarded if P has a subexpression aQ where a ∈ Aτ

and Q contains this occurrence of X.

A recursive specification E = {Xj = Tj | j ∈ J} is τ -guarded if by repeatedly substi-
tuting Tj expressions for occurrences of Xj , and by applying axioms of ACP(A, |, τ),
one can obtain the situation that all occurrences of recursion variables in right-hand
sides of recursive equations are τ -guarded. 2

Definition 2.3.3. [τ -Convergence] A recursive specification E = {Xj = Tj | j ∈ J}
is τ -convergent if Xj

σ−→→ P (for j ∈ J) implies that there is no infinite τ -trace
P τ−→ P ′ τ−→ P ′′ τ−→ · · ·. 2

Recursive specifications that are τ -guarded and τ -convergent have a unique solution
modulo any reasonable process semantics. The existence of a solution underlies the
soundness of the recursive definition principle [10]. We proceed to introduce the
recursive specification principle (RSP), discussed in for instance [20, 10]. This prin-
ciple states that the recursive specification E = {Xj = Tj | j ∈ J} has at most one
solution per recursion variable, modulo the process semantics under consideration.

(RSP)
yj = Tj{yi/Xi | i ∈ J} for j ∈ J

Xk = yk

(for k ∈ J)

(RSP) is sound with respect to the process equivalences mentioned thus far, provided
E is both τ -convergent and τ -guarded. Note that (RSP) is not sound with respect
to the recursive specifications {X = X} and {X = τX}.

Definition 2.3.4. [Regular process] A process P is regular if P is bisimilar to a
process τI(Q) where Q is a solution for a recursion variable in a finite recursive
specification

{Xi =
n
∑

j=1

αi,jXj + βi | i = 1, . . . , n}

where αi,j and βj are finite sums of actions in A (the empty sum representing δ).
2
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3 Axiomatisation of the Binary Kleene Star

In Section 1 we introduced the binary Kleene star (BKS), notation ∗. This operation
is defined by the equation

x∗y = x(x∗y) + y.

This section considers its finite equational axiomatisation in strong bisimulation
semantics, and presents a negative result on the finite equational axiomatisability of
BKS in a variety of other process semantics.

3.1 Preliminaries

BPA∗(A) is obtained by extending BPA(A) with BKS. Bergstra, Bethke, and
Ponse [13] introduced an axiomatisation for BPA∗(A) modulo strong bisimulation
equivalence, which consists of axioms (A1)–(A5) for BPA(A), extended with the ax-
ioms (BKS1)–(BKS3) for BKS in Table 4. The axiom (BKS3) stems from Troeger

[73].

Table 4: Axioms for BKS.

(BKS1) x(x∗y) + y = x∗y
(BKS2) x∗(yz) = (x∗y)z
(BKS3) x∗(y((x+ y)∗z) + z) = (x+ y)∗z

In order to provide process terms over BPA∗(A) with an operational semantics, we
introduce transition rules for BKS. The transition rules for BKS in Table 5 express
that x∗y repeatedly executes x until it executes y. Together with the transition rules
for BPA(A) in Table 2 they provide labelled transition systems to process terms over
BPA∗(A). Note that by the first two transition rules in Table 5, a state P can have
itself as a proper substate. For example, a∗b a−→ a∗b.

Table 5: Transition rules for BKS.

x a−→ x′

x∗y a−→ x′(x∗y)
x a−→ √

x∗y a−→ x∗y
y a−→ y′

x∗y a−→ y′
y a−→ √

x∗y a−→ √

The transition rules for BKS are in path format [27, 49]. Hence, strong bisimulation
equivalence is a congruence with respect to BPA∗(A); see [36, 6]. Furthermore, its
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axiomatisation is sound for BPA∗(A) modulo strong bisimulation equivalence. Since
strong bisimulation equivalence is a congruence, this can be verified by checking
soundness for each axiom separately. It can be easily shown that the BKS axioms
are valid in strong bisimulation.

Fokkink and Zantema [44] proved that the axiomatisation for BPA∗(A) is com-
plete modulo strong bisimulation equivalence. Their proof is based on a term rewrit-
ing analysis (see, e.g., [22]), in a quest to reduce bisimilar process terms to the same
ground normal form, which does not reduce any further. Since this aim cannot be
fulfilled for BKS, this operator is replaced by an operator representing x(x∗y), and
the BKS axioms are adopted to fit this new operator. Those axioms are turned into
conditional rewrite rules, which are applied modulo associativity and commutativity
of the + (see, e.g., [67]). Knuth-Bendix completion [52] is applied to make the con-
ditional rewrite system weakly confluent. Termination of the resulting conditional
term rewriting system is obtained by means of the technique of semantic labelling
from Zantema [75]. Hence, each process term is provably equal to a normal form.
Finally, a careful case analysis learns that if two normal forms are strongly bisimilar,
then they are syntactically equal modulo associativity and commutativity of the +.
This observation yields the desired completeness result.

An alternative completeness proof was proposed in [39], based on induction on the
structure of process terms. That proof method is more general, and was later on
applied to obtain completeness results for axiomatisations of iteration operations in
[1, 33, 40]. In the light of the generic applicability of this proof method and the
significance of the completeness result in the realm of this chapter, we present the
proof from [39] in some detail.

Following Milner [63] (see also [46]), the latter proof strategy can also be used to
derive ω-completeness of the axiomatisation for BPA∗(A). That is, if P and Q are
open terms over BPA∗(A), which may contain variables, and if σ(P ) = σ(Q) holds
for all closed instantiations σ, then P = Q can be derived from the axioms. Often,
ω-completeness can be proved by providing variables with an operational semantics,
such that P ↔ Q holds with respect to this new operational semantics if and only if
σ(P )↔ σ(Q) holds for all closed instantiations σ with respect to the original oper-
ational semantics. In [39], completeness of the axiomatisation for BPA∗(A) modulo
bisimulation equivalence is derived for open terms, which immediately implies ω-
completeness of the axiomatisation. Here, we present the proof from [39] for closed
(instead of open) terms. The reader is referred to [39] for a proof of ω-completeness.
(The motivation to refrain from this generalisation here is clarity of presentation;
we prefer to work in an unambiguous semantic framework throughout this chapter.)

3.2 Completeness

We note that each process term over BPA∗(A) has only finitely many substates. In
the sequel, process terms are considered modulo associativity and commutativity
of the +, and we write P =AC Q if P and Q can be equated by axioms (A1) and



3.2 Completeness 17

(A2). As usual,
∑n

i=1 Pi represents P1+ · · ·+Pn. We take care to avoid empty sums
(where

∑0
i=1 Pi +Q is not considered empty and equals Q).

For each process term P , its collection of possible transitions is non-empty and finite,

say {P ai−−→ Pi | i = 1, . . . ,m} ∪ {P bj−−→ √ | j = 1, . . . , n}. We call

m
∑

i=1

aiPi +
n
∑

j=1

bj

the HNF-expansion of P (Head Normal Form expansion, cf. [28]). The process terms
aiPi and bj are the summands of P .

Lemma 3.2.1. Each process term is provably equal to its HNF-expansion.

Proof. Straightforward, by structural induction, using (A4), (A5), and (BKS1).
2

Process terms in BPA∗(A) are normed, which means that they are able to terminate
in finitely many transitions. The norm [11] of a process yields the length of the
shortest termination trace of this process. Norm can be defined inductively by

|a| = 1
|P +Q| = min{|P |, |Q|}
|PQ| = |P |+ |Q|
|P∗Q| = |Q|.

We note that strongly bisimilar processes have the same norm. The following lemma,
due to Caucal [29], is typical for normed processes.

Lemma 3.2.2. Let PQ ↔ RS. By symmetry we may assume |Q| ≤ |S|. We can
distinguish two cases:

• either P ↔ R and Q↔ S;

• or there is a proper substate P ′ of P such that P ↔ RP ′ and P ′Q↔ S.

Proof. This lemma follows from the following facts A and B.

A. If PQ ↔ RS and |Q| ≤ |S|, then either Q ↔ S, or there is a proper substate
P ′ of P such that P ′Q↔ S.

We prove fact A by induction on |P |. First, let |P | = 1. Then P a−→ √
for some a,

so PQ a−→ Q. Since PQ ↔ RS, and |R′S| > |S| ≥ |Q| for all substates R′ of R, it
follows that R a−→ √

and Q↔ S. Then we are done.

Next, suppose we have proved the case for |P | ≤ n, and let |P | = n+1. Then there
is a P ′ with |P ′| = n and P a−→ P ′, which implies PQ a−→ P ′Q. Since PQ ↔ RS,
we have two options:
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1. R a−→ √
and P ′Q↔ S. Then we are done.

2. R a−→ R′ and P ′Q ↔ R′S. Since |P ′| = n, induction yields either Q ↔ S or
P ′′Q↔ S for a proper substate P ′′ of P ′. Again, we are done.

This concludes the proof of fact A.

B. If PQ↔ RQ, then P ↔ R.

Define a binary relation B on process terms by T BU iff TQ ↔ UQ. We show that
B constitutes a strong bisimulation relation between P and R.

• Since ↔ is symmetric, so is B.

• PQ↔ RQ, so P BR.

• Suppose T BU and T a−→ √
. Then TQ a−→ Q. Since TQ ↔ UQ, and

|U ′Q| > Q for all substates U ′ of U , it follows that UQ a−→ Q. In other words,
U a−→ √

.

• Suppose T BU and T a−→ T ′. Then TQ a−→ T ′Q. Since TQ ↔ UQ, and
|Q| < |T ′Q|, it follows that there is a transition U a−→ U ′ with T ′Q ↔ U ′Q.
Hence, T ′ BU ′.

This concludes the proof of fact B.

Finally, we show that facts A and B together prove the lemma. Let PQ ↔ RS with
|Q| ≤ |S|. According to fact A we can distinguish two cases.

• Q↔ S. Then PQ↔ RS ↔ RQ, so fact B yields P ↔ R.

• P ′Q ↔ S for some proper substate P ′ of P . Then PQ ↔ RS ↔ RP ′Q, so
fact B yields P ↔ RP ′.

2

We construct a set B of basic terms, such that each process term is provably equal to
a basic term. The completeness theorem is proved by showing that strongly bisimilar
basic terms are provably equal.

(x+ y)z −→ xz + yz
(xy)z −→ x(yz)

(x∗y)z −→ x∗(yz)

The term rewriting system above consists of directions of the axioms (A4), (A5), and
(BKS2), pointing from left to right. Its rewrite rules are to be interpreted modulo
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associativity and commutativity of the +. The term rewriting system is terminating,
meaning that there are no infinite reductions. This follows from the following weight
function w in the natural numbers:

w(a) = 2
w(P +Q) = w(P ) + w(Q)
w(PQ) = w(P )2w(Q)
w(P∗Q) = w(P ) + w(Q).

It is not hard to see that if P reduces to Q in one or more rewrite steps, then
w(P ) > w(Q). Since the ordering on the natural numbers is well-founded, we
conclude that the term rewriting system is terminating. Let G denote the collection
of ground normal forms, i.e., the collection of process terms that cannot be reduced
by any of the three rewrite rules. Since the term rewriting system is terminating,
and since its rewrite rules are directions of axioms, it follows that each process term
is provably equal to a process term in G. The elements in G are defined by:

P ::= a | P + P | aP | P∗P.

G is not yet our desired set of basic terms, due to the fact that there exist process
terms in G which have a substate outside G. We give an example.

Example 3.2.3. Let A = {a, b, c}. Clearly, (a∗b)∗c ∈ G, and

(a∗b)∗c a−→ (a∗b)((a∗b)∗c).

The substate (a∗b)((a∗b)∗c) is not in G, because the third rewrite rule in R reduces
this process term to a∗(b((a∗b)∗c)).

In order to overcome this complication, we introduce the following collection of
process terms:

H = {P∗Q, P ′(P∗Q) | P∗Q ∈ G and P ′ is a proper substate of P}.

We define an equivalence relation ∼= on H by putting P ′(P∗Q) ∼= P∗Q for proper
substates P ′ of P , and taking the reflexive, symmetric, transitive closure of ∼=.

The set B of basic terms is the union of G and H.

Lemma 3.2.4. If P ∈ B and P
a−→ P ′, then P ′ ∈ B.

Proof. By induction on the structure of P .

If P ∈ H\G, then it is of the form Q′(Q∗R) for some Q∗R ∈ G. So P ′ is of the form
either Q∗R or Q′′(Q∗R) for some proper substate Q′′ of Q′. In both cases, P ′ ∈ B.

If P ∈ G, then it is of the form
∑

i aiQi+
∑

j Rj
∗Sj +

∑

k bk, where the Qi, Rj , and

Sj are in G. So P ′ is of the form Qi, Rj
∗Sj , R

′
j(Rj

∗Sj), or S
′
j , which are all basic

terms (in the last case, this follows by structural induction). 2
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The L-value [44] of a process term is defined by

L(P ) = max{|P ′| | P ′ proper substate of P}.

L(P ) < L(PQ) and L(P ) < L(P ∗Q), because for each proper substate P ′ of P , P ′Q
is a proper substate of PQ and P ′(P ∗Q) is a proper substate of P ∗Q. Since norm is
preserved under strong bisimulation, it follows that the same holds for L-value; i.e.,
if P ↔ Q then L(P ) = L(Q).

We define an ordering ≺ on B as follows:

• P ≺ Q if L(P ) < L(Q);

• P ≺ Q if P is a substate of Q but Q is not a substate of P ;

• if P ≺ Q and Q ≺ R, then P ≺ R.

Note that if P,Q ∈ H with P ∼= Q, then P and Q have the same proper substates,
and so L(P ) = L(Q). These observations imply that the ordering ≺ on B respects
the equivalence ∼= on H, that is, if P ∼= Q ≺ R ∼= S, then P ≺ S.

Lemma 3.2.5. ≺ is a well-founded ordering on B.

Proof. If P is a substate of Q, then all proper substates of P are proper substates
of Q, so L(P ) ≤ L(Q). Hence, if P ≺ Q then L(P ) ≤ L(Q).

Assume, toward a contradiction, that there exists an infinite backward chain · · · ≺
P2 ≺ P1 ≺ P0. Since L(Pn+1) ≤ L(Pn) for all n ∈ N, there is an N such that
L(Pn) = L(PN ) for all n > N . Since Pn ≺ PN for n > N , it follows that Pn is a
substate of PN for n > N . Each process term has only finitely many substates, so
there are m,n > N with n > m and Pn =AC Pm. Then Pn 6≺ Pm, so we have found
a contradiction. Hence, ≺ is well-founded. 2

In the proofs of the next two lemmas, we need a weight function g in the natural
numbers, which is defined inductively by

g(a) = 0
g(P +Q) = max{g(P ), g(Q)}
g(PQ) = max{g(P ), g(Q)}
g(P∗Q) = max{g(P ), g(Q) + 1}.

It is not hard to see, by structural induction, that if P a−→ P ′, then g(P ) ≥ g(P ′).

Lemma 3.2.6. Let P∗Q ∈ B. If Q′ is a proper substate of Q, then Q′ ≺ P∗Q.
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Proof. Q′ is a substate of Q, so g(Q′) ≤ g(Q) < g(P∗Q), which implies that
P∗Q cannot be a substate of Q′. On the other hand, Q′ is a substate of P∗Q, so
Q′ ≺ P∗Q. 2

Lemma 3.2.7. If P ∈ B and P
a−→ P ′, then either P ′ ≺ P , or P, P ′ ∈ H and

P ∼= P ′.

Proof. This lemma follows from the following facts A and B.

A. If P ∈ B and P a−→ P ′, then either P ′ ∈ H or P ′ has smaller size than P .

We prove fact A by induction on the structure of P . Let

P =AC

∑

i

aiQi +
∑

j

Rj
∗Sj +

∑

k

bk.

Since P
a−→ P ′, P ′ is of one of the following forms.

• P ′ =AC Qi for some i. Then P ′ has smaller size than P .

• P ′ =AC R′j(Rj
∗Sj) or P

′ =AC Rj
∗Sj for some j. Then P ′ ∈ H.

• Sj
a−→ P ′ for some j. Then induction yields that either P ′ ∈ H, or P ′ has

smaller size than Sj , which in turn has smaller size than P .

This concludes the proof of fact A.

B. If P ∈ H and P a−→ P ′, then either g(P ) > g(P ′), or P ′ ∈ H and P ∼= P ′.

Since P ∈ H, either P =AC Q′(Q∗R) or P =AC Q∗R for some Q and R. Hence,
P ′ =AC Q′′(Q∗R), P ′ =AC Q∗R, or P ′ =AC R′ for a proper substate R′ of R. In
the first two cases P ′ ∈ H and P ∼= P ′, and in the last case g(P ′) = g(R′) ≤ g(R) <
g(Q∗R) = g(P ). This concludes the proof of fact B.

Finally, we show that facts A and B together prove the lemma. Let P a−→ P ′ with
P ′ 6≺ P ; we prove that P, P ′ ∈ H and P ∼= P ′.

Since P ′ is a substate of P and P ′ 6≺ P , P is a substate of P ′. So there exists a
sequence of transitions

P0
a1−−→ P1

a2−−→ · · · an−−→ Pn (n ≥ 1)

where P0 =AC P , P1 =AC P ′, and Pn =AC P .

Suppose Pk 6∈ H for all k. Then according to fact A, Pk+1 has smaller size than Pk for
k = 0, . . . , n−1, so Pn has smaller size than P0. This contradicts P0 =AC P =AC Pn.
Hence, Pl ∈ H for some l.
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Since each Pk is a substate of each Pk′ , g(Pk) must be the same for all k. Then it
follows from fact B, together with Pl ∈ H, that Pk ∈ H for all k and P0

∼= P1
∼=

· · · ∼= Pn. 2

Now we are ready to prove the desired completeness result for BPA∗(A).

Theorem 3.2.8. (A1)–(A5), (BKS1)–(BKS3) is complete for BPA∗(A) modulo
strong bisimulation equivalence.

Proof. Each process term is provably equal to a basic term, so it is sufficient to
show that strongly bisimilar basic terms are provably equal. Assume P,Q ∈ B with
P ↔ Q; we show that P = Q, by induction on the ordering ≺. To be precise,
we assume that we have already dealt with strongly bisimilar pairs R,S ∈ B with
R ≺ P and S ≺ Q, or R ≺ P and S ∼= Q, or R ∼= P and S ≺ Q.

First, assume that P or Q is not in H, say P 6∈ H. By the induction hypothesis,
together with Lemma 3.2.7, for all transitions P a−→ P ′ and Q a−→ Q′ with P ′ ↔ Q′

we have P = Q. Since P ↔ Q, axiom (A3) can be used to adapt the HNF-expansions
of P and Q to the form

P =
m
∑

i=1

aiPi +
n
∑

j=1

bj Q =
m
∑

i=1

aiQi +
n
∑

j=1

bj ,

where Pi = Qi for i = 1, . . . ,m. Hence, P = Q.

Next, assume P,Q ∈ H. We distinguish three cases.

1. Let P =AC R∗S and Q =AC T∗U . We prove R∗S = T∗U .

We spell out the HNF-expansions of R and T :

R =
∑

i∈I

Ri, T =
∑

j∈J

Tj ,

where the Ri and the Tj are of the form either aV or a.

Since R∗S ↔ T∗U , each Ri(R
∗S) for i ∈ I is strongly bisimilar either to

Tj(T
∗U) for a j ∈ J or to a summand of U . We distinguish these two cases.

(a) Ri(R
∗S) ↔ Tj(T

∗U) for a j ∈ J . Then Ri(R
∗S) ↔ Tj(R

∗S), so by
Lemma 3.2.2 Ri ↔ Tj .

(b) Ri(R
∗S)↔ aU ′ for a transition U a−→ U ′.

Thus, I can be divided into the following, not necessarily disjoint, subsets:

I0 = {i ∈ I | ∃j ∈ J (Ri ↔ Tj)}
I1 = {i ∈ I | ∃U a−→ U ′ (Ri(R

∗S)↔ aU ′)}.
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Similarly, J can be divided:

J0 = {j ∈ J | ∃i ∈ I (Tj ↔ Ri)}
J1 = {j ∈ J | ∃S a−→ S′ (Tj(T

∗U)↔ aS′)}.

If both I1 and J1 are non-empty, then U ′′ ↔ R∗S for a proper substate U ′′ of
U , and S′′ ↔ T∗U for a proper substate S ′′ of S, and so U ′′ ↔ S′′. By Lemma
3.2.6, S′′ ≺ R∗S and U ′′ ≺ T ∗U , so induction yields R∗S = U ′′ = S′′ = T∗U ,
and we are done.

Hence, we may assume that either I1 or J1 is empty, say J1 = ∅. We proceed
to derive

∑

i∈I1

Ri(R
∗S) + S = U. (1)

We show that each summand at the left-hand side of the equality sign is
provably equal to a summand of U , and vice versa.

• By definition of I1, for each Ri(R
∗S) with i ∈ I1 there is a summand aU ′

of U such that Ri(R
∗S)↔ aU ′. By Lemma 3.2.6 U ′ ≺ T∗U , so induction

yields Ri(R
∗S) = aU ′.

• Consider a summand aS ′ of S. Since R∗S ↔ T∗U and J1 = ∅, it follows
that aS′ is strongly bisimilar to a summand aU ′ of U , so induction yields
aS′ = aU ′.

• Finally, summands a of S correspond with summands a of U .

• By the converse arguments it follows that each summand of U is provably
equal to a summand at the left-hand side of the equality sign.

This concludes the derivation of (1).

Since J1 = ∅, it follows that J0 6= ∅, so I0 6= ∅. By the definitions of I0 and
J0 = J , each Ri with i ∈ I0 is strongly bisimilar to a Tj with j ∈ J , and vice
versa. Since L(Ri) ≤ L(R) < L(R∗S), induction yields Ri = Tj . Hence,

∑

i∈I0

Ri = T. (2)

Finally, we derive

R∗S (A3)
= (

∑

i∈I0
Ri +

∑

i∈I1
Ri)
∗S

(BKS3),(A3)
= (

∑

i∈I0
Ri)
∗(∑i∈I1

Ri(R
∗S) + S)

(1),(2)
= T∗U.
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2. Let P =AC R′(R∗S) and Q =AC T∗U . We prove R′(R∗S) = T∗U .

|U | = |T∗U | = |R′(R∗S)| ≥ 2 implies that U does not have atomic summands,
so its HNF-expansion is of the form

∑

i aiUi. Since R′(R∗S) ↔ T∗U , each
Ui is strongly bisimilar to R∗S or to R′′(R∗S) for a proper substate R′′ of
R′. According to Lemma 3.2.6 Ui ≺ T∗U , so induction yields Ui = R∗S or
Ui = R′′(R∗S). This holds for all i, so U =

∑

i aiUi = V (R∗S) for some
process term V . Then R′(R∗S) ↔ T∗U ↔ (T∗V )(R∗S), so Lemma 3.2.2
implies R′ ↔ T∗V . Since L(R′) < L(R′(R∗S)), induction yields R′ = T∗V .

Hence, R′(R∗S) = (T∗V )(R∗S) (BKS2)
= T∗(V (R∗S)) = T∗U .

3. Let P =AC R′(R∗S) and Q =AC T ′(T∗U). We prove R′(R∗S) = T ′(T∗U).

By symmetry we may assume |R∗S| ≤ |T∗U |. Lemma 3.2.2 distinguishes two
possible cases.

• R′ ↔ T ′ and R∗S ↔ T∗U . Since L(R′) < L(R′(R∗S)), induction yields
R′ = T ′, and case 1 applied to R∗S ↔ T∗U yields R∗S = T∗U . Hence,
R′(R∗S) = T ′(T ∗U).

• R′ ↔ T ′R′′ and R′′(R∗S) ↔ T∗U for a proper substate R′′ of R′. Since
L(R′) < L(R′(R∗S)), induction yields R′ = T ′R′′. Furthermore, case 1
applied to R′′(R∗S)↔ T∗U yields R′′(R∗S) = T∗U . Hence, R′(R∗S) =
(T ′R′′)(R∗S) (BKS2)

= T ′(R′′(R∗S)) = T ′(T∗U).

This finishes the derivation of P = Q. 2

3.3 Irredundancy of the Axioms

Fokkink [39] showed that each of the BKS axioms is essential for the obtained
completeness result.

Theorem 3.3.1. If one of the BKS axioms is skipped from (A1)–(A5), (BKS1)–
(BKS3), then this axiomatisation is no longer complete for BPA∗(A) modulo strong
bisimulation equivalence.

Proof. We apply a standard technique for proving that an equation e cannot be
derived from an equational theory E , which prescribes to define a model for E in
which e is not valid.

In order to show that (BKS1) cannot be derived from (A1)–(A5), (BKS2), (BKS3),
we define an interpretation function φ of open terms in the natural numbers:

φ(a) = 0
φ(x) = 0

φ(P +Q) = max{φ(P ), φ(Q)}
φ(PQ) = φ(P )
φ(P∗Q) = max{φ(P ) + 1, φ(Q) + 1}.
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It is easy to see that this interpretation is a model for (A1)–(A5), (BKS2), (BKS3).
However, φ(a(a∗a) + a) = 0, while φ(a∗a) = 1. Hence, a(a∗a) + a = a∗a cannot be
derived from (A1)–(A5), (BKS2), (BKS3).

In order to show that (BKS2) cannot be derived from (A1)–(A5), (BKS1), (BKS3)
we define an interpretation function ψ of open terms in the natural numbers:

ψ(a) = 0
ψ(x) = 0

ψ(P +Q) = max{ψ(P ), ψ(Q)}
ψ(PQ) = ψ(Q)
ψ(P∗Q) = max{ψ(P ) + 1, ψ(Q)}.

It is easy to see that this interpretation is a model for (A1)–(A5), (BKS1), (BKS3).
However, ψ((a∗a)a) = ψ(a) = 0, while ψ(a∗(aa)) = max{ψ(a) + 1, ψ(aa)} = 1.
Hence, (a∗a)a = a∗(aa) cannot be derived from (A1)–(A5), (BKS1), (BKS3).

In order to show that (BKS3) cannot be derived from (A1)–(A5), (BKS1), (BKS2),
we define an interpretation function η of open terms in sets of natural numbers:

η(a) = ∅
η(x) = ∅

η(P +Q) = η(P ) ∪ η(Q)
η(PQ) = η(P ) ∪ η(Q)
η(P∗Q) = η(P ) ∪ η(Q) ∪ {|P |}.

It is easy to see that this interpretation is a model for (A1)–(A5), (BKS1), (BKS2).
However, η((aa)∗(a((aa+a)∗a)+a)) = {|aa|, |aa+a|} = {1, 2} while η((aa+a)∗a) =
{|aa+ a|} = {1}. Hence, (aa)∗(a((aa+ a)∗a) + a) = (aa+ a)∗a cannot be derived
from (A1)–(A5), (BKS1), (BKS2). 2

3.4 Negative Results

In contrast with the positive result on the finite equational axiomatisability of
BPA∗(A) modulo strong bisimulation equivalence,Aceto, Fokkink, and Ingólfsdóttir
[4] showed that BPA∗(A) is not finitely based modulo any process semantics in be-
tween ready simulation (see Definition 2.2.4) and language equivalence (see Defini-
tion 2.2.5). In the case of a singleton alphabet, this answered a problem in regular
languages raised by Salomaa in [71]; see [3]. Crvenković, Dolinka, and Ésik [30]
provided a more elegant answer to the latter question.

Ready simulation and language equivalence constitute congruence relations over
BPA∗(A) (in the case of language equivalence this follows from the fact that the
transition rules for BPA∗(A) are in L cool format [41]). Process semantics in
the linear/branching time spectrum [45] that are finer than language equivalence
and coarser than ready simulation, and which constitute congruence relations over
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BPA∗(A), are failure semantics, ready semantics, failure trace semantics, and ready
trace semantics.

The result above follows from the existence of an infinite set of equations that cannot
all be proved by means of any finite set of equations that is sound modulo language
equivalence. This family of equations consists of

E.n a∗(an) + (an)∗(a+ · · ·+ an) = (an)∗(a+ · · ·+ an)

for n ≥ 1, where a is some action. Ready simulation is the finest semantics in the
linear/branching time spectrum in which the E.n are sound. Note that for n > 1,
none of the equations E.n is sound in strong bisimulation equivalence.

Given a finite set of equations that is sound with respect to language equivalence,
Aceto, Fokkink, and Ingólfsdóttir construct a model Ap for these equations
in which equation E.p fails, for some prime number p. The model that is used for
this purpose is based on an adaptation of a construction due to Conway [35], who
used it to obtain a new proof of a theorem, originally due to Redko [69], saying
that BPA∗(A) is not finitely based modulo language equivalence.

Let a be an action. For p a prime number, the carrier Ap of the algebra Ap consists
of non-empty formal sums of a0, a1, . . . , ap−1, together with the formal symbol a∗,
that is,

{
∑

i∈I

ai | ∅ ⊂ I ⊆ {0, . . . , p− 1}} ∪ {a∗} .

The syntax of Ap contains three more operators, which are semantic counterparts
of the binary function symbols in BPA∗(A). In order to avoid confusion, circled
symbols denote the operators in the algebra Ap: ⊕, ¯, and ~ represent the semantic
counterparts of +, ·, and ∗, respectively. Table 6 presents an axiomatisation for Ap.

Table 6: Axiomatisation for the algebra Ap

a∗ ⊕ x = a∗
x⊕ a∗ = a∗

∑

i∈I a
i ⊕∑j∈J a

j =
∑

h∈I∪J a
h

a∗ ¯ x = a∗
x¯ a∗ = a∗

∑

i∈I a
i ¯∑j∈J a

j =
∑

h∈{(i+j) mod p | (i,j)∈I×J} a
h

x~y =

{

y if x = a0

a∗ otherwise

Process terms over BPA∗(A) are mapped to Ap as expected: every action in A is
mapped to the symbol a1, while +, ·, and ∗ are mapped to ⊕, ¯, and ~, respectively.
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For a process term P , the denotation of P in the algebra Ap is represented by Ap[[P ]].
We note that equation E.p fails in Ap. Namely,

Ap[[a
∗(ap) + (ap)∗(a+ · · ·+ ap) ]] = a∗ 6=

p−1
∑

i=0

ai = Ap[[(a
p)∗(a+ · · ·+ ap) ]] .

The following theorem is the key to the nonaxiomatisability result from [4].

Theorem 3.4.1. For every finite set E of equations that are sound with respect to
'L, there exists a prime number p such that all equations in E are valid in Ap.

Corollary 3.4.2. No congruence relation over BPA∗(A) that is included in 'L

and satisfies E.n for all n ≥ 1 has a complete finite equational axiomatisation.

A process semantics that is coarser than language equivalence is trace equivalence
'T , where two process terms are considered equivalent if they give rise to the same
(not necessarily terminating) traces (see Definition 2.2.6). If |A| > 1, then trace
equivalence is not a congruence relation over BPA(A); e.g., a + aa 'T aa, but
(a + aa)b 6'T aab. However, if the set A of actions is a singleton {a}, then trace
equivalence constitutes a congruence relation over BPA∗(A). In contrast with their
negative results on the finite axiomatisability of BPA∗(A) modulo process seman-
tics between ready simulation and language equivalence, Aceto, Fokkink, and
Ingólfsdóttir showed that BPA∗({a}) modulo trace equivalence is axiomatised
completely by the five axioms for BPA({a}) together with the three axioms in Table
7.

Table 7: Axioms for trace equivalence (A = {a})

(T1) x+ (y∗z) = a∗a
(T2) x+ xy = xy

(T3) xy = yx

Theorem 3.4.3. (A1)–(A5), (T1)–(T3) is complete for BPA∗({a}) modulo trace
equivalence.

3.5 Extensions of BPA∗(A)

The signature of BPA∗δ(A) is obtained by extending BPAδ(A) with BKS. Its axioms
are those of BPA∗(A) and of BPAδ(A), i.e., (A1)–(A7) in Table 1 for BPAδ(A),
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and (BKS1)–(BKS3) for BKS. Sewell [72] showed that there does not exist a
complete equational axiomatisation for BPA∗δ(A) modulo strong bisimulation equiv-
alence. This motivates the introduction of the implicational axiom

(RSP∗)
x = yx+ z

x = y∗z

It remains an open question, dating back toMilner [61], whether (A1)–(A7), (BKS1), (RSP∗)
is complete modulo strong bisimulation equivalence. We note that (BKS2) and
(BKS3) can be derived from this axiomatisation.

The signature of PA∗(A) is obtained by extending PA(A) with BKS. The axioms
of PA∗(A) are those of PA(A) and (BKS1)–(BKS3). The system PAδ(A) can be
extended in a similar way to PA∗δ(A). The system ACP∗(A, |) is defined by inclusion
of (BKS1)–(BKS4); see Table 8. Note that (BKS4) can be derived using (RSP∗).
Finally, ACP∗(A, |, τ) is obtained by inclusion into ACP(A, |, τ) of (BKS1)–(BKS5);
see Table 8. Note that (RSP∗) is not sound for ACP∗(A, |, τ); e.g.,

τ = ττ + δ,

but τ = τ∗δ is not a desirable identity in any process semantics.

Table 8: Axioms for BKS with encapsulation and abstraction.

(BKS4) ∂H(x∗y) = ∂H(x)∗∂H(y)

(BKS5) τI(x
∗y) = τI(x)

∗τI(y)

4 Axiomatisations of Other Iterative Operations

This section considers four restricted versions and one generalised version of BKS.
We discuss the different advantages of each of these operators, and formulate various
axiomatisations and completeness results.

4.1 Axiomatisation of No-Exit Iteration

No-exit iteration (NEI) xω is bisimilar to x∗δ. No-exit iteration can be used to for-
mally describe programs that repeat a certain procedure without end. Many com-
munication protocols can be expressed, and shown correct, using no-exit iteration.
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An explanation is that (concurrent) components of such protocols often perform
repetitive behaviour in the following style (receive/process/send-repetition):

(
∑

d∈D

ri(d)P sj(d))
ω,

or

(
∑

d∈D

ri(d)P sj(d) +Q)ω,

where Q handles an exceptional situation. A standard example in process algebra is
the alternating bit protocol (see, e.g., [20]), specified as the concurrent execution of
four components, each of which can be specified in the style above. Further examples
of this specification and verification style can be found in [17, 76].

Table 9 presents two axioms for NEI. (NEI1) is its defining axiom, while (RSPω)
is an adaptation of (RSP∗). The axiomatisations for BPAω(A) and BPAω

δ (A) are
obtained by extending BPA(A) and BPAδ(A) with (NEI1) and (RSPω).

Table 9: Axioms for NEI.

(NEI1) xω = x(xω)

(RSPω)
x = yx

x = yω

In order to provide process terms over BPAω
δ (A) with an operational semantics, we

introduce transition rules for NEI. Together with the transition rules for BPA(A) in
Table 2 they provide labelled transition systems to process terms over BPAω

δ (A).

Table 10: Transition rules for NEI.

x a−→ x′

xω a−→ x′(xω)

x a−→ √

xω a−→ xω

The transition rules for NEI are in path format. Hence, strong bisimulation equiv-
alence is a congruence with respect to BPAω

δ (A). Furthermore, its axiomatisation
is sound for BPAω

δ (A) modulo strong bisimulation equivalence. Since strong bisim-
ulation equivalence is a congruence, this can be verified by checking soundness for
each axiom separately. It is easily verified that (NEI1) and (RSPω) are indeed sound
modulo strong bisimulation equivalence.
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The following two completeness results for no-exit iteration originate from [40]. Their
proofs, which are omitted here, are based on the proof strategy from [39].

Theorem 4.1.1. (A1)–(A5), (NEI1), (RSPω) is complete for BPAω(A) modulo
strong bisimulation equivalence.

Theorem 4.1.2. (A1)–(A7), (NEI1), (RSPω) is complete for BPAω
δ (A) modulo

strong bisimulation equivalence.

The observation by Sewell [72] that there does not exist a complete finite equa-
tional axiomatisation for BPA∗δ(A) modulo strong bisimulation equivalence, is based
on the fact that aω is strongly bisimilar to (ak)ω for k ≥ 1. This argument can be
copied to conclude that there do not exist complete finite equational axiomatisations
for BPAω(A) and BPAω

δ (A). Hence, the implicational axiom (RSPω) is irredundant.
It is not difficult to see that axiom (NEI1) is irredundant as well.

4.2 Axiomatisation of Multi-Exit Iteration

Milner [61] noted that not every regular process can be described in BPA∗(A),
up to strong bisimulation equivalence. The limited expressive power of BKS was
highlighted in [12], where it was shown that the process described by the recursive
specification

X1 = aX2 + a
X2 = aX1 + b

cannot be expressed in BPA∗(A) modulo strong bisimulation equivalence. See Sec-
tion 5 for more information on the expressive power of iterative operators.

Bergstra, Bethke, and Ponse [12] introduced multi-exit iteration (MEI) as a
more expressive variant of iteration. For every k ≥ 1, and process terms Pi and Qi

(1 ≤ i ≤ k), the process term (P1, . . . , Pk)
∗(Q1, . . . , Qk) denotes a solution to the

recursion variable X1 in the recursive specification

X1 = P1X2 +Q1
...

Xk−1 = Pk−1Xk +Qk−1

Xk = PkX1 +Qk

Aceto and Fokkink [1] introduced the axiom system BPAme∗(A), which is ob-
tained by adding the MEI axioms (MEI1)–(MEI5) in Table 11 to BPA(A). The
first three MEI axioms are adaptations of the three BKS axioms. The last two MEI
axioms relate process terms of distinct exit degrees. (MEI4) is the multiplicative
counterpart of (MEI3), while (MEI5) enables to reduce repetitive patterns at the
left- and right-hand side of MEI.
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Table 11: Axioms for MEI.

(MEI1) x1((x2, . . . , xk, x1)
∗(y2, . . . , yk, y1)) + y1 = (x1, . . . , xk)

∗(y1, . . . , yk)

(MEI2) ((x1, . . . , xk)
∗(y1, . . . , yk))z = (x1, . . . , xk)

∗(y1z, . . . , ykz)

(MEI3) (z0, x2, . . . , xk)
∗(y1 + z1((x2, . . . , xk, z0 + z1)

∗(y2, . . . , yk, y1)), y2, . . . , yk)

= (z0 + z1, x2, . . . , xk)
∗(y1, . . . , yk)

(MEI4) (z0, z1, x2, . . . , xk)
∗(y1, z2((x2, . . . , xk, z0(z1 + z2))

∗(y2, . . . , yk, y1)), y2, . . . , yk)

= (z0(z1 + z2), x2, . . . , xk)
∗(y1, . . . , yk)

(MEI5) ((x1, . . . , xk)
`)∗((y1, . . . , yk)

`) = (x1, . . . , xk)
∗(y1, . . . , yk)

In order to provide process terms over BPAme∗(A) with an operational semantics, we
introduce transition rules for MEI. Together with the transition rules for BPA(A) in
Table 2 they provide labelled transition systems to process terms over BPAme∗(A).

Table 12: Transition rules for MEI.

x1
a−→ x′1

(x1, . . . , xk)
∗(y1, . . . , yk)

a−→ x′1((x2, . . . , xk, x1)
∗(y2, . . . , yk, y1))

x1
a−→ √

(x1, . . . , xk)
∗(y1, . . . , yk)

a−→ (x2, . . . , xk, x1)
∗(y2, . . . , yk, y1)

y1
a−→ y′1

(x1, . . . , xk)
∗(y1, . . . , yk)

a−→ y′1

y1
a−→ √

(x1, . . . , xk)
∗(y1, . . . , yk)

a−→ √

The transition rules for MEI are in path format. Hence, strong bisimulation equiva-
lence is a congruence with respect to BPAme∗(A). Furthermore, its axiomatisation is
sound for BPAme∗(A) modulo strong bisimulation equivalence. Since strong bisim-
ulation equivalence is a congruence, this can be verified by checking soundness for
each axiom separately. It is easily verified that (MEI1), (MEI2), and (MEI5) are
sound modulo strong bisimulation equivalence. See [1] for a detailed proof that
(MEI3) and (MEI4) are sound modulo strong bisimulation equivalence.

In [1] it is proved that the axiomatisation BPAme∗(A) is complete for BPAme∗(A)
modulo strong bisimulation equivalence. The completeness proof, which is omitted
here, is based on the proof strategy from [39].
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Theorem 4.2.1. (A1)–(A5), (MEI1)–(MEI5) is complete for BPAme∗(A) modulo
strong bisimulation equivalence.

4.3 Axiomatisation of Prefix Iteration

Prefix iteration (PI) [37] is a variation of BKS, obtained by restricting its first
argument to single atomic actions. The advantage of PI over BKS is twofold:

1. PI can be axiomatised in a setting with prefix multiplication of CCS [62],
which is obtained from sequential composition by restricting its first argument
to single atomic actions;

2. PI allows a complete equational axiomatisation modulo strong bisimulation
equivalence in the presence of the deadlock δ.

We note that, in general, sequential composition can be restricted to prefix multi-
plication without loss of expressivity.

BPAp∗
δ (A) consists of BPA(A), with sequential composition xy restricted to prefix

multiplication ax from CCS, extended with PI. Table 13 presents a collection of
axioms for PI. First of all, (PI1)–(PI2) from [37] axiomatise PI with respect to
strong bisimulation.

Theorem 4.3.1. (A1)–(A3), (A6), (PI1)–(PI2) is complete for BPAp∗
δ (A) modulo

strong bisimulation equivalence.

The remaining equations and inequalities in Table 13 originate fromAceto, Fokkink,
and Ingólfsdóttir [5], who proved completeness results for PI in a variety of be-
havioural equivalences and preorders in the linear/branching time spectrum [45].
These axiomatisations for BPAp∗

δ (A) all incorporate axioms (A1)–(A3), (A6) for
BPAδ(A) with prefix multiplication, standard axioms from the literature for BPAδ(A)
modulo the behavioural equivalence in question, and (PI1)–(PI2) for PI.

(PCT1)–(PCT2) axiomatise PI with respect to completed trace equivalence.

Theorem 4.3.2. (A1)–(A3), (A6), (PI1)–(PI2), (CT1), (PCT1)–(PCT2) is com-
plete for BPAp∗

δ (A) modulo completed trace equivalence.

(PL1), in cooperation with (PCT1)–(PCT2), axiomatise PI with respect to language
equivalence.

Theorem 4.3.3. (A1)–(A3), (A6), (PI1)–(PI2), (CT1), (PCT1)–(PCT2), (L1),
(PL1), is complete for BPAp∗

δ (A) modulo language equivalence.

No extra axioms are needed for PI modulo simulation preorder.
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Table 13: Axioms for PI.

(PI1) a(a∗x) + x = a∗x
(PI2) a∗(a∗x) = a∗x

(CT1) a(x+ y) = ax+ ay

(PCT1) a∗(x+ y) = a∗x+ a∗y
(PCT2) a∗(ax) = a(a∗x)

(L1) aδ = δ

(PL1) a∗δ = δ

(S1) x ≤ x+ y

(RS1) ax ≤ ax+ ay

(PRS1) a∗x ≤ a∗(x+ ay)

(R1) a(bx+ by + v) ≤ a(bx+ v) + a(by + w)

(PR1) a(a∗(bx+ by + v)) ≤ a(a∗(bx+ v)) + a(a∗(by + w))

(PR2) a∗(bx+ by + v + a(by + w)) ≤ a∗(bx+ v + a(by + w)) + by

(F1) a(x+ y) ≤ ax+ a(y + z)

(PF1) a(a∗(x+ y)) ≤ a(a∗x) + a(a∗(y + z))

(PF2) a(a∗x) ≤ a∗(a(x+ y))

(PF3) a∗(x+ y + a(y + z)) ≤ a∗(x+ a(y + z)) + y
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Theorem 4.3.4. (A1)–(A3), (A6), (PI1)–(PI2), (S1) is complete for BPAp∗
δ (A)

modulo simulation preorder.

(PRS1) axiomatises PI with respect to ready simulation preorder.

Theorem 4.3.5. (A1)–(A3), (A6), (PI1)–(PI2), (RS1), (PRS1) is complete for
BPAp∗

δ (A) modulo ready simulation preorder.

(PR1)–(PR2), in cooperation with (PRS1), axiomatise PI with respect to readies
preorder.

Theorem 4.3.6. (A1)–(A3), (A6), (PI1)–(PI2), (RS1), (R1), (PRS1), (PR1)–
(PR2) is complete for BPAp∗

δ (A) modulo readies preorder.

It is still an open question whether there exists a complete axiomatisation for
BPAp∗

δ (A) modulo failures preorder. Aceto, Fokkink, and Ingólfsdóttir con-
jectured that (PF1)–(PF3), in cooperation with (PRS1), are sufficient to axiomatise
PI with respect to failures preorder.

Conjecture 4.3.7. (A1)–(A3), (A6), (PI1)–(PI2), (F1), (PRS1), (PF1)–(PF3) is
complete for BPAp∗

δ (A) modulo failures preorder.

To the best of our knowledge, axioms for PI with respect to ready trace preorder
and failure trace preorder have not yet been formulated.

4.4 Axiomatisation of String Iteration

String iteration (SI) [7] is a variation of PI, in which the first argument of itera-
tion is allowed to contain non-empty finite strings of atomic actions. Aceto and
Groote [7] extended the axiomatisation for PI in strong bisimulation to SI. Like PI,
and unlike BKS, SI allows an equational axiomatisation modulo strong bisimulation
equivalence in the presence of the deadlock δ.

BPAs∗
δ (A) consists of BPA(A), with sequential composition xy restricted to string

multiplication wy, extended with SI. Table 13 presents two axioms for SI in strong
bisimulation. In Table 13, w ranges over the collection A+ of non-empty strings of
atomic actions.

Theorem 4.4.1. (A1)–(A3), (SA5), (A6), (SI1)–(SI4) is complete for BPAs∗
δ (A)

modulo strong bisimulation equivalence.
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Table 14: Axioms for SI.

(SA5) w1(w2x) = (w1w2)x

(SI1) w(w∗x) + x = w∗x
(SI2) w∗(w∗x) = w∗x
(SI3) (wn)∗δ = w∗δ
(SI4) a((wa)∗δ) = (aw)∗δ

4.5 Axiomatisation of Flat Iteration

In general, the merge operator cannot be eliminated from process terms with BKS.
Therefore Bergstra, Bethke, and Ponse [12] introduced flat iteration (FI),
which is obtained by restricting the left-hand side of BKS to sums of atomic ac-
tions. Similarly, flat multiplication is obtained by restricting the left-hand side of
sequential composition to sums of atomic actions. The transition rules for these op-
erators are simply the transition rules for BKS and sequential composition with the
left-hand sides restricted to sums of atomic actions. BPAf∗

δ (A) is obtained by adding
FI to BPAδ(A) and restricting sequential composition to flat multiplication. The
merge can be eliminated from process terms that contain FI. For example, typically,
(a∗b) ‖ (c∗d) is strongly bisimilar to

(a+ c+ a | c)∗((d+ a | d)(a∗b) + (b+ b | c)(c∗d) + b | d).

For a detailed discussion on this expressivity claim the reader is referred to Sec-
tion 5.2.

In [48], van Glabbeek presented complete axiomatisations for BPAf∗
δ (A) extended

with the silent step τ , modulo four rooted bisimulation semantics that take into
account the silent nature of τ : rooted branching bisimulation, rooted delay bisim-
ulation, rooted η-bisimulation and rooted weak bisimulation. Of these four equiv-
alences, rooted branching bisimulation constitutes the finest relation, while rooted
weak bisimulation constitutes the coarsest relation; rooted delay bisimulation and
rooted η-bisimulation are incomparable. All four equivalences constitute congruence
relations over BPAf∗

δτ (A) (in the case of rooted branching bisimulation equivalence

this follows from the fact that the transition rules for BPAf∗
δτ (A) are in RBB safe

format [42]). The axiomatisations for FI are adaptations of axiomatisations intro-
duced by Aceto, Fokkink, van Glabbeek, and Ingólfsdóttir [8, 38, 2] for
PI.

Table 15 presents adaptations to prefix multiplication of axiom (A4) and of two
standard axioms (B1)–(B2) for τ . Furthermore, (FI1) is an adaptation of (BKS3)
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to FI, while (FI2) expresses the interplay of FI with the deadlock δ. In the axioms,
α and β range over sums of atomic actions (the empty sum representing δ). Note
that the defining equation of FI,

β∗x = β(β∗x) + x

can be derived from (FI1) by taking α to be δ.

Table 15: Axioms for FI.

(FA4) (α+ β)x = αx+ βx

(FB1) ατ = α

(FB2) α(x+ τy) = α(x+ τy) + αy

(FI1) α∗(β((α+ β)∗x) + x) = (α+ β)∗x
(FI2) δ∗x = x

Table 16 presents axioms for the interplay of FI with the silent step τ , modulo the
four aforementioned equivalence relations. (FT1) is an instantiation of Koomen’s
fair abstraction rule (KFAR) [55, 10] for rooted branching and η-bisimulation, while
(FT4) serves this same purpose for rooted delay and weak bisimulation. In [48],

van Glabbeek proved completeness for BPAf∗
δτ (A) with respect to rooted branch-

ing bisimulation; see Theorem 4.5.1. The complete axiomatisations for BPAf∗
δτ (A)

modulo rooted delay, η-, and weak bisimulation equivalence can then be obtained
from the complete axiomatisation modulo rooted branching bisimulation equiva-
lence, using a reduction technique from van Glabbeek and Weijland [50]; see
Theorems 4.5.2, 4.5.3, and 4.5.4.

Table 16: Axioms for FI with the silent step.

(FT1) (α+ τ)∗x = α∗x+ τ(α∗x)
(FT2) α(β∗(τ(β∗(x+ y)) + x)) = α(β∗(x+ y))

(FT3) α∗(x+ τy) = α∗(x+ τy + αy)

(FT4) (α+ τ)∗x = τ(α∗x)
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Theorem 4.5.1. (A1)–(A3), (FA4), (A6)–(A7), (FB1), (FI1)–(FI2), (FT1)–(FT2)

is complete for BPAf∗
δτ (A) modulo rooted branching bisimulation equivalence.

Theorem 4.5.2. (A1)–(A3), (FA4), (A6)–(A7), (FB1), (FI1)–(FI2), (FT4) is

complete for BPAf∗
δτ (A) modulo rooted delay bisimulation equivalence.

Theorem 4.5.3. (A1)–(A3), (FA4), (A6)–(A7), (FB1)–(FB2), (FI1)–(FI2), (FT1)–

(FT3) is complete for BPAf∗
δτ (A) modulo rooted η-bisimulation equivalence.

Theorem 4.5.4. (A1)–(A3), (FA4), (A6)–(A7), (FB1)–(FB2), (FI1)–(FI2), (FT3)–

(FT4) is complete for BPAf∗
δτ (A) modulo rooted weak bisimulation equivalence.

5 Expressivity Results

This section concerns expressivity of process algebra with recursive operations, to
categorise what can be specified with the various recursive operations. Of course,
answers to these questions depend on the particular process semantics one adopts.

5.1 Expressivity of the Binary Kleene Star

In [13], Bergstra, Bethke, and Ponse showed that the expressivity of systems
with BKS can be analysed by establishing properties of cycles in labelled transition
systems. These results were strengthened by Boselie [23]. We recall these results,
and first introduce some further terminology. A state Q is a successor of state P if
P a−→ Q. A cycle is a sequence of distinct states (P0, . . . , Pn) such that Pi+1 is a
successor of Pi for i = 0, . . . , n−1 and P0 is a successor of Pn. An action a is an exit
action of state P if P a−→ √

. We use ≡ to denote that two terms are syntactically
the same.

Lemma 5.1.1. Let C be a cycle in a labelled transition system associated to a
process term over ACP∗(A, |, τ). Then C has one of the following forms, for n ∈ N:

(i) C = (P0Q,P1Q, . . . , PnQ);

(ii) C = (P∗Q,P1(P
∗Q), . . . , Pn(P

∗Q)), or any cyclic permutation thereof;

(iii) C = (P0 ‖ Q0, P1 ‖ Q1, . . . , Pn ‖ Qn);

(iv) C = (∂H(P0), ∂H(P1), . . . , ∂H(Pn)).

Proof. Let C = (C0, . . . , Cn). We apply case distinction on C0. Clearly C0 is not a
single atomic action, and as +, ‖ , | do not occur as the first operation in right-hand
sides of conclusions of transition rules, it follows that C0 6≡ P ¦Q for ¦ ∈ {+, ‖ , |}.
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Suppose C0 ≡ RS. If S is not a state in C, then C = (RS,R1S, . . . , RnS), which
corresponds to case (i). If S is a state in C, then S σ−→→ RS for some σ ∈ A∗. It is
not hard to see that only the first transition rule for BKS can give rise to a transition
T a−→ T ′ where T is a proper subterm of T ′. Hence, S is of the form P ∗Q, and the
first transition in the sequence S σ−→→ RS is invoked by the first transition rule for
BKS. This yields form (ii).

Suppose C0 ≡ R∗S. Analogous to the case C0 ≡ RS, we see that C is of form (ii).

Suppose C0 ≡ R ‖ S. As R ‖ S is not a substate of R or S, it follows from the
transition rules of the merge that C must be of form (iii).

Suppose C0 ≡ ∂H(R). Since only the first transition rule for ∂H can have been used,
it follows that C is of form (iv). 2

Lemma 5.1.1 can be used to derive further properties of cycles.

Lemma 5.1.2. Let C be a cycle in a labelled transition system associated to a
process term over BPA∗δ(A). Then there is at most one state P in C that has a
successor Q such that P is not a proper substate of Q.

Proof. As C belongs to a process term over BPA∗δ(A), it must be of the form (i)
or (ii) in Lemma 5.1.1. We apply induction with respect to the size of C.

Suppose C = (P0Q, . . . , PnQ). By induction, the cycle (P0, . . . , Pn) contains at most
one state Pi that has a successor R such that Pi is not a proper substate of R. This
implies that PiQ is the only state in C that may have a successor S such that PiQ
is not a proper substate of S.

Suppose C = (P∗Q,P1(P
∗Q), . . . , Pn(P

∗Q)), or any cyclic permutation thereof.
Then P ∗Q is the only state in C that may have a successor R such that P ∗Q is not
a proper substate of R. 2

Lemma 5.1.3. Let C be a cycle in a labelled transition system associated to a
process term over PA∗δ(A). If there is a state in C with an exit action, then every
other state in C has only successors in C.

Proof. As C belongs to a process term over PA∗δ(A), this cycle must be of the form
(i), (ii), or (iii) in Lemma 5.1.1.

Suppose C = (P0Q, . . . , PnQ). Then none of the states in C has an exit action.

Suppose C = (P∗Q,P1(P
∗Q), . . . , Pn(P

∗Q)), or any cyclic permutation thereof.
Then P ∗Q is the only state in C that may have an exit action, and the other states
in C have only successors in C.

Suppose C = (P0 ‖ Q0, . . . , Pn ‖ Qn). Since the communication merge is excluded
from PA∗δ(A), none of the states in C has an exit action. 2
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Lemma 5.1.4. Let C be a cycle in a labelled transition system associated to a
process term over ACP∗(A, |). Then there is at most one state in C with an exit
action.

Proof. As C belongs to a process term over ACP∗(A, |), this cycle must be of the
form (i), (ii), (iii), or (iv) in Lemma 5.1.1. We apply induction with respect to the
size of C.

Suppose C = (P0Q, . . . , PnQ). Then none of the states in C has an exit action.

Suppose C = (P∗Q,P1(P
∗Q), . . . , Pn(P

∗Q)), or any cyclic permutation thereof.
Then P ∗Q is the only state in C that may have an exit action.

Suppose C = (P0 ‖ Q0, . . . , Pn ‖ Qn). Assume Pi ‖ Qi and Pj ‖ Qj both have an
exit action. Then by induction Pi ‖ Qi represent the same state, so i = j.

Suppose C = (∂H(P0), . . . , ∂H(Pn)). By induction, the cycle (P0, . . . , Pn) contains
at most one state Pi that has an exit action. So ∂H(Pi) is the only state in C that
may have an exit action. 2

We have the following expressivity hierarchy for process algebra with BKS.

Theorem 5.1.5.

BPA∗δ(A)
1≺ PA∗δ(A)

2≺ ACP∗(A, |) 4≺ ACP∗(A, |, τ)

where
k≺ means “less expressive than, provided A contains at least k actions” modulo

strong bisimulation equivalence, except for the last inequality, which requires the
presence of τ and soundness of (B1) (i.e., xτ = x). If one does not restrict to
handshaking,

PA∗δ(A)
1≺ ACP∗(A, |).

The same inclusions hold in the absence of δ.

Proof. BPA∗(A)
1≺ PA∗(A) and BPA∗δ(A)

1≺ PA∗δ(A). Consider the PA
∗(A) process

term P = (aa)∗a ‖ a, which can be depicted as follows:

"-
Ã¾
"-
Ã¾¾
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- -
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P

√
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1
√
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a
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where

1 abbreviates (aa)∗a,
2 abbreviates a((aa)∗a),
3 abbreviates a((aa)∗a) ‖ a, and
4 abbreviates a.

According to Lemma 5.1.2, P cannot be specified in BPA∗δ(A). Namely, the states P
and 3 are not strongly bisimilar and form a cycle, while both states have a successor
from which one cannot return to this (nor to any strongly bisimilar) cycle.

PA∗δ(A)
i≺ ACP∗(A, |), where i = 1 in a setting without handshaking and i = 2

otherwise. Take P as in the previous case, and let a | a be defined (either as a,
thus no handshaking, or as b 6= a). Then on top of the picture above, the labelled

transition system associated to P contains the following transitions: P
a|a−−→ √

,

P
a|a−−→ 2, and 3

a|a−−→ 1. According to Lemma 5.1.3, P cannot be specified in
PA∗δ(A). Namely, the states P and 3 are not strongly bisimilar and form a cycle,
while P has an exit action and 3 has a successor from which one cannot return to
this (nor to any strongly bisimilar) cycle.

ACP∗(A, |) 4≺ ACP∗(A, |, τ). Take the recursive specification

X1 = aX2 + a
X2 = aaX1 + a.

Assume auxiliary actions b, c, and d, with c | c def
= b and d | d def

= b the only
communications defined. Let the process term P be defined by:

P = τ{b} ◦ ∂{c,d}((a(ad+ ac) + ac)Q ‖ R)
Q = (c(a(a(ad+ ac) + ac)))∗d
R = (dc)∗cd.

It can be derived from the axioms of ACP∗(A, |) together with (RSP) and (B1) that
P = X1. Hence, X1 is expressible in ACP∗(A, |, τ) modulo process semantics that
respect (B1). According to Lemma 5.1.4, X1 cannot be specified in ACP∗(A, |, τ)
modulo strong bisimulation equivalence, even if τ is allowed to occur in A as a non-
silent action. Namely, X1 and X2 are not strongly bisimilar and form a cycle, while
both X1 and X2 have an exit action. 2

It is an open question whether ACP∗(A, |) 3≺ ACP∗(A, |, τ) holds.
The following theorem emphasises the expressive power of ACP∗(A, |, τ).
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Theorem 5.1.6. For each regular process P there is a finite extension Aext of A
such that P can be expressed in ACP∗(Aext, |, τ), even if one restricts to handshaking
and the actions in A are not subject to communication.

Proof. P is a solution for the recursion variable X1 in a recursive specification
Xi =

∑n
j=1(αi,jXj)+βi for i = 1, . . . , n, where αi,j and βi are finite sums of actions

or δ.

Define Aext as the extension of A with the following 2n+ 3 fresh atomic actions:

in, rj , sj (j = 0, . . . , n).

Let rj | sj def
= in (for j = 0, . . . , n) be the only communications defined (so we have

handshaking, and the actions in A are not subject to communication). Furthermore,

let H
def
= {rj , sj | i = 0, . . . , n}, and

Gi abbreviates
∑n

j=1(αi,jsj) + βis0 for i = 1, . . . , n,

Q abbreviates
∑n

j=1(rjGj)
∗r0,

M abbreviates
∑n

j=1(rjsj)
∗(r0s0).

We derive

∂H(GiQ ‖ M ) = ∂H( (
∑n

j=1(αi,jsjQ) + βis0Q) ‖ M )

=
∑n

j=1(αi,j∂H(sjQ ‖ M )) + βi∂H(s0Q ‖ M )

=
∑n

j=1(αi,j in ∂H(Q ‖ sjM )) + βi in ∂H(Q ‖ s0)
=

∑n
j=1(αi,j in in ∂H(GjQ ‖ M )) + βi in in.

Hence,

τ{in} ◦ ∂H(GiQ ‖ M ) =
∑n

j=1(αi,jτ{in} ◦ ∂H(GjQ ‖ M )) + βi.

Consequently, τ{in} ◦ ∂H(GiQ ‖ M ) satisfies the recursive equation for Xi (for i =
1, . . . , n). By (RSP) it follows that X1 = τ{in} ◦ ∂H(G1Q ‖ M ). 2

5.2 Expressivity of Multi-Exit Iteration

We first note that in the extension of BPAδ(A) with multi-exit iteration one cannot
describe all regular processes modulo strong bisimulation equivalence. For example,
the process described by

X = aY + aZ
Y = aZ + a
Z = aX + aa



42 5 EXPRESSIVITY RESULTS

cannot be expressed, as from the state X the two non-bisimilar exits a and aa can
be reached in a single step.

In [1] it was shown that for every k ≥ 1 there is a process over a single action that
can be specified using (k+1)-exit iteration, but not using h-exit iteration with h ≤ k.
We proceed to sketch their argumentation. For k ≥ 1, BPAme∗(≤k)(A) denotes the
set of process terms over BPAme∗(A) that only use h-exit iteration with h ≤ k.

The set of termination options of a process term P over BPAme∗(A), is the smallest
collection of process terms satisfying:

• if P a−→ √
, then a is a termination option of P ;

• if P a−→ Q and Q does not contain occurrences of MEI, then aQ is a termina-
tion option of P .

Lemma 5.2.1. Let C be a cycle in a labelled transition system associated to a
process term over BPAme∗(≤k)(A). Then C contains at most k states with distinct,
non-empty sets of termination options.

Proof. Let C = (C0, . . . , Cn). We apply structural induction on C0. Clearly C0 is
not a single atomic action, and as + does not occur as the first operation in right-
hand sides of conclusions of transition rules, it follows that C0 is not of the form
P +Q.

1. C0 ≡ P0Q0. There are two possibilities.

(a) Q0 is not a state in C. Then there is a cycle (P0, . . . , Pn) such that
Ci ≡ PiQ0 for i = 0, . . . , n.

If Q0 contains occurrences of MEI, then all states in C have an empty set
of termination options.

If Q0 does not contain occurrences of MEI, then the set of termination
options of Ci (for i = 0, . . . , n) is

{RQ0 | R is a termination option of Pi}.
The inductive hypothesis yields that there are at most k process terms Pi

with distinct, non-empty sets of termination options. Hence, there are at
most k states in C with distinct, non-empty sets of termination options.

(b) Q0 is a state Cl in C. By induction there are at most k states in the cycle
(Cl, . . . , Cn, C0, . . . , Cl−1) with distinct, non-empty sets of termination
options. So the same holds for C.

2. C0 ≡ (P1, . . . , Ph)
∗(Q1, . . . , Qh), where h ≤ k.

Clearly, substates of the Qi cannot be in C. Thus the only states in C with
possibly non-empty sets of termination options are

(Pi, . . . , Ph, P1, . . . , Pi−1)
∗(Qi, . . . , Qh, Q1, . . . , Qi−1)

for i = 1, . . . , h.
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2

Theorem 5.2.2. BPAme∗(≤k)(A)
1≺ BPAme∗(≤k+1)(A) for k ≥ 1.

Proof. Let a ∈ A. It suffices to show that the (k + 1)-exit iteration term

(a, a, . . . , a)∗(a, a2, . . . , ak+1)

cannot be specified in BPAme∗(≤k)(A) modulo strong bisimulation equivalence. This
follows from Lemma 5.2.1, because this process term induces a cycle that traverses
the process term

(a, . . . , a)∗(ai, . . . , ak+1, a, . . . , ai−1),

which has {ai} as set of termination options, for i = 1, . . . , k + 1. Clearly, ai ¯̄↔ aj

if i 6= j. 2

5.3 Expressivity of String Iteration

In this section it is shown that for every k ≥ 1 there is a process over a single action
that can be specified by SI using a string of length k+1, but not by SI using strings
of length at most k. For k ≥ 1, BPAs∗(≤k)(A) denotes the set of process terms over
BPAs∗(A) that only use strings of length at most k.

Lemma 5.3.1. Let C be a cycle in a labelled transition system associated to a process
term over BPAs∗(≤k)(A). Then C contains at most k distinct states.

Proof. Let C = (C0, . . . , Cn). We apply structural induction on C0. Clearly C0 is
not a single atomic action, and as + does not occur as the first operation in right-
hand sides of conclusions of transition rules, it follows that C0 is not of the form
P +Q.

1. C0 ≡ wP .

Clearly, P is a state Cl in C. By induction there are at most k distinct states
in the cycle (Cl, . . . , Cn, C0, . . . , Cl−1). So the same holds for C.

2. C0 ≡ (a1 · · · ah)∗P , where h ≤ k.

Clearly, substates of P cannot be in C. Thus the only distinct states in C are

(ai+1 · · · ah)((a1 · · · ah)∗P ) (for i = 1, . . . , h).

2
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Theorem 5.3.2. BPAs∗(≤k)(A)
1≺ BPAs∗(≤k+1)(A) for k ≥ 1.

Proof. Let a ∈ A. It suffices to show that the (k + 1)-string iteration term

(ak+1)∗a

cannot be specified by a process term over BPAs∗(≤k)(A) modulo strong bisimulation
equivalence. This follows from Lemma 5.3.1, because the process term above induces
a cycle that traverses the k + 1 non-bisimilar process terms ai((ak+1)∗a) for i =
0, . . . , k. 2

5.4 Expressivity of Flat Iteration

This section presents some expressivity results on FI from [12]. BPAf∗(A), BPAf∗
δ (A),

PAf∗(A), and ACPf∗(A, |) are obtained by adding FI to BPA(A), BPAδ(A), PA(A),
and ACP(A, |), respectively, and restricting sequential composition to flat multipli-
cation.

As stated below, restricting sequential composition to prefix multiplication gives no
loss of expressivity. Flat iterative basic terms over BPAf∗(A) are defined by the
BNF grammar

P ::= a | P + P | aP | α∗P

where a ∈ A and α is an atomic sum. Flat iterative basic terms over BPAf∗
δ (A) are

defined by adding δ to the BNF grammar.

Lemma 5.4.1. Each process term over BPA∗(A) [BPA∗δ(A)] with BKS restricted

to FI is bisimilar to a flat iterative basic term over BPAf∗(A) [BPAf∗
δ (A)].

Proof. By structural induction, using the axioms of BPAδ(A) and those in Table
15. 2

With respect to expressivity of systems with FI in strong bisimulation semantics we
have the following results.

Theorem 5.4.2.

1. BPAf∗(A)
1≺ BPA∗(A) and BPAf∗

δ (A)
1≺ BPA∗δ(A),

2. BPAf∗(A) is as expressive as PAf∗(A), and

3. BPAf∗
δ (A) is as expressive as ACPf∗(A, |).
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Proof. Fact 1 is trivially true, as FI does not give rise to cycles of length greater than
one. For example, the process term (aa)∗a over BPA∗(A), which has a cycle of length

two, cannot be expressed in BPAf∗
δ (A) modulo strong bisimulation equivalence.

We proceed to present the proof of fact 2. Fact 3 can be proved in a similar fashion.

From Lemma 5.4.1 it follows that BPAf∗(A) is as expressive as PAf∗(A) if all process
terms P ‖ Q and P ‖ Q with P and Q flat iterative basic terms are expressible in
BPAf∗(A). Expressibility of P ‖ Q and P ‖ Q in BPAf∗(A) can be proved in
parallel, using induction on the size of such terms. We focus on the case P ‖ Q;
the case P ‖ Q can be dealt with in a similar fashion. We consider three cases,
depending on whether P and Q are of the form α∗R.

1. Let P ≡ α∗R and Q ≡ β∗S. Then we derive (using commutativity of ‖ in
PA∗(A))

P ‖ Q = (α+ β)(P ‖ Q) +R ‖ Q+ S ‖ P

The process terms R ‖ Q and S ‖ P have sizes smaller than P ‖ Q, so by
induction they can be expressed in BPAf∗(A), say by U and V , respectively.
By (RSP∗),

P ‖ Q = (α+ β)∗(U + V )

so P ‖ Q is expressible in BPAf∗(A).

2. Let P =AC
∑

i α
∗
iRi +

∑

j ajSj +
∑

k bk (with P not of the form α∗R) and
Q ≡ β∗T . Then we derive

P ‖ Q = β(P ‖ Q) + T ‖ P +
∑

i αi((α
∗
iRi) ‖ Q) +

∑

j aj(Sj ‖ Q)

+
∑

k bkQ.

The process terms T ‖ P , (α∗iRi) ‖ Q, and Sj ‖ Q have sizes smaller than
P ‖ Q, so by induction they can be expressed in BPAf∗(A), say by U , Vi, and
Wj , respectively. By (RSP∗),

P ‖ Q = β∗(U +
∑

i αiVi +
∑

j ajWj +
∑

k bkQ)

so P ‖ Q is expressible in BPAf∗(A).

3. Let P =AC
∑

i α
∗
iRi +

∑

j ajSj +
∑

k bk (with P not of the form α∗R) and
Q =AC

∑

` β
∗
`T`+

∑

m cmUm+
∑

n dn (with Q not of the form β∗T ). Then we
derive

P ‖ Q =
∑

i αi((α
∗
iRi) ‖ Q) +

∑

j aj(Sj ‖ Q) +
∑

k bkQ

+
∑

` β`((β
∗
`T`) ‖ P ) +

∑

m cm(Um ‖ P ) +
∑

n dnP.
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The process terms (α∗iRi) ‖ Q, Sj ‖ Q, (β∗`T`) ‖ P , and Um ‖ P have sizes
smaller than P ‖ Q, so by induction they can be expressed in BPAf∗(A).
Hence, P ‖ Q is expressible in BPAf∗(A).

Owing to commutativity of the merge, the three cases above cover all possible forms
of P ‖ Q. So we conclude that P ‖ Q is expressible in BPAf∗(A). 2

Note that parts in general process terms over BPAf∗(A) [BPAf∗
δ (A)] cannot be

equated to process terms over PAf∗(A) [ACPf∗(A, |)]. If one of the arguments of ‖
specifies a cycle, this occurrence of ‖ cannot be eliminated with the axioms provided.

6 Non-Regular Recursive Operations

With each of the recursive operations discussed before, one can define at most a
regular process. In this section we consider some operations with which non-regular
processes can be described. A typical example of a non-regular process is a stack
over a finite data type. In [13], Bergstra, Bethke, and Ponse introduced the
recursive, non-regular nesting operation ], defined by

(NE) x] y = x((x] y)x) + y.

More recently, in [25, 26], Bergstra and Ponse introduced two other non-regular,
recursive operations, the back and forth operation, notation ¿, defined by

(BF) x¿y = x((x¿y)y) + y,

and the push-down operation, notation $, defined by

(PD) x$y = x((x$y)(x$y)) + y.

The transition rules for these operations are as expected. As an example, consider
the process terms a] b, a¿b, and a$b, of which the labelled transition systems are
illustrated below:
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The three operations give rise to variants of RSP∗:

(RSP] )
x = y(xy) + z

x = y] z

(RSP¿)
x = y(xz) + z

x = y¿z

(RSP$)
x = y(xx) + z

x = y$z

It is easily seen that these three operations are non-regular, and it can be argued that
they are the most simple candidates for obtaining a binary, non-regular recursive
operation. Let ¦ ∈ {],¿, $}. Adding ¦ to the signature of ACP(A, |), and its
defining axiom to those of ACP(A, |), yields the system ACP¦(A, |). In the same
way, we define ACP∗¦(A, |) as the extension of ACP∗(A, |) with ¦. It is an open
question whether the resulting axiomatisations with the corresponding RSP variant
are complete modulo strong bisimulation equivalence.

In [25, 26], the following results were recorded.

• Adding abstraction to ACP¦(A, |) with ¦ ∈ {],¿, $} and A sufficiently large
yields universal expressivity modulo process semantics that respect (B1).4

(Note that BKS need not be available.)

• For ¦ ∈ {],¿, $} and A sufficiently large, ACP∗¦(A, |) has an undecidable
theory. The point is that one can encode register machine computability in a
systematic way, and reduce recursive inseparability to provable equality in the
initial algebra of ACP∗¦(A, |).

In [13], it was proved that a stack over a finite data type can be defined with the
operations of ACP with abstraction and handshaking communication, with the help
of a finite number of auxiliary actions and of the operations ∗ and ]. With two
stacks and a regular control process, a Turing machine can be specified in process
algebra; see [10]. As a consequence, each computable process can be specified in this
setting. Bergstra and Ponse [25, 26] proved that adding only one of ], $, or ¿
to ACP(A, |, τ) yields a setting in which regular processes and stacks can be defined,
and therefore each computable process. In this section we sketch the argumentation
for the $-case of these results. This case is more simple and direct than the other
two cases.

In the forthcoming expressiveness proofs, strong bisimilarity of process terms is
derived from the axioms. For clarity of presentation, in these derivations we assume

4In the case of rooted weak bisimulation semantics, the resulting theory can be judged ex-
pressively complete, as all semi-computable processes that initially are finitely branching can be
expressed; see [26].
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the presence of axioms for commutativity and associativity of the merge. However,
the axiomatic derivability of the expressiveness results can also be obtained without
these axioms.

6.1 Process Algebra with a Push-Down Operation

We first show that each regular process can be specified in ACP$(A, |, τ) modulo
process semantics that respect (B1), provided A is sufficiently large. This is the first
cornerstone of the universal expressivity result for ACP$(A, |, τ).

Theorem 6.1.1. For each regular process P there is a finite extension Aext of A
such that P can be expressed in ACP$(Aext, |, τ), even if one restricts to handshaking
and the actions in A are not subject to communication.

Proof. P is a solution for the recursion variable X1 in a recursive specification
Xi =

∑n
j=1(αi,jXj)+βi for i = 1, . . . , n, where αi,j and βi are finite sums of actions

or δ.

Define Aext as the extension of A with the following 2n+ 3 fresh atomic actions:

in, rj , sj (j = 0, . . . , n).

Let rj | sj def
= in (for j = 0, . . . , n) be the only communications defined (so we have

handshaking, and the actions in A are not subject to communication). Furthermore,

let H
def
= {rj , sj | i = 0, . . . , n}, and

Fi abbreviates (
∑n

j=1 αi,jsj) + βi for i = 1, . . . , n,

K abbreviates (
∑n

j=1 rjFj)
$r0,

M abbreviates (
∑n

j=1 rjsj)
$s0.

Then X1 = τ{in} ◦ ∂H(F1K ‖ M ). This can be shown with the help of the infinite
recursive specification

Yi(k) = (
∑n

j=1 αi,jYj(k + 1)) + βi, where n ≥ 1, i = 1, . . . , n, k ∈ N.

Obviously, Xi is a solution for each Yi(k) (i = 1, . . . , n, k ∈ N). So by (RSP) it
suffices to show that τ{in} ◦ ∂H(FiK ‖ M ) is a solution for Yi(0). We show this by
first omitting the τ{in}-application. For k ∈ N we derive

∂H(FiK
k+1 ‖ M k+1) = (

∑n
j=1 αi,j∂H(sjK

k+1 ‖ M k+1))

+ βi∂H(Kk+1 ‖ M k+1)

= (
∑n

j=1 αi,j in ∂H(Kk+1 ‖ sjM k+2)) + βi in
k+1

= (
∑n

j=1 αi,j in in ∂H(FjK
k+2 ‖ M k+2)) + βi in

k+1.
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Hence, applying axioms (B1) and (TI1)–(TI4), we find for each k ∈ N

τ{in} ◦ ∂H(FiK
k+1 ‖ M k+1) = (

∑n
j=1 αi,jτ{in} ◦ ∂H(FjK

k+2 ‖ M k+2)) + βi.

So τ{in} ◦ ∂H(FiK
k+1 ‖ M k+1) satisfies the recursive equation for Yi(k). 2

A basic, auxiliary process used in the following proofs is the counter C displayed
below, with actions a (add one), b (subtract one), c (test zero), and d (remove the
counter):

?

?

6

6

..........

³³
³1
¤£ - √

b

b

a

a

C

(a$b)C

(a$b)2C

d

c

This process can be recognised as a register, i.e., a memory location for a natural
number with unbounded capacity and restricted access as modelled by the specific
actions. Using BKS and push-down, the counter C can be defined by

C = (a(a$b) + c)∗d.

The following result states that C can be defined without BKS, at cost of five
auxiliary actions. In the next section we shall define a stack using two counters and
a regular control process.

Lemma 6.1.2. Let A
def
= {a, b, c, d}. The counter (a(a$b) + c)∗d can be defined

in ACP$(Aext, |, τ) with |Aext \A| = 5, even if one restricts to handshaking and the
actions in A are not subject to communication.

Proof. Define Aext as the extension of A with the following five fresh atomic actions:

in, rj , sj (j = 0, 1).
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Let rj | sj def
= in (for j = 0, 1) be the only communications defined (so we have

handshaking, and the actions in A are not subject to communication). Furthermore,

P abbreviates (a(a$b) + c)s1 + d,

Q abbreviates (r1P )
$r0,

R abbreviates (r1s1)
$s0.

Then it follows with (RSP) that (a(a$b) + c)∗d = τ{in} ◦ ∂{ri,si|i=0,1}(PQ ‖ R). 2

6.2 Expressing a Stack

We provide recursive specifications of a stack over a finite data type in ACP$(Aext, |
, τ), with the help of a regular control process and two counters. LetD = {d1, . . . , dN}
for some N ≥ 1 be a finite set of data elements, ranged over by d. Let furthermore
D∗ be the set of finite strings over D, ranged over by σ, and let ε denote the empty
string. The stack S(ε) over D with empty-testing and termination option is defined
by the infinite recursive specification

S(ε) = (
∑N

j=1 r(dj)S(dj)) + s(empty)S(ε) + r(stop)

S(dσ) = (
∑N

j=1 r(dj)S(djdσ)) + s(d)S(σ).

Here the contents of the stack is represented by the argument of S: S(dσ) is the stack
that contains dσ with d on top. Action r(di) (receive di) models the push of di onto
the stack, and action s(di) (send di) represents deletion of di from the stack. Action
s(empty) models empty-testing of the (empty) stack, and action r(stop) models
termination of the (empty) stack. A non-terminating or non-empty-testing stack
over D can be obtained by leaving out the concerning summand. In case N = 1
(D = {d1}), the recursive equations above specify a counter: the stack contents
then models the counter value.

The following theorem is the second (and last) cornerstone of the universal expres-
sivity result for ACP$(A, |, τ).

Theorem 6.2.1. Each stack over a finite data type D with actions from A can be
expressed in ACP$(Aext, |, τ) with Aext a finite extension of A, even if one restricts
to handshaking and the actions in A are not subject to communication.

Proof. Let a stack S(ε) be given as described above. Without loss of generality,
assume D = {d1, . . . , dN} for some N > 1 (if N = 1, then a counter does the job).
Our approach is to encode the contents of the stack, i.e., elements from D∗, by
natural numbers according to the following Gödel numbering p¦q : D∗ → N:

pεq
def
= 0,

pdjσq
def
= j +N · pσq.
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This encoding is a bijection with inverse decode : N → D∗ (let ? denote concatenation
of strings):

decode(n)
def
=











ε if n = 0,

dN ? decode(n−N
N

) if n 6= 0, n mod N = 0,

d(nmod N) ? decode(
n−(nmod N)

N
) otherwise.

For example, if N = 3, then pd3d1d2q = 24 and decode(32) = d2d1d3 ∈ {d1, d2, d3}∗.
Next, we define two counters to specify S(ε) in ACP$(Aext, |, τ):

Cj = (aj(a
$
jbj) + cj)

∗ dj (j = 1, 2),

with add-action aj , subtract-action bj , zero-testing cj , and stop-action dj , all in
Aext \A. We shall use the following abbreviations (for n ∈ N):

Cj(0)
def
= Cj ,

Cj(n+ 1)
def
= (aj

$bj)Cj(n).

We further define a regular control process Xε with actions aj , bj , cj , dj ∈ Aext \ A
and those of the stack. In combination with the Cj , the process Xε is used to define
S(ε). Note that the coding discussed above does not occur explicitly in this recursive
specification.

Xε = (
∑N

j=1 r(dj)a
j
1Xj) + s(empty)Xε + r(stop)d1d2,

and for k = 1, . . . , N :

Xk = (
∑N

j=1 r(dj)Pushj) + s(dk)Popk

Pushk = (Shift1 to2)ak1(N Shift2 to1)Xk

Popk = bk1(
1
N
Shift1 to2)Testε

Shift1 to2 = (b1a2)
∗c1 (shift the contents of C1 to C2)

N Shift2 to1 = (b2a
N
1 )∗c2 (shift the N -fold of C2 to C1)

1
N
Shift1 to2 = (bN1 a2)

∗c1 (shift the number of N -folds of C1 to C2)

Testε = b2a1Test1 + c2Xε (determine whether the stack is empty,

Test1 = b2a1Test2 + c2X1 or which D-element is on top)

Test2 = b2a1Test3 + c2X2

...

TestN = b2a1Test1 + c2XN .
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Let | for j = 1, 2 be defined on (Aext \ A)2 by aj | aj = bj | bj = cj | cj = dj | dj =
in ∈ Aext \A, and let H = {aj , aj , bj , bj , cj , cj , dj , dj | j = 1, 2}. We show that

τ{in} ◦ ∂H(Xε ‖ C1(0) ‖ C2(0))

behaves as S(ε), the empty stack:

τ{in} ◦ ∂H(Xε ‖ C1(0) ‖ C2(0))

= (
∑N

j=1 r(dj)τ{in} ◦ ∂H(aj1Xj ‖ C1(0) ‖ C2(0)))

+ s(empty)τ{in} ◦ ∂H(Xε ‖ C1(0) ‖ C2(0))

+ r(stop)τ{in} ◦ ∂H(d1d2 ‖ C1(0) ‖ C2(0))

= (
∑N

j=1 r(dj)τ
j+1τ{in} ◦ ∂H(Xj ‖ C1(j) ‖ C2(0)))

+ s(empty)τ{in} ◦ ∂H(Xε ‖ C1(0) ‖ C2(0))

+ r(stop)ττ

= (
∑N

j=1 r(dj)τ{in} ◦ ∂H(Xj ‖ C1( pdjq) ‖ C2(0)))

+ s(empty)τ{in} ◦ ∂H(Xε ‖ C1(0) ‖ C2(0)) + r(stop). (3)

We are done if τ{in} ◦ ∂H(Xj ‖ C1( pdjσq) ‖ C2(0)) behaves as S(djσ) for some
σ ∈ D∗. We prove this by first omitting the τ{in}-operation, and analysing the
behaviour of ∂H(Xj ‖ C1( pdjσq) ‖ C2(0)). This analysis is arranged in a graphical
style in Fig. 1, where P a−→ Q represents the statement P = aQ for some a ∈ A,
P σ−→→ Q represents P = σQ, and branching represents an application of +. So the
uppermost expression in Fig. 1 with its arrows and resulting expressions represents
the obviously derivable equation

∂H(Xj ‖ C1( pdjσq) ‖ C2(0)) = (
∑N

k=1 r(dk)∂H(Pushk ‖ C1( pdjσq) ‖ C2(0)))

+ s(dj)∂H(Popj ‖ C1( pdjσq) ‖ C2(0)).

By the axiom (B1), identity (3) above, and the derivation displayed in Fig. 1 it
follows that

τ{in} ◦ ∂H(Xε ‖ C1(0) ‖ C2(0)), and τ{in} ◦ ∂H(Xj ‖ C1( pdjσq) ‖ C2(0))

satisfy the recursive equations for S(ε) and S(djσ), respectively (j = 1, . . . , N and
σ ∈ D∗). By (RSP) it follows that

S(ε) = τ{in} ◦ ∂H(Xε ‖ C1 ‖ C2).

By Theorem 6.1.1 and Lemma 6.1.2 it follows that once D is fixed, Xε and hence the
empty stack S(ε) can be expressed in ACP$(Aext, |, τ) with handshaking for some
Aext ⊇ A. 2
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Figure 1: Calculations with ∂H(Xj ‖ C1( pdjσq) ‖ C2(0)).
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Baeten, Bergstra, and Klop [10] showed that Turing machines can be specified
in process algebra by means of two stacks and a regular control process. In view of
Theorem 6.2.1, this yields that ACP$(A, |, τ) is universally expressive; see [26] for
details.

6.3 Undecidability Results

We now sketch the undecidability result mentioned above for ACP∗$(A, |). The idea
is that in this signature one can ‘implement’ register machine computability in the
following way.

1. Registers (counters) have a straightforward definition in ACP∗$(A, |), namely
(a(a$b) + c)∗d (cf. Section 6.1).

2. Starting from a universal programming language for two-register machines (cf.
Minsky in [64]), one can define a process algebraic representation of each
program in BPA∗(A) (using a third register for I/O, and a fourth one as
“program-line counter”).

3. Defining encapsulation in an appropriate way, this yields for any computable
function f : N → N a process term P and a computable function g : N → N\{0}
such that the equation

∂H(Px ‖ C0(n) ‖ C1 ‖ C2 ‖ C3) = ing(n)∂H(x ‖ C0(f(n)) ‖ C1 ‖ C2 ‖ C3)

can be derived from the axioms for ACP∗$(A, |) if and only if f(n) is defined,
and the left-hand side equals an infinite in-trace otherwise. Here in is the result
of a communication between the program (process term) P and the registers.

Now let We1 ,We2 be recursively inseparable sets, and let f : N → N be the partial
recursive function defined by

f(n) =















0 if n ∈We1 ,

1 if n ∈We2 ,

undefined otherwise.

Choose P as described in item 3 above, and let P ′1, P
′
2 and P1(n), P2(n) be defined

by

P ′1 = P (s3
∗d3)(s2

∗d2)(s1
∗d1)(s0

∗d0),

P ′2 = P (s3
∗d3)(s2

∗d2)(s1
∗d1)((s0(s0

∗c0))∗d0),

Pi(n) = ∂H(P ′i ‖ C0(n) ‖ C1 ‖ C2 ‖ C3) (i = 1, 2).
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Then we find

n ∈We1 ⇒ f(n) = 0 ⇒ P1(n) = P2(n) (= ing(n)+4),

n ∈We2 ⇒ f(n) = 1 ⇒ P1(n) 6= P2(n) (in
g(n)+5 6= ing(n)+6).

As to the latter implication: assume otherwise, i.e., ink = ink+1 for some k ≥ 1.
Then by Lemma 2.2.2, ink ↔ ink+1, which clearly is a contradiction.

Thus, decidability of P1(n) = P2(n) provides a recursive separation of We1 and We2 ,
which is contradictory. All details and a more precise explanation can be found
in [26]. A similar proof strategy can be applied for ACP∗](A, |) and ACP∗¿(A, |),
where counter-like processes are used instead.

7 Special Constants

This section provides some last comments on two particular constants. First we
shortly consider the silent step τ in relation to fairness, dealing with infinite τ -
traces (cf. Definition 2.3.3 and Theorems 4.5.1–4.5.4). Finally, we briefly discuss the
empty process in the context of iteration.

7.1 Silent Step and Fairness

Due to the character of τ , one would want to be able to abstract from infinite
sequences of τ steps. Depending on the kind of process semantics adopted, different
solutions have been found. In the case of rooted branching bisimulation, with next
to (B1) the extra axiom

(B2) x(τ(y + z) + y) = x(y + z)

a general solution is provided by Koomen’s fair abstraction rule [55, 10]. For each n
and each set of equations, there is a version KFARb

n that is valid in rooted branching
bisimulation. For example, the axiom KFARb

1 reads as follows:

x = ix+ y (i ∈ I)

ττI(x) = ττI(y)

(so the infinite τ sequence induced by ix is reduced to a single τ step). By definition
of BKS we now have an immediate representation of the process in the premise of
KFARb

1, namely i∗y. Henceforth we can represent KFARb
1 by the law

ττI(i
∗y) = ττI(y) (i ∈ I).

Given the distribution law

(BKS5) τI(x
∗y) = τI(x)

∗τI(y)
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(see Table 8), we can even represent KFARb
1 simply by

(FIRb
1) ττ∗x = τx.

(taking x for τI(y)), where FIR abbreviates Fair Iteration Rule.

Example 7.1.1. A particular consequence of FIRb
1 is the case where x as above is

replaced by τx:

τ∗(τx) = τx, (4)

the proof of which is trivial: τ∗(τx) = τ(τ∗(τx)) + τx
FIRb

1= ττx+ τx = τx.

As a small example of the use of FIRb
1 consider a statistic experiment which models

the tossing of a coin until head comes up (cf. [28]). This process can be described
by:

(throw tail)∗throw head.

for actions throw, tail, and head. We assume that the probability of tossing heads
is larger than 0. Thus we exclude the infinite trace that alternately executes throw

and tail. Abstracting from just the two atomic actions in I
def
= {throw, tail}, FIRb

1

yields

τI((throw tail)∗throw head) = τ head.

First, observe τI(throw tail) = τ . Then, using (4), it easily follows that

τI((throw tail)∗throw head) = τ head.

This expresses that head eventually comes up, and thus excludes the infinite sequence
of τ -steps present in τI((throw tail)∗throw head).

7.2 Empty Process

Let the symbol ε denote the empty process, introduced as a unit for sequential
composition by Koymans and Vrancken in [58] (see also [28, 74]). Obvious as ε
may be (being a unit for ·), its introduction is nontrivial because at the same time
it must be a unit for ‖ as well. In the design of BPA, PA, ACP and related axiom
systems, it has proved useful to study versions of the theory, both with and without
ε. Just for this reason the star operation with its (original) defining equation as
given by Kleene in [54] was introduced in process algebra.

Taking y = ε in x∗y, one obtains x∗ε which satisfies

x∗ε = x(x∗ε) + ε. (5)
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The unary operation ∗ε is a plausible candidate for the unary version of Kleene’s
star operation in process algebra. Moreover, taking x = δ in (5) implies that δ∗ε = ε
(by the identities δx = δ and δ + x = x), and hence that ∗ε cannot be used in a
setting without having ε available as a separate process (once δ is accepted as one).
So with ε, the interdefinability of the unary and the binary star, noted in [34], is
preserved.

Milner [61] formulated an axiomatisation for the unary Kleene star in BPA with
deadlock and empty process, modulo strong bisimulation equivalence. It remains an
open question whether this axiomatisation is complete. Fokkink showed that Mil-

ner’s axiomatisation adapted to no-exit iteration (NEI, see Section 4.1) is complete
modulo strong bisimulation equivalence, in the presence of empty process.

A particular consequence of Milner’s axiomatisation is (in our notation, using
binary Kleene star)

ε∗x = x,

which seems a natural identity. Turning to the non-regular operations (see Sec-
tion 6), the identity ε] x = x seems as natural. The other two non-regular oper-
ations, i.e. the push-down $ and the back and forth operation ¿, have a more
surprising effect when combined with ε. Using recursive specifications we find that
ε$a is a solution of the recursive equation

X = X2 + a,

and ε¿a is a solution of

X = Xa+ a.

Both these recursive specifications are easily associated with infinitely branching
processes. The (unguarded) specification X = Xa+ a occurs in [28] as an example
specification that has two distinct solutions:

∑ω
i=1 a

i and aω +
∑ω

i=1 a
i. The transi-

tion rules for recursive specifications (see Table 3) as well as those for ¿ yield the
first solution. The interplay of recursive operations with empty process is apparantly
nontrivial and deserves further study.
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[5] L. Aceto, W.J. Fokkink, and A. Ingólfsdóttir. A Cook’s tour of equational axiomatizations
for prefix iteration. In M. Nivat, ed., Proceedings 1st Conference on Foundations of Software
Science and Computation Structures (FoSSaCS’98), Lisbon, LNCS 1378, pp. 20-34. Springer-
Verlag, 1998.

[6] L. Aceto, W.J. Fokkink, and C. Verhoef. Structural operational semantics. Chapter 1.3 in this
handbook.

[7] L. Aceto and J.F. Groote. A complete equational axiomatization for MPA with string iteration.
Theoretical Computer Science, 211(1/2):339–374, 1999.
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