Another (important) variant of TS

A labelled transition system is a triple
$$(S, A_1, \rightarrow)$$
 where
- S is a set of states
- A is a set of labels (a actions, or operations, or events,...)
- $\rightarrow \subseteq S \times A \times S$ ($\rightarrow : S \rightarrow Z^{A \times S}$) transition relation
 $\frac{dservable}{dservable}$ information about
 $\frac{dservable}{dservable}$ information $\frac{dservable}{dservable}$ is a unit
 $\frac{dservable}{dservable}$ is a unit of the transition
 $\frac{dservable}{dservable}$ is a unit of the transition

Communication-based concurrency

A robotic scenario:

Some mobile robots need to manage their energy in order to accoplish their task (e.g., patrolling some premises).

- When their batteries deplete, robots look for a recharge.
- Recharges are offered by recharge stations or other robots.

We can model this behaviour using an LTS capturing the observable features we are interested in: in this case communication For instance, the behaviour of a robot seeking for a recharge is

Exercise 4 Give an LTS modelling the behaviour of a robot offering a recharge. Reflect about the "compatibility" between your solution and the LTS (*) above Regular expressions

BNF. like squtax A, twite alphabet

$$E:=0|1|a|E+E|E\cdotE|E^*$$

and $Sign atomic fifther doe instruct.$
Dendstional semantis: $\mathcal{L}:E \longrightarrow 2^{A^*}$
 $\mathcal{L}(0) = \emptyset \qquad \mathcal{L}(1) = 4E$ $\mathcal{L}(a) = 1at$
 $\mathcal{L}(e_1+E_2) = \mathcal{L}(E_1) \cup \mathcal{L}(E_2)$
 $\mathcal{L}(E_1, E_2) = \mathcal{L}(E_1) \cdot \mathcal{L}(E_2) \triangleq 1 \cup w \in A^* | w \in \mathcal{L}(E_1), w \in \mathcal{L}(E_2)$
 $\mathcal{L}(E^*) = \mathcal{L}(E)^* = \bigcup \mathcal{L}(E)^m$

Exercise 6 Prove or disprove that $(a + b)^* = (a^* + b^*)^*$