Immigration Course
on

Formal Methods
Academic year 2023/2024

Emilio Tuosto
https://cs.gssi.it/emilio.tuosto/

A couple of resasons to be rigorous

[https://www.omg.org/spec/BPMN/2.0/]

A converging Inclusive Gateway is used to merge a combination of alternative and parallel paths. A control flow token
arriving at an Inclusive Gateway MAY be synchronized with some other rokens that arrive later at this Gateway. The
precise synchronization behavior of the Inclusive Gateway can be found on page 292.

292

[https://stackoverflow.com/questions/1812990/incrementing-in-c-when-to-use-x-or-x]

N

Home

PUBLIC

& Questions
Tags
Users

Companies

COLLECTIVES

= stackoverflow

Business Process Model and Notation, v2.0

About Products For Teams Q Search.

Incrementing in C++ - When to use x++ or ++x?

Asked 12 years, 11 months ago Modified 1 year, 1 month ago Viewed 251k times

I'm currently learning C++ and I've learned about the
The Overfle
incrementation a while ago. | know that you can use "++x" to
118 make the incrementation before and "x++" to do it after. 7/ Making
new da
Still, | really don't know when to use either of the two... I've sponso
never really used "++x" and things always worked fine so far / Stopre

- so, when should | use it? test: Mt

A reson to go concurrent

[https://i.extremetech.com/imagery/content-types/03zc6ghfKswed41lsmvPXi8Zh/images-6.jpg]

10,000,000 - -
| |
Dual-Core Itanium 2 = //\
1,000,000 ! =
| |
Intel CPU Trends /_‘
{sources: Intel, Wikipedia, K. Olukotun} 7
100,000
10,000
1,000
100
10 —a
!“‘/’E') A& ——
=)
4 ‘
1 . " aTransistors (000) -
o~ l @ Clock Speed (MHz)
o o
A Power (W)
@ Perf/Clock (ILP)
0 \ I

1970 1975 1980 1985 1990 1995 2000 2005 2010

e COMSOL

PRODUCTS VIDEOS

[

COMSOL Blog
Why Haven't CPU Clock Speeds Increased in the
Last Few Years?

The first computer | used was a real performance beast. Equipped with Intel's 486 clocking in at

[https://www.comsol.com/blogs/havent-cpu-clock-speeds-increased-last-years]

REQUEST DEMONSTRATION CONTACT

EVENTS BLOG LEARNING CE]

Categories

OMSOL Ne

& Get New Posts by Email

E\(’F@uuy N wayvz e hw Huv.i/ STu)

Huw
. P(O%‘fw@ c,ws‘(ukffs {in ALl (Q_L‘gu‘%f/u

nnnnnnn

“ 3

°°°°°° ._: ;‘J;i&(s e laW

go - S s bonsislons gros by ~ “Cola
< .

=
g

-4 dor L 10t IVeols
~ fodz g e ~Clsiz /6%«7
A0 CPO ;},,{CA S *(g/ﬁee\‘bg/ \Bélaq_u‘b\\«w_

T <~ Lomcirman

! 5
72 TR -
o1
ss A sW(.én‘t‘{‘/u,x KLV&Z:I) AKKA
el b

-? I\L w
@ 28p .
. <:F> SRy
J | memory | I shared memory | > B f M

E u”:r\f ey SLaful Wewsty \"wa‘é’b"%

‘w&’/n{

Job interviews and prime numbers

"On the first day of your new job, your boss asks you to find all primes between
1 and 10”10 (never mind why), using a parallel machine that supports ten con-
current threads. This machine is rented by the minute, so the longer your pro-
gram takes, the more it costs. You want to make a good impression. What do

you do?"

[Herlihy, Shavit: The Art of Multiprocessor Programming. Elsevier, 2012.]

An example of shared memory concurrency

Prdt WL \a(ifvv'a Lm)\%@z L,wa 18 10"

1 void primeSeq {
for (j = 1, j<ionie; j++) { |
if (isPrime(j)) New Ut's ¥y comcuwmsTt ?.3
print(j);

Split Mo wberal 2 ludh s Howed ow wade posidoe
\-:b{w\/\f» o k\gl({\xﬁu& ufv\ng% &W\

/\ \ 3 I 1 \ A 1 \ '1 ©

t ' ' 1 l Y ; |
7\ ‘\j\}{\zx JJ

void primePrint(int i){ // 1 non-negative \’\cw\) %QCA 4 %S A%
for (j = i*1079+1, j<(i+1)*1079; j++) {
if (isPrime(j))

print(j);

ord nare
a—}/fo;dy
A P S\\am/{{
WALAAD
o\ J
(oo X \/\;x\o/\/\ AN ws Mpere - Corm
\c‘awﬂww‘\(ﬁﬁw e preniene } %\;va\ok{ﬂ,‘g
o~ asymc\n‘mv‘ﬁ Gerneia¥ive
Cononr~\AAlar -

ExerciSE3 () Ea¢“4& N Letl o WA\,Q*T; - *ﬁ~n1/-41441 e*zog;ravvu {l;z '&La— ksh(UA‘zjliill {j¢b+’

5X\a\a;*

e

void primePrint(Counter counter) {
long j = 0; public class Counter {
while (j < 10710) { private long value;
j = counter.getAndIncrement();
if (isPrime(j)) public "long getAndIncrement() {
print(j); return value++;
}
} public long getAndIncrement() {
synchronized {
temp = value;
value temp + 1;
}
return temp;
}
}

Some terminology

COVLCWWMS Vs (PMMW

5
Com\oosau mw{hiﬁ((\b\(\:/\\;lw()g symuglf&wmvﬁﬁi

bl ot LAY Y.

AT ONCE AT o e

DESIeN!

CoAL: "%MAA @M%@\Xﬁleﬂﬂ oAl : MSMJ‘zyem“éiw

\om @/\A ﬂ&"‘\“"" “OLIQ"Wﬁ

2INYAN0 5332

A Choreographic Formal Model of Communicating Systems
—Immigration Course on Formal Methods—

Emilio Tuosto

1/7

So far...

@ An idea of FMs

Leonardo da Vinci

* Ma prima fard alcuna esperienza avanti ch’io piu oltre proceda, perché mia
intenzione & allegare prima |'esperienzia e poi colla ragione dimostrare. ”

eM'’s (bad) translation
*“ Before proceeding further, | will first get some experiment, because my
intention is to first understand the experiment and then to explain it with the
intellect. "
o Concurrency vs Parallelism

@ Shared-memory

2/7

Message-passing

“Is there anybody out there?”

3/7

A glimpse of Erlang

ping(N, Pong_PID) ->
Pong_PID ! {ping, self()},
receive
pong —>
io:format ("Ping received pong™n",
end,
ping(N - 1, Pong_PID).

n

ping(0, Pong_PID) ->
Pong_PID ! finished,
io:format("ping finished™n", [1);

pong() ->
receive
finished —>
io:format("Pong finished™n", [1);
{ping, Ping_PID} ->
io:format("Pong received ping™n",
Ping_PID ! pong,
pong ()

D,

end

Semantics
@ Message passing
@ FIFO buffers [mailboxes in Erlang’s jargon]

@ Spawn of threads

4/7

A glimpse of Erlang

ping(N, Pong_PID) ->
Pong_PID ! {ping, self()},
receive
pong ->

io:format ("Ping received pong™n", [1)

end,
ping(¥ - 1, Pong_PID).

ping(0, Pong_PID) ->
Pong_PID ! finished,
io:format("ping finished™n", [1);

pong() ->
receive
finished ->
io:format("Pong finished™n", [1);
{ping, Ping_PID} ->
io:format("Pong received ping™n",
Ping_PID ! pong,
pong)

end.

D,

Semantics
@ Message passing
@ FIFO buffers [mailboxes in Erlang’s jargon]

@ Spawn of threads

Asynchrony by design

Erlang is an embodiment of the well-known
actor model of Hewitt and Agha...dates back to
‘73!

4/7

Friendlier representations

Local behaviour: communicating machines

Ping Pong
) _PongPingpons - PingPonglfnished T _PongPinglpong - _PingPong?fnished
PingPoneping PingPongping

CFSMs (Brand & Zafiropulo 1983!): FIFO buffers as well

5/7

Friendlier representations

Local behaviour: communicating machines

Ping Pong
) _PongPingpons - PingPonglfnished) _PongPinglpong __PingPong?fnished
PingPoneping PingPongping

CFSMs (Brand & Zafiropulo 1983!): FIFO buffers as well

Choregraphy: global graph
O

Ping->Pong:ping | [Ping->Pong:finished

Pong->Ping:pong

..."synchronous” distributed workflow (Deniélou and Yoshida 2012)

5/7

A glimpse of Erlang

ping(N, Pong_PID) ->
Pong_PID ! {ping, self()},
receive
pong —>
io:format("Ping received pong™n",
end,
ping(N - 1, Pong_PID).

n

ping(0, Pong_PID) ->
Pong_PID ! finished,
io:format("ping finished™n", [1);

pong() ->
receive
finished —>
io:format("Pong finished™n", [1);
{ping, Ping_PID} ->
io:format("Pong received ping™n",
Ping_PID ! pong,
pong ()

D,

end

6/7

A glimpse of Erlang

ping(N, Pong_PID) ->
Pong_PID ! {ping, self()},
receive
pong —>
io:format ("Ping received pong™n", [1)
end,
ping(N - 1, Pong_PID).

ping(0, Pong_PID) ->
Pong_PID ! finished,
io:format("ping finished™n", [1);

pong() ->
receive
finished ->
io:format("Pong finished™n", [1);
{ping, Ping_PID} ->
io:format("Pong received ping™n", [1),
Ping_PID ! pong,
pong ()

end

Q:

Is this program correct?

6/7

A glimpse of Erlang

ping(N, Pong_PID) ->
Pong_PID ! {ping, self()},
receive
pong —>
io:format ("Ping received pong™n",
end,
ping(N - 1, Pong_PID).

ping(0, Pong_PID) ->
Pong_PID ! finished,
io:format("ping finished™n", [1);

pong() ->
receive

finished ->
io:format("Pong finished™n", [1);

{ping, Ping_PID} ->
io:format("Pong received ping™n",
Ping_PID ! pong,
pong)

end.

n

D,

Q:

Is this program correct?

A -
No!
Exercise: |
find the bug

6/7

| mean, use ChoSyn

Send ping-pong to shell !l ...

Spfeeety

& TE S S8

7/7

[@ Brand, D. and Zafiropulo, P. (1983).
On Communicating Finite-State Machines.
JACM, 30(2):323-342.

B Guanciale, R. and Tuosto, E. (2016).
An abstract semantics of the global view of choreographies.
In Proceedings 9th Interaction and Concurrency Experience, ICE 2016, Heraklion,
Greece, 8-9 June 2016., pages 67-82.

[E Tuosto, E. and Guanciale, R. (2018).
Semantics of global view of choreographies.
Journal of Logic and Algebraic Methods in Programming, 95:17-40.
Revised and extended version of [Guanciale and Tuosto, 2016].

7/7

