Behavioural Specifications and Quantitative Techniques

Emilio Tuosto

Challenges and Perspectives of Formal Methods for Trustworthy Software PhD seminars series

May 16, 2024

Plan of the talk

An overview of results

- Resource-awareness
- Probabilities
- Time

in behavioural specifications (mainly, behavioural types)

Some open problems

- Resource Awareness -

Das, Hoffmann, Pfenning: [LICS'18] Work Analysis with Resource-Aware Session types

Static derivation of worst-case bounds on work for communication

$$S,T ::= V \mid \oplus \{I_i^{q_i}:S\} \mid \&\{I_i^{q_i}:S\} \mid S \stackrel{q}{\multimap} T \mid S \stackrel{q}{\otimes} T \mid \mathbf{1}^q$$

Das, Hoffmann, Pfenning: [LICS'18]
Work Analysis with Resource-Aware Session types

Static derivation of worst-case bounds on work for communication

$$S, T ::= V \mid \oplus \{l_i^{q_i}: S\} \mid \&\{l_i^{q_i}: S\} \mid S \stackrel{q}{\longrightarrow} T \mid S \stackrel{q}{\otimes} T \mid \mathbf{1}^q$$

Das, Hoffmann, Pfenning: [LICS'18] Work Analysis with Resource-Aware Session types

Static derivation of worst-case bounds on work for communication

$$S, T ::= V \mid \bigoplus \{I_i^{q_i} : S\} \mid \&\{I_i^{q_i} : S\} \mid S \stackrel{q}{\longrightarrow} T \mid S \stackrel{q}{\otimes} T \mid \mathbf{1}^q$$

Theorem (Soundness)

WF processes don't "generate" energy

Theorem (Progress)

WF processes get stuck only if they correctly terminate (direct conseguence of progress in SILL [Toninho, Caires, Pfenning: ESOP'13])

Case studies

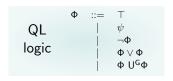
Das, Balzar, Hoffmann, Pfenning, Santurkar: Resource-Aware STs for digital contracts

[CSF'21]

Nomos: DSL to account for requirements of digital contracts

Session-typing discipline for resource-analysis

- linearity to prevent duplication/deletion of assets
- type reconstruction to automatically infer resource bounds
- amortized resource analysis to control resource usage

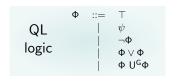

Theorem

Type preservation & progress

Evaluation on case studies

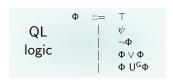
Verify the system-wide QoS properties of a distributed system given the QoS of its components

Verify the system-wide QoS properties of a distributed system given the QoS of its components


Verify the system-wide QoS properties of a distributed system given the QoS of its components

Verify the system-wide QoS properties of a distributed system given the

QoS of its components





$$\begin{array}{rcl} \Sigma &=& \langle \{0,1\} \cup \mathsf{Q}, \\ & & \{+,\cdot\} \cup \{\oplus^a\}_{a \in \mathsf{Q}}, \\ \mathsf{Specs} & & < \\ & & \\ \Gamma &=& \Gamma_{\mathrm{RCF}} \cup \Gamma' \end{array}$$

Verify the system-wide QoS properties of a distributed system given the

QoS of its components


```
\begin{array}{rcl} \Sigma &=& \langle \{0,1\} \cup Q, \\ & & \{+,\cdot\} \cup \{\oplus^a\}_{a \in Q}, \\ \\ \text{Specs} & & \rangle \\ & & \Gamma &=& \Gamma_{\mathrm{RCF}} \cup \Gamma' \end{array}
```

```
Bounded MC
```

```
1 of Unrit (\Phi_1, G, \Phi_2, S, \pi, \pi', \pi''):
2 | \vec{n} f (\vec{x}|^{n})| \vec{t} (\vec{t})| \vec{t} (\vec{t})| \vec{t} (\vec{t})| \vec{t})| \vec{t} (\vec{t})| \vec{t})| \vec{t} (\vec{t})| \vec{t})| \vec{t}| \vec
```

now implemented in **ChorGram**

- Probabilities -

Amand, Ciobanu:

[FROM'19,WOLLIC'22]

Probabilities in Session Types

Theorem (Soundness)

Well-formed processes do not have "proabability errors"

In WOLLIC'22 things get simpler using results in [Darda, Hu, Scalas, and Yoshida:ECOOP'22]

[Concur'20]

Reasoning about session termination ... probabilistically

$$S, T \stackrel{co}{::=} \circ \mid \bullet \mid ?t.S \mid !t.S \mid S \not p \oplus T \mid S \not p \& T$$

success

prob. choice

technical convenience

[Concur'20]

Reasoning about session termination ... probabilistically

success

$$S, T \stackrel{\text{co}}{::=} \circ \mid \bullet \mid ?t.S \mid !t.S \mid S \not p \oplus T \mid S \not p \& T$$

prob. choice technical convenience

Session Types → Discrete-Time Markov Chains

[Concur'20]

Reasoning about session termination ... probabilistically

$$S, T \stackrel{\text{co}}{::=} \circ \mid \bullet \mid ?t.S \mid !t.S \mid S \not p \oplus T \mid S \not p \& T$$

prob. choice technical convenience

Session Types → Discrete-Time Markov Chains

Theorem (Soundness)

SUccess

- (Possibly diverging) well-typed processes respects (the probabilities in) their type
- Well-typed processes are deadlock-free
- Type preservation

[Concur'20]

Reasoning about session termination ... probabilistically

$$S, T \stackrel{\text{co}}{::=} \circ \mid \bullet \mid ?t.S \mid !t.S \mid S \not p \oplus T \mid S \not p \& T$$

prob. choice technical convenience

Session Types → Discrete-Time Markov Chains

Theorem (Soundness)

SUccess

- (Possibly diverging) well-typed processes respects (the probabilities in) their type
- Well-typed processes are deadlock-free
- Type preservation

[Burló, Francalanza, Scalas, Trubiani, Tuosto:SCP'21] defines a probabilistic monitoring discipline

Dal Lago, Giusti [Concur'22] On Session Typing, Probabilistic Time, and cryptographic experiments

Binary session types to model cryptographic experiments

- Extend [Caires, Pfenning: Concur'10] with
 - probabilistic choice
 - polytime functions
- this yields a model of cryptographic protocols

Theorem (Soundness)

Subject reduction & progress holds for well typed processes

Theorem (Confluence)

Well typed processes are confluent

Dal Lago, Giusti [Concur'22] On Session Typing, Probabilistic Time, and cryptographic experiments

Binary session types to model cryptographic experiments

- Extend [Caires, Pfenning: Concur'10] with
 - probabilistic choice
 - polytime functions
- this yields a model of cryptographic protocols

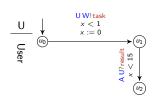
Theorem (Soundness)

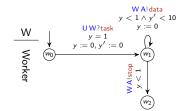
Subject reduction & progress holds for well typed processes

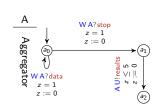
Theorem (Confluence)

Well typed processes are confluent

Silent steps converge to a same probability distribution

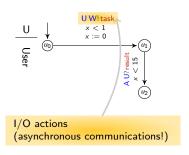

Das, Wang, Hoffman: [PoPL'23] Probabilistic Resource Aware Session Types

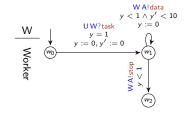

Resource analysis of probabilistic systems via probabilistic binary session types

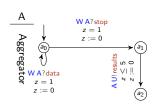

- Probabilistic binary session types to derive expected cost bounds of message-passing systems (exteding [LICS'18])
- The proposed calculus features both non-deterministic and probabilistic choices
- The typing discipline ensures type preservation, progress, and probability consistency
- NomosPro is implemented and extensively evaluated

- Time -

An example borrowed from [Bocchi, Lange, Yoshida:Concur'15]:

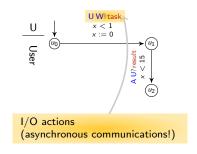


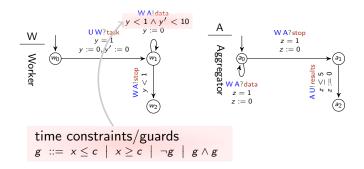




Communicating Timed Automata

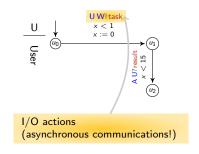
An example borrowed from [Bocchi, Lange, Yoshida:Concur'15]:

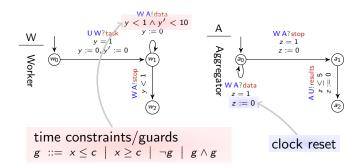




Krcál, Yi Communicating Timed Automata

An example borrowed from [Bocchi, Lange, Yoshida:Concur'15]:

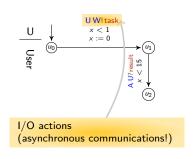


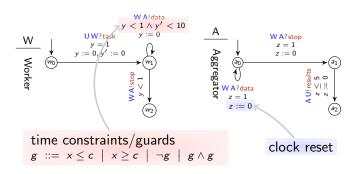


[CAV'06]

Krcál, Yi Communicating Timed Automata

An example borrowed from [Bocchi, Lange, Yoshida:Concur'15]:


[CAV'06]


Krcál, Yi

[CAV'06]

Communicating Timed Automata

An example borrowed from [Bocchi, Lange, Yoshida:Concur'15]:

Evaluations

 $\nu: x \mapsto r$ where $r \in \Re^{\geq 0}$

[Concur'14]

Time annotations increase expressiveness ... but time-errors without "time analysis"

Theorem (Soundness)

Well-typed processes respect timing

Theorem (Progress)

Feasibility + Wait-Freedom \implies time progress of typed processes

where

Feasibility = Partial timed executions can be completed

Wait-Freedom = if senders respect their timing then receivers do not have to wait

CFSM/timed automata ————— Communicating Timed Automata

```
Sound membership decision procedure

safety = deadlock freedom + no orphan messages
eventual reception
progress
no-zenoness
```

Theorem (Soundness)

If S is a multiparty-compatible system then

- S is safe and
- S is timed bisimilar to its projection

Nejkova, Bocchi, Yoshida [FAC'17] Timed Runtime Monitoring for Multiparty Conversations

Toolchain for timed interactions

- define timed protocols in Scribble
- check for feasibility and wait-freedom
- projections
- derive monitors to check timing constraints

Bartoletti, Cimoli, Murgia Timed Session Types

[FORTE'15,LMCS'17]

The binary (synchronous) case is interesting too!

Duality does not yield compatibility (i.e., deadlock-freedom)

- is compatibility decidable in timed session types?
- can compliant timed counterpart be found?

[FORTE'15,LMCS'17]

The binary (synchronous) case is interesting too!

Duality does not yield compatibility (i.e., deadlock-freedom)

- is compatibility decidable in timed session types?
- can compliant timed counterpart be found?

Theorem (Reduction)

Timed compliance can be (algorithmically) reduced to model-check deadlock-freedom in timed automata $(\implies$ decidability of timed compliance)

Theorem (Characterisation of evaluations)

The set of evaluations of a timed session type admitting a compliant timed session type is effectively computable

(⇒ canonical compliant timed session types are computable)

Theorem (Decidability of Subtyping)

Subtyping is decidable in timed session types

Murgia [ICE'18, JLAMP'19] Input Urgent Semantics for asynchronous timed session types

Synchronous compliance \implies Asynchronous compliance The implication holds if firable inputs are not delayed This result generated interesting new stuff:

- Refinements of Communicating Timed Automata (aking to timed session types) that do not introduce deadlocks/livelocks are simulated by abstract systems
 [Bartoletti], Bocchi, Murgia:Concur'18]
- Generalisation of duality & compliance based on urgent semantics [Bocchi, Murgia, Vasconcelos, Yoshida:ESOP'19]

Das, Hoffmann, Pfenning [ICFP'18] Parallel Complexity Analysis with Temporal Session Types

Binary asynchronous session types with LTL-like modalities

- • A inhabited by process of the form delay; P (P behaves as A after a time unit!)
- $\square A =$ "always ready to do A"
- $\diamond A =$ "eventually ready to do A"

This give a generic framework for cost analysis

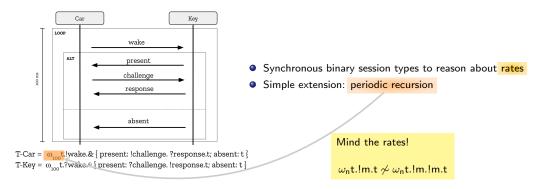
Well-typed processes enjoy progress & type preservation

The cost model can be parameterised

Pears, Bocchi, King Safe Asynchronous Mixed-choice

[COORDINATION'23]

Extend mixed sessions [Vasconcelos et al.: ESOP'20] to allow mixed choice in timed session types


Theorem (Progress)

Well-typed systems have progress

This framework assume urgent input [Murgia:ICE'18,JLAMP'19]

Irachi, Chuang, Hu, Ziarek [OOPSLA'23] Validating IoT Devices with Range-based session types

Grant Iraci, Cheng-En Chuang, Raymond Hu, and Lukasz Ziarek

Theorem (Soundness)

Well-typed systems do not have rate-errors

- Open Problems -

Resource	Probabilities	Time
Cost analysis for QoSData Dependent QoS	Relative	 (Inter)action duration challenges in CPS asynchronous subtyping relativity
tooling	from binary to multiparty	unification

Resource	Probabilities	Time
Cost analysis for QoSData Dependent QoS	Relative	 (Inter)action duration challenges in CPS asynchronous subtyping
		relativity
tooling	from binary to multiparty	unification

Can we use [Bocchi, Honda, Yoshida, Tuosto:Concur'10]?

- Thank you! -

emilio.tuosto@gssi.it