
Immigration Course
on
Formal Methods

Academic year 2023/2024

 Emilio Tuosto
 https://cs.gssi.it/emilio.tuosto/

A couple of resasons to be rigorous

[https://stackoverflow.com/questions/1812990/incrementing-in-c-when-to-use-x-or-x]

[https://www.omg.org/spec/BPMN/2.0/]

A reson to go concurrent

[https://i.extremetech.com/imagery/content-types/03zc6ghfKswe41smvPXi8Zh/images-6.jpg]

[https://www.comsol.com/blogs/havent-cpu-clock-speeds-increased-last-years]

"On the first day of your new job, your boss asks you to find all primes between
1 and 10^10 (never mind why), using a parallel machine that supports ten con-
current threads. This machine is rented by the minute, so the longer your pro-
gram takes, the more it costs. You want to make a good impression. What do
you do?"

[Herlihy, Shavit: The Art of Multiprocessor Programming. Elsevier, 2012.]

Job interviews and prime numbers

An example of shared memory concurrency

Exercise 0

Some terminology

A Choreographic Formal Model of Communicating Systems
—Immigration Course on Formal Methods—

Emilio Tuosto @ GSSI

1 / 7

So far...

An idea of FMs

Leonardo da Vinci

“ Ma prima farò alcuna esperienza avanti ch’io più oltre proceda, perché mia
intenzione è allegare prima l’esperienzia e poi colla ragione dimostrare. ”

eM’s (bad) translation

“ Before proceeding further, I will first get some experiment, because my
intention is to first understand the experiment and then to explain it with the
intellect. ”

Concurrency vs Parallelism

Shared-memory

2 / 7

Message-passing
Pink Floyd

“Is there anybody out there?”

3 / 7

A glimpse of Erlang

1 ping(N, Pong_PID) ->

2 Pong_PID ! {ping, self()},

3 receive

4 pong ->

5 io:format("Ping received pong~n", [])

6 end,

7 ping(N - 1, Pong_PID).

8 ping(0, Pong_PID) ->

9 Pong_PID ! finished,

10 io:format("ping finished~n", []);

11 pong() ->

12 receive

13 finished ->

14 io:format("Pong finished~n", []);

15 {ping, Ping_PID} ->

16 io:format("Pong received ping~n", []),

17 Ping_PID ! pong,

18 pong()

19 end.

20 start() ->

21 Pong_PID = spawn(example, pong, []),

22 spawn(example, ping, [3, Pong_PID]).

Semantics

Message passing

FIFO buffers [[mailboxes in Erlang’s jargon]]

Spawn of threads

Asynchrony by design

Erlang is an embodiment of the well-known
actor model of Hewitt and Agha...dates back to
’73!

4 / 7

A glimpse of Erlang

1 ping(N, Pong_PID) ->

2 Pong_PID ! {ping, self()},

3 receive

4 pong ->

5 io:format("Ping received pong~n", [])

6 end,

7 ping(N - 1, Pong_PID).

8 ping(0, Pong_PID) ->

9 Pong_PID ! finished,

10 io:format("ping finished~n", []);

11 pong() ->

12 receive

13 finished ->

14 io:format("Pong finished~n", []);

15 {ping, Ping_PID} ->

16 io:format("Pong received ping~n", []),

17 Ping_PID ! pong,

18 pong()

19 end.

20 start() ->

21 Pong_PID = spawn(example, pong, []),

22 spawn(example, ping, [3, Pong_PID]).

Semantics

Message passing

FIFO buffers [[mailboxes in Erlang’s jargon]]

Spawn of threads

Asynchrony by design

Erlang is an embodiment of the well-known
actor model of Hewitt and Agha...dates back to
’73!

4 / 7

Friendlier representations

Local behaviour: communicating machines

CFSMs (Brand & Zafiropulo 1983!): FIFO buffers as well

Choregraphy: global graph

...“synchronous” distributed workflow (Deniélou and Yoshida 2012)

5 / 7

Friendlier representations

Local behaviour: communicating machines

CFSMs (Brand & Zafiropulo 1983!): FIFO buffers as well

Choregraphy: global graph

...“synchronous” distributed workflow (Deniélou and Yoshida 2012)

5 / 7

A glimpse of Erlang

1 ping(N, Pong_PID) ->

2 Pong_PID ! {ping, self()},

3 receive

4 pong ->

5 io:format("Ping received pong~n", [])

6 end,

7 ping(N - 1, Pong_PID).

8 ping(0, Pong_PID) ->

9 Pong_PID ! finished,

10 io:format("ping finished~n", []);

11 pong() ->

12 receive

13 finished ->

14 io:format("Pong finished~n", []);

15 {ping, Ping_PID} ->

16 io:format("Pong received ping~n", []),

17 Ping_PID ! pong,

18 pong()

19 end.

20 start() ->

21 Pong_PID = spawn(example, pong, []),

22 spawn(example, ping, [3, Pong_PID]),

23 spawn(example, ping, [2, Pong_PID]).

Q:
Is this program correct?

A:

No!

Exercise:

find the bug

6 / 7

A glimpse of Erlang

1 ping(N, Pong_PID) ->

2 Pong_PID ! {ping, self()},

3 receive

4 pong ->

5 io:format("Ping received pong~n", [])

6 end,

7 ping(N - 1, Pong_PID).

8 ping(0, Pong_PID) ->

9 Pong_PID ! finished,

10 io:format("ping finished~n", []);

11 pong() ->

12 receive

13 finished ->

14 io:format("Pong finished~n", []);

15 {ping, Ping_PID} ->

16 io:format("Pong received ping~n", []),

17 Ping_PID ! pong,

18 pong()

19 end.

20 start() ->

21 Pong_PID = spawn(example, pong, []),

22 spawn(example, ping, [3, Pong_PID]),

23 spawn(example, ping, [2, Pong_PID]).

Q:
Is this program correct?

A:

No!

Exercise:

find the bug

6 / 7

A glimpse of Erlang

1 ping(N, Pong_PID) ->

2 Pong_PID ! {ping, self()},

3 receive

4 pong ->

5 io:format("Ping received pong~n", [])

6 end,

7 ping(N - 1, Pong_PID).

8 ping(0, Pong_PID) ->

9 Pong_PID ! finished,

10 io:format("ping finished~n", []);

11 pong() ->

12 receive

13 finished ->

14 io:format("Pong finished~n", []);

15 {ping, Ping_PID} ->

16 io:format("Pong received ping~n", []),

17 Ping_PID ! pong,

18 pong()

19 end.

20 start() ->

21 Pong_PID = spawn(example, pong, []),

22 spawn(example, ping, [3, Pong_PID]),

23 spawn(example, ping, [2, Pong_PID]).

Q:
Is this program correct?

A:
No!

Exercise:
find the bug

6 / 7

Send ping-pong to shell !!! ... I mean, use ChoSyn

7 / 7

Brand, D. and Zafiropulo, P. (1983).
On Communicating Finite-State Machines.
JACM, 30(2):323–342.

Guanciale, R. and Tuosto, E. (2016).
An abstract semantics of the global view of choreographies.
In Proceedings 9th Interaction and Concurrency Experience, ICE 2016, Heraklion,
Greece, 8-9 June 2016., pages 67–82.

Tuosto, E. and Guanciale, R. (2018).
Semantics of global view of choreographies.
Journal of Logic and Algebraic Methods in Programming, 95:17–40.
Revised and extended version of [Guanciale and Tuosto, 2016].

7 / 7

