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Take-home message

Choreographies for communicating systems

Two automata-based models

point-to-point communications
event-notification coordination

An emerging pattern

fix a communication model
find suitable global and local specs
define well-formedness
get correct realisations by projection



– Act I –[
Formal Choreographies, informally

(joint work with Roberto Guanciale)

]



Top-down model-driven development
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Quoting W3C:
“[...] a contract [...] of the common ordering conditions and constraints under which
messages are exchanged [...] from a global viewpoint [...]
Each party can then use the global definition to build and test solutions [...]
global specification is in turn realised by combination of the resulting local systems”
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A model of global specs

G, G′ ::= (o) empty∣∣ A−→B: m interaction∣∣ G; G′ sequential∣∣ G | G′ parallel∣∣ G + G′ branch∣∣ G? iteration

source node

sink node

A−→B: m

G

G′

G G′

|

|

fork gate

join gate

G G′

+

+

branch gate

merge gate

G

	

	

loop entry

loop exit
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Some examples

A−→B: int

B−→C: string

A−→C: string

C−→B: int

+

+

A−→B: int C−→B: int

+

+

A−→B: string

C−→B: string

|

|



A model of local specs

Communicating Finite-State Machines [Brand&Zafiropulo 1983]
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Global specs can be projected (i.e., compiled) on CFSMs
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An obvious (fundamental) question

Given a global specification, is it
realisable distributively?

Put simply...

A global spec G is realizable if there is a deadlock-freea system of CFSMs whose traces
“have some relation with” G.

aA system S is deadlock-free if none of its reachable configurations s is a deadlock, that is s 6−→
and either some buffers are not empty or some CFSMs have transitions from their state in s.



An obvious (fundamental) question

Given a global specification, is it
realisable distributively?
Put simply...

A global spec G is realizable if there is a deadlock-freea system of CFSMs whose traces
“have some relation with” G.

aA system S is deadlock-free if none of its reachable configurations s is a deadlock, that is s 6−→
and either some buffers are not empty or some CFSMs have transitions from their state in s.



Class test

Revisiting our examples

A−→B: int

B−→C: string

A−→C: string

C−→B: int

+

+

A−→B: int C−→B: int

+

+

A−→B: string

C−→B: string

|

|



Class test

Revisiting our examples

A−→B: int

B−→C: string

A−→C: string

C−→B: int

+

+

A−→B: int C−→B: int

+

+

A−→B: string

C−→B: string

|

|



A (main) source of problems: Well-branchedness

Distributed consensus
A distributed choice G1 + G2 + · · · is well-branched if

there is one active participant

any non-active participant is passive

Def. A is active when it locally decides which branch to take in a choice

Def. B is passive when

either B behaves uniformly in each branch

or B “unambiguously understands” which branch A opted for from some inputs

Well-branchedness

When the above holds true for each choice, the choreography is well-branched. This
enables correctness-by-design.
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– Act II –[
Choreography Automata
(joint work with Franco Barbanera, Ivan Lanese)

]



The online-wallet protocol

Customer−→Wallet : login

Customer−→Wallet : pin

+

+Wallet−→Customer : retry

Wallet−→Customer : loginOK

Wallet−→Vendor : loginOK

Vendor−→Customer : request

Customer−→Wallet : authorise Customer−→Wallet : reject

Wallet−→Customer : loginDenied

Customer−→Vendor : pay Customer−→Vendor : reject

+

+

+
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The online-wallet protocol ...some modelling problems

What about Vendor?

What about payloads?

Customer−→Wallet : login

Customer−→Wallet : pin

+

+Wallet−→Customer : retry
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Wallet−→Customer : loginDenied

Customer−→Vendor : pay Customer−→Vendor : reject

+

+
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Our global & local specs

Choreography automata: Interaction, globally
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Our global & local specs

Intermediate automata: from interactions to communications
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Projections preserve semantics

Theorem. Choreography automata are bisimilar to their projections

=⇒ traces equivalence



Flexibility by example

Selective participation in OLW
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at q2 Wallet and Customer aware from the very beginning

Vendor involved on one branch only, but that’s fine: Wallet is aware

at q6 Wallet and Customer aware from the very beginning

Vendor eventually informed by Customer on each branch
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Theorems

Correctness by construction

Theorem. Projections of well-formed choreography automata are deadlock-free

Theorem. Projections of well-formed choreography automata are lock-free



DbC vs. choreography automata

Asserting (an excerpt of) OLW

q′0 q0
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r · try 7→ 0

0 ≤ try ≤ 3
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0 ≤ try < 3
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msg = ”fail” W
−→C: loginOk〈〉

0 ≤
try
≤ 3

Consistency

history senesitiveness: in q
λ−−→
A

q′, A predicates on known variables

temporal satisfiability: the conjunction of the predicates on a path is satisfiable

well-formedness of the underlying choreography automaton
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Theorems

Projections are a bit more complicated than for choreography automata

On consistent asserted choreography automata

Theorem. Asserted choreography automata are weakly bisimilar to their projections

=⇒ trace equivalence

Theorem. Projections of WF choreography automata are deadlock-free

And more...cf. [ECOOP 2022]

A tool chain for

validating finitary Scribble protocols via choreography automata

TypeScript web programming via API generation
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Projections are a bit more complicated than for choreography automata

On consistent asserted choreography automata

Theorem. Asserted choreography automata are weakly bisimilar to their projections

=⇒ trace equivalence

Theorem. Projections of WF choreography automata are deadlock-free

And more...cf. [ECOOP 2022]

A tool chain for

validating finitary Scribble protocols via choreography automata

TypeScript web programming via API generation



– Act III –[
Local-first!

(joint work with Daniela Marottoli, Hernán Melgratti, Roland Kuhn)

]



A completely different setting

Desiderata

different features

arbitrary (and variable) number of
instances
local-first principle!

As rock climbers say: “Don’t Be
Afraid To Fail. Be Afraid Not To
Try.”

pub-sub (instead of point-to-point)

different properties

progress despite unavailability
=⇒ inconsistent views

eventual-consistency instead of “old”
properties (eg. session fidelity)



Swarm protocols and machines by example

Global

1 2 3 4 5 6 7
request@P

bid@T

select@P arrive@T start@P

record@T

finish@P

cancel@P

receipt@O

(log types omitted for readability)

Local (projected)

M1 M2 M3 M4

request / requested

requested? bid? selected?

select / selected

cancel / cancelled

arrived?

start / started

started? finished? receipt?

cancelled?
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Swarm protocols and machines by example

Global

1 2 3 4 5 6 7
request@P

bid@T

select@P arrive@T start@P

record@T

finish@P

cancel@P

receipt@O

(log types omitted for readability)

Local (projected)

M1 M2 M3 M4

request / requested

requested? bid? selected?

select / selected

cancel / cancelled

arrived?

start / started

started? finished? receipt?

cancelled?

local log: · · and now select is enabled



Semantics, intuitively

Types “produce/consume” events

swarm protocols: how/when roles produce events
machines: how/when instances consume events “skipping” the ones irrelevant to
them

Deterministic types only

swarm protocols: log types of branches have no common non-trivial prefixes and
command/role pairs are pairwise distinct
machines: event types of branches are pairwise distinct

Non-deterministic events’ propagation



Swarms

Machines, local logs, and global log (...a mirage)

Events are univocally associated to the machines generating them.
Def. swarm = global log + map from unique identities to pairs machines/local logs

(S, l ) = (M1, l1) | . . . | (Mn, ln) | l

such that l i v l where, l i v l ⇐⇒ l i = ...

e i,1

e i,n

= l...

e1

em

i.e., there is an order-preserving and downward-total morphism from l i into l on events
of a same machine.
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Events are univocally associated to the machines generating them.
Def. swarm = global log + map from unique identities to pairs machines/local logs

(S, l ) = (M1, l1) | . . . | (Mn, ln) | l

such that l i v l where, l i v l ⇐⇒ l i = ...

e i,1

e i,n

= l...

e1

em

e

e′
e and e′ both from Mj

i.e., there is an order-preserving and downward-total morphism from l i into l on events
of a same machine.



Swarms’ semantics...intuitively

Events’ generation
The local log of a machine is extended with the fresh events generated by (the
execution of a command on) the machine

Events’ propagation
Emitted events propagate asynchronously & non-deterministically



Swarms’ semantics: formally

[Local]

S : i 7→ (M, l ) (M, l )
c / l−−−→ (M, l ′) l ′′ ∈ l ./ l̂

(S, l̂ )
c / l−−−→ (S[i 7→ (M, l ′)], l ′′)

where l1 ./ l2 = {l
∣∣ l ⊆ l1 ∪ l2 ∧ l1v l ∧ l2v l}

[Prop]

S : i 7→ (M, l ) l v l ′v l̂ l ⊂ l ′

(S, l̂ )
τ−−→ (S[i 7→ (M, l ′)], l̂ )



Properties of our semantics

Coherence

A swarm (M1, l1) | . . . | (Mn, ln) | l is coherent if

for all i , l i v l and l =
⋃
i∈n

l i

Coherence preservation

[local] & [prop] preserve coherence

Eventual Consistency

If
S = (M1, l1) | . . . | (Mn, ln) | l is coherent

then
S

τ−−→
?

(M1, l ) | . . . | (Mn, l ) | l



Realisation

It is hard to get it right (even without multi-instances or choices!)

A trivial protocol

Take the swarm protocol

request@P〈requested〉 bid@T〈bid〉

Are

request / requested and
requested?

bid / bid

a

(correct)

realisation?

What does that actually mean?
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Ideas

Not so simple

A swarm correctly realises a swarm protocol if it generates only logs that the protocol
can generate.

That’s impossible due to events’ skipping at local level but not at the global one.

A weaker condition

A swarm correctly realises a swarm protocol if it generates only logs that are admissible
with some that the protocol can generate.

A log is admissible for a swarm protocol when its restriction to the events processed by
the active machines is equivalent to a log of the protocol.
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Realisation by projection

Well-formedness of swarm protocols

Each log type l of a branch should be
causal consistent

each selector in (the continuation of) l reacts to l

each role involved in the continuation of l cannot react to more events on l than
selectors on the branch

determined
each role in the continuation of l reacts to l[0]

confusion-free
an event type cannot occur in more than one branch



– Epilogue –

[ ... ]



Summing up

Automata models for choreography

Advantages

increased flexibility

good basis for (enhanced) tool support

good also for practitioners

Plans

weakening well-formedness conditions

studying more complex communication models (eg non-atomic propagation of
events)



[ Thank you! ]


