
Automata for choreographies

Emilio Tuosto

Department of Computer Science

DI/NOVA LINCS

July 27, 2022

Take-home message

Choreographies for communicating systems

Two automata-based models

point-to-point communications
event-notification coordination

An emerging pattern

fix a communication model
find suitable global and local specs
define well-formedness
get correct realisations by projection

– Act I –[
Formal Choreographies, informally

(joint work with Roberto Guanciale)

]

Top-down model-driven development

C
horeography

=
G

lobal
sp

ec
+

L
ocal

sp
ec

Quoting W3C:
“[...] a contract [...] of the common ordering conditions and constraints under which
messages are exchanged [...] from a global viewpoint [...]
Each party can then use the global definition to build and test solutions [...]
global specification is in turn realised by combination of the resulting local systems”

Choreography G
global viewpoint

M1

Local viewpoint1

Mi

Local viewpoint1

Mn

Local viewpointn

well-formedness

specs,not code

Top-down model-driven development

C
horeography

=
G

lobal
sp

ec
+

L
ocal

sp
ec

Quoting W3C:
“[...] a contract [...] of the common ordering conditions and constraints under which
messages are exchanged [...] from a global viewpoint [...]
Each party can then use the global definition to build and test solutions [...]
global specification is in turn realised by combination of the resulting local systems”

Choreography G
global viewpoint

M1

Local viewpoint1

Mi

Local viewpoint1

Mn

Local viewpointn

well-formedness

specs,not code

Top-down model-driven development

C
horeography

=
G

lobal
sp

ec
+

L
ocal

sp
ec

Quoting W3C:
“[...] a contract [...] of the common ordering conditions and constraints under which
messages are exchanged [...] from a global viewpoint [...]
Each party can then use the global definition to build and test solutions [...]
global specification is in turn realised by combination of the resulting local systems”

Choreography G
global viewpoint

M1

Local viewpoint1

Mi

Local viewpoint1

Mn

Local viewpointn

Project

P
ro

je
ct

Project

well-formedness

specs,not code

Top-down model-driven development

C
horeography

=
G

lobal
sp

ec
+

L
ocal

sp
ec

Quoting W3C:
“[...] a contract [...] of the common ordering conditions and constraints under which
messages are exchanged [...] from a global viewpoint [...]
Each party can then use the global definition to build and test solutions [...]
global specification is in turn realised by combination of the resulting local systems”

Choreography G
global viewpoint

M1

Local viewpoint1

Mi

Local viewpoint1

Mn

Local viewpointn

Project

P
ro

je
ct

Project

Component1 Componenti Componentn

V
er

if
y

V
er

if
y V

erify

well-formedness

specs,not code

A model of global specs

G, G′ ::= (o) empty∣∣ A−→B: m interaction∣∣ G; G′ sequential∣∣ G | G′ parallel∣∣ G + G′ branch∣∣ G? iteration

source node

sink node

A−→B: m

G

G′

G G′

|

|

fork gate

join gate

G G′

+

+

branch gate

merge gate

G

	

	

loop entry

loop exit

A model of global specs

G, G′ ::= (o) empty∣∣ A−→B: m interaction∣∣ G; G′ sequential∣∣ G | G′ parallel∣∣ G + G′ branch∣∣ G? iteration

source node

sink node

A−→B: m

G

G′

G G′

|

|

fork gate

join gate

G G′

+

+

branch gate

merge gate

G

	

	

loop entry

loop exit

Some examples

A−→B: int

B−→C: string

A−→C: string

C−→B: int

+

+

A−→B: int C−→B: int

+

+

A−→B: string

C−→B: string

|

|

A model of local specs

Communicating Finite-State Machines [Brand&Zafiropulo 1983]

A0

A1 A2

A3

A
B!in

t
A

B!bool

A
B!int

A
B!bool

A
B!s

tr

.

H

H

.

N

B0

B1 B2

B3

A
B?in

t
A

B?bool

A
B?str

A
B?bool

A B?str

B A!bool

A B

Global specs can be projected (i.e., compiled) on CFSMs

A model of local specs

Communicating Finite-State Machines [Brand&Zafiropulo 1983]

A0

A1 A2

A3

A
B!in

t
A

B!bool

A
B!int

A
B!bool

A
B!s

tr
.

H

H

.

N

B0

B1 B2

B3

A
B?in

t
A

B?bool

A
B?str

A
B?bool

A B?str

B A!bool

A B

int

Global specs can be projected (i.e., compiled) on CFSMs

A model of local specs

Communicating Finite-State Machines [Brand&Zafiropulo 1983]

A0

A1 A2

A3

A
B!in

t
A

B!bool

A
B!int

A
B!bool

A
B!s

tr
.

H

H

.

N

B0

B1 B2

B3

A
B?in

t
A

B?bool

A
B?str

A
B?bool

A B?str

B A!bool

A B

intbool

Global specs can be projected (i.e., compiled) on CFSMs

A model of local specs

Communicating Finite-State Machines [Brand&Zafiropulo 1983]

A0

A1 A2

A3

A
B!in

t
A

B!bool

A
B!int

A
B!bool

A
B!s

tr
.

H

H

.

N

B0

B1 B2

B3

A
B?in

t
A

B?bool

A
B?str

A
B?bool

A B?str

B A!bool

A B

intbool

Global specs can be projected (i.e., compiled) on CFSMs

A model of local specs

Communicating Finite-State Machines [Brand&Zafiropulo 1983]

A0

A1 A2

A3

A
B!in

t
A

B!bool

A
B!int

A
B!bool

A
B!s

tr
.

H

H

.

N

B0

B1 B2

B3

A
B?in

t
A

B?bool

A
B?str

A
B?bool

A B?str

B A!bool

A B

bool

Global specs can be projected (i.e., compiled) on CFSMs

A model of local specs

Communicating Finite-State Machines [Brand&Zafiropulo 1983]

A0

A1 A2

A3

A
B!in

t
A

B!bool

A
B!int

A
B!bool

A
B!s

tr
.

H

H

.

N

B0

B1 B2

B3

A
B?in

t
A

B?bool

A
B?str

A
B?bool

A B?str

B A!bool

A B

bool

Global specs can be projected (i.e., compiled) on CFSMs

A model of local specs

Communicating Finite-State Machines [Brand&Zafiropulo 1983]

A0

A1 A2

A3

A
B!in

t
A

B!bool

A
B!int

A
B!bool

A
B!s

tr
.

H

H

.

N

B0

B1 B2

B3

A
B?in

t
A

B?bool

A
B?str

A
B?bool

A B?str

B A!bool

A B

bool bool

Global specs can be projected (i.e., compiled) on CFSMs

A model of local specs

Communicating Finite-State Machines [Brand&Zafiropulo 1983]

A0

A1 A2

A3

A
B!in

t
A

B!bool

A
B!int

A
B!bool

A
B!s

tr
.

H

H

.

N

B0

B1 B2

B3

A
B?in

t
A

B?bool

A
B?str

A
B?bool

A B?str

B A!bool

A B

bool bool bool

Global specs can be projected (i.e., compiled) on CFSMs

An obvious (fundamental) question

Given a global specification, is it
realisable distributively?

Put simply...

A global spec G is realizable if there is a deadlock-freea system of CFSMs whose traces
“have some relation with” G.

aA system S is deadlock-free if none of its reachable configurations s is a deadlock, that is s 6−→
and either some buffers are not empty or some CFSMs have transitions from their state in s.

An obvious (fundamental) question

Given a global specification, is it
realisable distributively?
Put simply...

A global spec G is realizable if there is a deadlock-freea system of CFSMs whose traces
“have some relation with” G.

aA system S is deadlock-free if none of its reachable configurations s is a deadlock, that is s 6−→
and either some buffers are not empty or some CFSMs have transitions from their state in s.

Class test

Revisiting our examples

A−→B: int

B−→C: string

A−→C: string

C−→B: int

+

+

A−→B: int C−→B: int

+

+

A−→B: string

C−→B: string

|

|

Class test

Revisiting our examples

A−→B: int

B−→C: string

A−→C: string

C−→B: int

+

+

A−→B: int C−→B: int

+

+

A−→B: string

C−→B: string

|

|

A (main) source of problems: Well-branchedness

Distributed consensus
A distributed choice G1 + G2 + · · · is well-branched if

there is one active participant

any non-active participant is passive

Def. A is active when it locally decides which branch to take in a choice

Def. B is passive when

either B behaves uniformly in each branch

or B “unambiguously understands” which branch A opted for from some inputs

Well-branchedness

When the above holds true for each choice, the choreography is well-branched. This
enables correctness-by-design.

A (main) source of problems: Well-branchedness

Distributed consensus
A distributed choice G1 + G2 + · · · is well-branched if

there is one active participant

any non-active participant is passive

Def. A is active when it locally decides which branch to take in a choice

Def. B is passive when

either B behaves uniformly in each branch

or B “unambiguously understands” which branch A opted for from some inputs

Well-branchedness

When the above holds true for each choice, the choreography is well-branched. This
enables correctness-by-design.

A (main) source of problems: Well-branchedness

Distributed consensus
A distributed choice G1 + G2 + · · · is well-branched if

there is one active participant

any non-active participant is passive

Def. A is active when it locally decides which branch to take in a choice

Def. B is passive when

either B behaves uniformly in each branch

or B “unambiguously understands” which branch A opted for from some inputs

Well-branchedness

When the above holds true for each choice, the choreography is well-branched. This
enables correctness-by-design.

– Act II –[
Choreography Automata
(joint work with Franco Barbanera, Ivan Lanese)

]

The online-wallet protocol

Customer−→Wallet : login

Customer−→Wallet : pin

+

+Wallet−→Customer : retry

Wallet−→Customer : loginOK

Wallet−→Vendor : loginOK

Vendor−→Customer : request

Customer−→Wallet : authorise Customer−→Wallet : reject

Wallet−→Customer : loginDenied

Customer−→Vendor : pay Customer−→Vendor : reject

+

+

+

The online-wallet protocol ...some modelling problems

What about Vendor?

Customer−→Wallet : login

Customer−→Wallet : pin

+

+Wallet−→Customer : retry

Wallet−→Customer : loginOK

Wallet−→Vendor : loginOK

Vendor−→Customer : request

Customer−→Wallet : authorise Customer−→Wallet : reject

Wallet−→Customer : loginDenied

Customer−→Vendor : pay Customer−→Vendor : reject

+

+

+

The online-wallet protocol ...some modelling problems

What about Vendor?

What about payloads?

Customer−→Wallet : login

Customer−→Wallet : pin

+

+Wallet−→Customer : retry

Wallet−→Customer : loginOK

Wallet−→Vendor : loginOK

Vendor−→Customer : request

Customer−→Wallet : authorise Customer−→Wallet : reject

Wallet−→Customer : loginDenied

Customer−→Vendor : pay Customer−→Vendor : reject

+

+

+

Our global & local specs

Choreography automata: Interaction, globally

q0

q1 q2 q3

q4 q5 q6

q7

q8

C−→
W

:
lo

g
in

C−→W : pin

W−→
C: retry

W−→C: loginDenied

W
−→

C
:

lo
g

in
O

K

W−→V : loginOK V−→C: request
C−→

W
:

a
u

th
orise

C−→W : reject

C−→V : pay

C
−→

V
:

re
je

ct

CFSMs locally: determinise the intermediate automaton

Q4 Q5 Q6 Q3

W V?loginOK V C!request C V?pay

C V?reject

Our global & local specs

Intermediate automata: from interactions to communications

q0

q1 q2 q3

q4 q5 q6

q7

q8

ε

ε

ε

ε

ε

W V?loginOK V C!request
ε

ε

C V?pay

C
V

?
re

je
ct

CFSMs locally: determinise the intermediate automaton

Q4 Q5 Q6 Q3

W V?loginOK V C!request C V?pay

C V?reject

Our global & local specs

Intermediate automata: from interactions to communications

q0

q1 q2 q3

q4 q5 q6

q7

q8

ε

ε

ε

ε

ε

W V?loginOK V C!request
ε

ε

C V?pay

C
V

?
re

je
ct

CFSMs locally: determinise the intermediate automaton

Q4 Q5 Q6 Q3

W V?loginOK V C!request C V?pay

C V?reject

Projections preserve semantics

Theorem. Choreography automata are bisimilar to their projections

=⇒ traces equivalence

Flexibility by example

Selective participation in OLW

q0

q1 q2 q3

q4 q5 q6

q7

q8

C−→
W

:
lo

g
in

C−→W : pin

W−→
C: retry

W−→C: loginDeniedW
−→

C
:

lo
g

in
O

K

W−→V : loginOK V−→C: request
C−→

W
:

a
u

th
orise

C−→W : reject

C−→V : pay

C
−→

V
:

re
je

ct

at q2 Wallet and Customer aware from the very beginning

Vendor involved on one branch only, but that’s fine: Wallet is aware

at q6 Wallet and Customer aware from the very beginning

Vendor eventually informed by Customer on each branch

Flexibility by example

Selective participation in OLW

q0

q1 q2 q3

q4 q5 q6

q7

q8

C−→
W

:
lo

g
in

C−→W : pin

W−→
C: retry

W−→C: loginDeniedW
−→

C
:

lo
g

in
O

K

W−→V : loginOK V−→C: request
C−→

W
:

a
u

th
orise

C−→W : reject

C−→V : pay

C
−→

V
:

re
je

ct

at q2 Wallet and Customer aware from the very beginning

Vendor involved on one branch only, but that’s fine: Wallet is aware

at q6 Wallet and Customer aware from the very beginning

Vendor eventually informed by Customer on each branch

Flexibility by example

Selective participation in OLW

q0

q1 q2q2 q3

q4 q5 q6

q7

q8

C−→
W

:
lo

g
in

C−→W : pin

W−→
C: retry

W−→C: loginDeniedW
−→

C
:

lo
g

in
O

K

W−→V : loginOK V−→C: request
C−→

W
:

a
u

th
orise

C−→W : reject

C−→V : pay

C
−→

V
:

re
je

ct

at q2 Wallet and Customer aware from the very beginning

Vendor involved on one branch only, but that’s fine: Wallet is aware

at q6 Wallet and Customer aware from the very beginning

Vendor eventually informed by Customer on each branch

Flexibility by example

Selective participation in OLW

q0

q1 q2 q3

q4 q5 q6

q7

q8

C−→
W

:
lo

g
in

C−→W : pin

W−→
C: retry

W−→C: loginDeniedW
−→

C
:

lo
g

in
O

K

W−→V : loginOK V−→C: request
C−→

W
:

a
u

th
orise

C−→W : reject

C−→V : pay

C
−→

V
:

re
je

ct

at q2 Wallet and Customer aware from the very beginning

Vendor involved on one branch only, but that’s fine: Wallet is aware

at q6 Wallet and Customer aware from the very beginning

Vendor eventually informed by Customer on each branch

Flexibility by example

Selective participation in OLW

q0

q1 q2 q3

q4 q5 q6

q7

q8

C−→
W

:
lo

g
in

C−→W : pin

W−→
C: retry

W−→C: loginDeniedW
−→

C
:

lo
g

in
O

K

W−→V : loginOK V−→C: request
C−→

W
:

a
u

th
orise

C−→W : reject

C−→V : pay

C
−→

V
:

re
je

ct

at q2 Wallet and Customer aware from the very beginning

Vendor involved on one branch only, but that’s fine: Wallet is aware

at q6 Wallet and Customer aware from the very beginning

Vendor eventually informed by Customer on each branch

Theorems

Correctness by construction

Theorem. Projections of well-formed choreography automata are deadlock-free

Theorem. Projections of well-formed choreography automata are lock-free

DbC vs. choreography automata

Asserting (an excerpt of) OLW

q′0 q0

q1 q2 q3

q′2 q4

r · try 7→ 0

0 ≤ try ≤ 3

C−→
W

:
lo

g
in〈a

cco
u

n
t
i
n
t〉

>

C−→W : pin〈pin int〉

>

r · try 7→ try + 1

0 ≤ try ≤ 3

W−→C: loginDenied〈msg string〉

try ≥ 3 ∧msg = ”5 min.”

W
−→

C
:

re
tr

y〈
m

sg
s
t
r
i
n
g
〉

0 ≤ try < 3
∧

msg = ”fail” W
−→C: loginOk〈〉

0 ≤
try
≤ 3

Consistency

history senesitiveness: in q
λ−−→
A

q′, A predicates on known variables

temporal satisfiability: the conjunction of the predicates on a path is satisfiable

well-formedness of the underlying choreography automaton

DbC vs. choreography automata

Asserting (an excerpt of) OLW

q′0 q0

q1 q2 q3

q′2 q4

r · try 7→ 0

0 ≤ try ≤ 3

C−→
W

:
lo

g
in〈a

cco
u

n
t
i
n
t〉

>

C−→W : pin〈pin int〉

>

r · try 7→ try + 1

0 ≤ try ≤ 3

W−→C: loginDenied〈msg string〉

try ≥ 3 ∧msg = ”5 min.”

W
−→

C
:

re
tr

y〈
m

sg
s
t
r
i
n
g
〉

0 ≤ try < 3
∧

msg = ”fail” W
−→C: loginOk〈〉

0 ≤
try
≤ 3

Consistency

history senesitiveness: in q
λ−−→
A

q′, A predicates on known variables

temporal satisfiability: the conjunction of the predicates on a path is satisfiable

well-formedness of the underlying choreography automaton

Theorems

Projections are a bit more complicated than for choreography automata

On consistent asserted choreography automata

Theorem. Asserted choreography automata are weakly bisimilar to their projections

=⇒ trace equivalence

Theorem. Projections of WF choreography automata are deadlock-free

And more...cf. [ECOOP 2022]

A tool chain for

validating finitary Scribble protocols via choreography automata

TypeScript web programming via API generation

Theorems

Projections are a bit more complicated than for choreography automata

On consistent asserted choreography automata

Theorem. Asserted choreography automata are weakly bisimilar to their projections

=⇒ trace equivalence

Theorem. Projections of WF choreography automata are deadlock-free

And more...cf. [ECOOP 2022]

A tool chain for

validating finitary Scribble protocols via choreography automata

TypeScript web programming via API generation

– Act III –[
Local-first!

(joint work with Daniela Marottoli, Hernán Melgratti, Roland Kuhn)

]

A completely different setting

Desiderata

different features

arbitrary (and variable) number of
instances
local-first principle!

As rock climbers say: “Don’t Be
Afraid To Fail. Be Afraid Not To
Try.”

pub-sub (instead of point-to-point)

different properties

progress despite unavailability
=⇒ inconsistent views

eventual-consistency instead of “old”
properties (eg. session fidelity)

Swarm protocols and machines by example

Global

1 2 3 4 5 6 7
request@P

bid@T

select@P arrive@T start@P

record@T

finish@P

cancel@P

receipt@O

(log types omitted for readability)

Local (projected)

M1 M2 M3 M4

request / requested

requested? bid? selected?

select / selected

cancel / cancelled

arrived?

start / started

started? finished? receipt?

cancelled?

Swarm protocols and machines by example

Global

1 2 3 4 5 6 7
request@P

bid@T

select@P arrive@T start@P

record@T

finish@P

cancel@P

receipt@O

(log types omitted for readability)

Local (projected)

M1 M2 M3 M4

request / requested

requested? bid? selected?

select / selected

cancel / cancelled

arrived?

start / started

started? finished? receipt?

cancelled?

local log: r1 · r2 · b

Swarm protocols and machines by example

Global

1 2 3 4 5 6 7
request@P

bid@T

select@P arrive@T start@P

record@T

finish@P

cancel@P

receipt@O

(log types omitted for readability)

Local (projected)

M1 M2 M3 M4

request / requested

requested? bid? selected?

select / selected

cancel / cancelled

arrived?

start / started

started? finished? receipt?

cancelled?

local log: · r2 · b

Swarm protocols and machines by example

Global

1 2 3 4 5 6 7
request@P

bid@T

select@P arrive@T start@P

record@T

finish@P

cancel@P

receipt@O

(log types omitted for readability)

Local (projected)

M1 M2 M3 M4

request / requested

requested? bid? selected?

select / selected

cancel / cancelled

arrived?

start / started

started? finished? receipt?

cancelled?

local log: · · b

Swarm protocols and machines by example

Global

1 2 3 4 5 6 7
request@P

bid@T

select@P arrive@T start@P

record@T

finish@P

cancel@P

receipt@O

(log types omitted for readability)

Local (projected)

M1 M2 M3 M4

request / requested

requested? bid? selected?

select / selected

cancel / cancelled

arrived?

start / started

started? finished? receipt?

cancelled?

local log: · · and now select is enabled

Semantics, intuitively

Types “produce/consume” events

swarm protocols: how/when roles produce events
machines: how/when instances consume events “skipping” the ones irrelevant to
them

Deterministic types only

swarm protocols: log types of branches have no common non-trivial prefixes and
command/role pairs are pairwise distinct
machines: event types of branches are pairwise distinct

Non-deterministic events’ propagation

Swarms

Machines, local logs, and global log (...a mirage)

Events are univocally associated to the machines generating them.
Def. swarm = global log + map from unique identities to pairs machines/local logs

(S, l) = (M1, l1) | . . . | (Mn, ln) | l

such that l i v l where, l i v l ⇐⇒ l i = ...

e i,1

e i,n

= l...

e1

em

i.e., there is an order-preserving and downward-total morphism from l i into l on events
of a same machine.

Swarms

Machines, local logs, and global log (...a mirage)

Events are univocally associated to the machines generating them.
Def. swarm = global log + map from unique identities to pairs machines/local logs

(S, l) = (M1, l1) | . . . | (Mn, ln) | l

such that l i v l where, l i v l ⇐⇒ l i = ...

e i,1

e i,n

= l...

e1

em

i.e., there is an order-preserving and downward-total morphism from l i into l on events
of a same machine.

Swarms

Machines, local logs, and global log (...a mirage)

Events are univocally associated to the machines generating them.
Def. swarm = global log + map from unique identities to pairs machines/local logs

(S, l) = (M1, l1) | . . . | (Mn, ln) | l

such that l i v l where, l i v l ⇐⇒ l i = ...

e i,1

e i,n

= l...

e1

em

e

i.e., there is an order-preserving and downward-total morphism from l i into l on events
of a same machine.

Swarms

Machines, local logs, and global log (...a mirage)

Events are univocally associated to the machines generating them.
Def. swarm = global log + map from unique identities to pairs machines/local logs

(S, l) = (M1, l1) | . . . | (Mn, ln) | l

such that l i v l where, l i v l ⇐⇒ l i = ...

e i,1

e i,n

= l...

e1

em

e

e′
e and e′ both from Mj

i.e., there is an order-preserving and downward-total morphism from l i into l on events
of a same machine.

Swarms’ semantics...intuitively

Events’ generation
The local log of a machine is extended with the fresh events generated by (the
execution of a command on) the machine

Events’ propagation
Emitted events propagate asynchronously & non-deterministically

Swarms’ semantics: formally

[Local]

S : i 7→ (M, l) (M, l)
c / l−−−→ (M, l ′) l ′′ ∈ l ./ l̂

(S, l̂)
c / l−−−→ (S[i 7→ (M, l ′)], l ′′)

where l1 ./ l2 = {l
∣∣ l ⊆ l1 ∪ l2 ∧ l1v l ∧ l2v l}

[Prop]

S : i 7→ (M, l) l v l ′v l̂ l ⊂ l ′

(S, l̂)
τ−−→ (S[i 7→ (M, l ′)], l̂)

Properties of our semantics

Coherence

A swarm (M1, l1) | . . . | (Mn, ln) | l is coherent if

for all i , l i v l and l =
⋃
i∈n

l i

Coherence preservation

[local] & [prop] preserve coherence

Eventual Consistency

If
S = (M1, l1) | . . . | (Mn, ln) | l is coherent

then
S

τ−−→
?

(M1, l) | . . . | (Mn, l) | l

Realisation

It is hard to get it right (even without multi-instances or choices!)

A trivial protocol

Take the swarm protocol

request@P〈requested〉 bid@T〈bid〉

Are

request / requested and
requested?

bid / bid

a

(correct)

realisation?

What does that actually mean?

Realisation

It is hard to get it right (even without multi-instances or choices!)

A trivial protocol

Take the swarm protocol

request@P〈requested〉 bid@T〈bid〉

Are

request / requested and
requested?

bid / bid

a (correct) realisation?

What does that actually mean?

Realisation

It is hard to get it right (even without multi-instances or choices!)

A trivial protocol

Take the swarm protocol

request@P〈requested〉 bid@T〈bid〉

Are

request / requested and
requested?

bid / bid

a (correct) realisation? What does that actually mean?

Ideas

Not so simple

A swarm correctly realises a swarm protocol if it generates only logs that the protocol
can generate.

That’s impossible due to events’ skipping at local level but not at the global one.

A weaker condition

A swarm correctly realises a swarm protocol if it generates only logs that are admissible
with some that the protocol can generate.

A log is admissible for a swarm protocol when its restriction to the events processed by
the active machines is equivalent to a log of the protocol.

Ideas

Not so simple

A swarm correctly realises a swarm protocol if it generates only logs that the protocol
can generate.

That’s impossible due to events’ skipping at local level but not at the global one.

A weaker condition

A swarm correctly realises a swarm protocol if it generates only logs that are admissible
with some that the protocol can generate.

A log is admissible for a swarm protocol when its restriction to the events processed by
the active machines is equivalent to a log of the protocol.

Realisation by projection

Well-formedness of swarm protocols

Each log type l of a branch should be
causal consistent

each selector in (the continuation of) l reacts to l

each role involved in the continuation of l cannot react to more events on l than
selectors on the branch

determined
each role in the continuation of l reacts to l[0]

confusion-free
an event type cannot occur in more than one branch

– Epilogue –

[...]

Summing up

Automata models for choreography

Advantages

increased flexibility

good basis for (enhanced) tool support

good also for practitioners

Plans

weakening well-formedness conditions

studying more complex communication models (eg non-atomic propagation of
events)

[Thank you!]

