Behavioural Types for Local-First Software

Emilio Tuosto

joint work with

Roland Kuhn and Hernan Melgratti

—_—

It-Matters
Lucca 11-12 July, 2023

1/58

— Prelude —

2/58

Take-away message

An approach to

trade consistency for availability in systems of asymmetric replicated peers

3/58

https://drops.dagstuhl.de/opus/frontdoor.php?source_opus=18208
https://arxiv.org/abs/2305.04848

Take-away message

An approach to
trade consistency for availability in systems of asymmetric replicated peers

using local-first's principles to establish eventual consensus

3/58

https://drops.dagstuhl.de/opus/frontdoor.php?source_opus=18208
https://arxiv.org/abs/2305.04848

Take-away message

An approach to
trade consistency for availability in systems of asymmetric replicated peers
using local-first's principles to establish eventual consensus

formally supported by behavioural types

3/58

https://drops.dagstuhl.de/opus/frontdoor.php?source_opus=18208
https://arxiv.org/abs/2305.04848

Take-away message

An approach to
trade consistency for availability in systems of asymmetric replicated peers
using local-first's principles to establish eventual consensus

formally supported by behavioural types

@ swarm = (machines + local logs) * imaginary global log

@ @ swarm protocols: systems from an abstract global viewpoint

e enforce good behaviour via behavioural typing

3/58

https://drops.dagstuhl.de/opus/frontdoor.php?source_opus=18208
https://arxiv.org/abs/2305.04848

Take-away message

An approach to

trade consistency for availability in systems of asymmetric replicated peers

using local-first's principles to establish eventual consensus

formally supported by behavioural types

@ swarm = (machines + local logs) * imaginary global log

AL,

@ @ swarm protocols: systems from an abstract global viewpoint

e enforce good behaviour via behavioural typing

https://drops.dagstuhl.de/opus/frontdoor.php?source_opus=18208;
p P g p php p

Iﬁ See our recent ECOOP 2023 paper

extended version available at https://arxiv.org/abs/2305.04848)

3/58

https://drops.dagstuhl.de/opus/frontdoor.php?source_opus=18208
https://arxiv.org/abs/2305.04848

Distributed coordination

An “old" problem

Distributed agreement

Distributed sharing

Security

Computer-assisted collaborative work

With some “solutions”

Centralisation points
Consensus protocols
Commutative replicated data types

4/58

Distributed coordination

An “old" problem

Distributed agreement

Distributed sharing

Security

Computer-assisted collaborative work

Availability = Money
Kohavi et al. KDD'14
@ Amazon sales down 1% if 100ms delay

@ Google searches down 0.2% - 0.6% if
100-400ms delay

@ Bing's revenue down ~1.5% if 250ms delay

consistency

availability partitioning

With some “solutions”

Centralisation points
Consensus protocols
Commutative replicated data types

4/58

A new (?7) solution

What about using local-first principles?

Thou shall be autonomous

Thou shall collaborate

Thou shall recognise conflicts

Thou shall resolve conflicts

Thou shall be consistent

5/58

Plan of the talk

Some motivations

Our formalisation

Our typing discipline

Tool support

Open issues

6/58

— Motivations —

7/58

A collaborative environment and its execution model

(9V xA12y jo Asainod sie saunioid sy3)

A collaborative environment and its execution model

$
~
]
S
2
9]
=
o
=
®
n
=
9]
2
'd
>
n
E
s
[
&
)
°
2
=
c
[e]
o
9]
=
=}
s
©
1)
o
+
<
o
o
9]
o

(9V xA12y jo Asainod sie saunioid sy3)

A collaborative environment and its execution model

People + Real-time controllers + IT systems and networks:

utonomous production cells

@ work divided am|

(9V xA12y jo Asainod sie saunioid sy3)

A collaborative environment and its execution model

People + Real-time controllers + IT systems and networks:

tonomous production cells

@ work divided among

] by designing and controlling

the flow of resou

d information

@ efficiency is dete

(9V xA12y jo Asainod sie saunioid sy3)

A collaborative environment and its execution model

tonomous production cells

ll i au
when disconnected,‘ ‘(eep calm and move on

People + Real-time controllers + IT systems and networks:
@ work divided amon

b0
=
°
:
g
c
[e]
o
o
c
©
B0 <
= 2
TR
i
T Q2

=
&=
ud

the flow of resou

@ efficiency is dete

(9V xA12y jo Asainod sie saunioid sy3)

A collaborative environment and its execution model

People + Real-time controllers + IT systems and networks:

@ work divided among autonomous production cells

efficiency is dete| d by designing and controlling

the flow of resource

when disconnected, ‘(eep calm and move on

@)

of Actyx AG)

A collaborative environment and its execution model

People + Real-time controllers + IT systems and networks:

@ work divided am autonomous production cells
efficiency is deteEmine\'T by designing and controlling

the flow of resouree 'and information

. N
when disconnected, ‘(eep calm and move on

@)

of Actyx AG)

’%vice/operator

i

& |
\ ” =N

> .

T

“(H
1d

e

~
aARjY ...

A collaborative environment and its execution model

People + Real-time controllers + IT systems and networks:

@ work divided am autonomous production cells
efficiency is deteEmine\'T by designing and controlling

the flow of resouree 'and information

. N
when disconnected, ‘(eep calm and move on

@)

of Actyx AG)

‘deyice/operator

qWhere needed
.

N .
T

“(H
1d

e

~
aARjY ...

A collaborative environment and its execution model

People + Real-time controllers + IT systems and networks:

@ work divided am ng autonomous production cells

@ efficiency is dete‘Fmin\e* by designing and controlling
the flow of resource and information

? @ when disconnected, ‘(e\ep calm and move on

of Actyx AG)

“Operational model
local twih for each device/operator

@ twins are replicated where needed

D
@ events have unique IDs.and
@ record facts (e;g,.j,['ﬁom ‘s\enﬂérs) or
o decisions (e.g.,/froman F}/p ator)
@ spread information asynchronously

e

I
@. LU 8/58

A collaborative environment and its execution model

People + Real-time controllers + IT systems and networks:

@ work divided am ng autonomous production cells

@ efficiency is dete‘Fmin\e* by designing and controlling
the flow of resource and information

? @ when disconnected, ‘(e\ep calm and move on

of Actyx AG)

“Operational model
local twih for each device/operator

@ twins are replicated where needed

D
@ events have unique IDs.and
@ record facts (e;g,.j,['ﬁom ‘s\enﬂérs) or
o decisions (e.g.,/froman F}/p ator)
@ spread information asynchronously

@ logs are local to twins

e

I
@. LU 8/58

A collaborative environment and its execution model

People + Real-time controllers + IT systems and networks:
@ work divided ampng autonomous production cells

@ efficiency is dete| minec by designing and controlling
the flow of resource and information

when disconnected, ‘(e\ep calm and move on

/0/Ioca| twit'; for eac \%vice/operator

e A
@ twins are replicated where needed

of Actyx AG)

- =
@ events have unique IDs.and
@ record facts (ejg.fJ,['From\'s\e,njrérs) or
o decisions (e.g., from an| operator)
@ spread information ie{synchronously
@ logs are local to twins
@ a log determines the computational state of its twin

i

A collaborative environment and its execution model

People + Real-time controllers + IT systems and networks:
@ work divided ampng autonomous production cells

@ efficiency is dete| minec by designing and controlling
the flow of resource and information

when disconnected, ‘(e\ep calm and move on

of Actyx AG)

/0/Ioca| twit'; for eac \%vice/operator

e A
@ twins are replicated where needed

s AN
@ events have unique IDs.and

@ record facts (e;g.fJ,['From\'s\e,njrérs) or
o decisions (e.g.,/froman F}}p ator)
@ spread information ie{synchronously
@ logs are local to twins

@ a log determines the computational state of its twin

1@ replicated logs are merged

w sl @R

The execution scheme

while true:
execute
propagate ;

merge

9/58

Other application domains / motivations

More applications

Robots (e.g., rescue missions or space applications)
Collaborative applications (https://automerge.org/)

Home automation

10/58

https://automerge.org/

Other application domains / motivations

loT...really?
Why your fridge and mobile should go in the cloud to talk to each other?

10/58

Other application domains / motivations

“Anytime, anywhere..." really?
like the AWS's outage on 25/11/2020

or almost all Google services down on 14/12/2020

DSL typical availability of 97% (& some SLA have no lower bound) checkout
https://www.internetsociety.org/blog/2022/03/what-is-the-digital-divide

10/58

https://www.internetsociety.org/blog/2022/03/what-is-the-digital-divide

Other application domains / motivations

Also, taking decisions locally

can reduce downtime
shifts data ownership

gets rid of any centralization point...for real

10/58

Plan of the talk

A motivating case study

Our formalisation

Our typing discipline

Tool support

Future work

12/58

— A formal model —

13/58

Ingredients (I): events & logs

Events e

Logs e1-e...

14 /58

Ingredients (I): events & logs

Events = e : t

src(e)

Logs = e;-ex... 1 t1cto...

Ingredients (I): events & logs

Events - € : t
src(e)
Logs = e;-ex... 1 t1cto...

order induced by { =e1---e, e; </ ej <= i<

14 /58

Ingredients (I1): log shipping

Machine Alice emits logs upon execution of commands (we'll see how in a moment)

15/58

Ingredients (I1): log shipping

Machine Alice emits logs upon execution of commands (we'll see how in a moment)
Such events are appended to the logs of machines in two phases:

15/58

Ingredients (I1): log shipping

Machine Alice emits logs upon execution of commands (we'll see how in a moment)
Such events are appended to the logs of machines in two phases:
Phase I: emitted events are appended to the local log of the emitting machine

Alice

15/58

Ingredients (I1): log shipping

Machine Alice emits logs upon execution of commands (we'll see how in a moment)
Such events are appended to the logs of machines in two phases:

Phase I: emitted events are appended to the local log of the emitting machine

G

Alice

ey | e a

es b

15/58

Ingredients (I1): log shipping

Machine Alice emits logs upon execution of commands (we'll see how in a moment)
Such events are appended to the logs of machines in two phases:

Phase I: emitted events are appended to the local log of the emitting machine

G

Alice

ey | e a

es b

Phase Il: newly emitted events are shipped to other machines
b

Alice

e1|ex|e3|a c

15/58

Ingredients (I1): log shipping

Machine Alice emits logs upon execution of commands (we'll see how in a moment)
Such events are appended to the logs of machines in two phases:

Phase I: emitted events are appended to the local log of the emitting machine

G

Alice

ey | e a

es b

Phase Il: newly emitted events are shipped to other machines
b

Alice €1 €2 |€3a c €1 | €2| €3 a

b

@

propagating b Alice
_—

w [a[o]:]s

15/58

Machines by example

InitialP =

18/58

Machines by example

Request / Requested

InitialP = Request — Requested-

18/58

Machines by example

Request / Requested

Requested?
InitialP AuctionP

InitialP = Request — Requested- [Requested? AuctionP]

18/58

Machines by example

Request / Requested

InitialP

Requested?

InitialP

AuctionP

@

Request — Requested- [Requested? AuctionP]

18/58

Machines by example

Request / Requested

Requested?

InitialP

InitialP = Request — Requested- [Requested? AuctionP]

AuctionP = [
Bid? Bidderld? AuctionP

18/58

Machines by example

Request / Requested

Requested?

InitialP

InitialP = Request — Requested- [Requested? AuctionP]

AuctionP = [
Bid? Bidderld? AuctionP

18/58

Machines by example

Request / Requested

Requested?

InitialP

Select / Selected - PassengerlD

InitialP = Request — Requested- [Requested? AuctionP]

AuctionP = Select — Selected - Passengerld- |
Bid? Bidderld? AuctionP

18/58

Machines by example

Request / Requested

Requested?

Selected? PassengerlD?
AuctionP RideP
Select / Selected stsenger\D&J

InitialP

©

InitialP = Request — Requested- [Requested? AuctionP]
AuctionP = Select — Selected - Passengerld- |

Bid? Bidderld? AuctionP

&

Selected? Passengerld? RideP

RideP =

18/58

Machines, formally

Fix a set of commands ranged over by c
Let x range over finite maps from commands to non-empty log types

19/58

Machines, formally

Fix a set of commands ranged over by c
Let x range over finite maps from commands to non-empty log types

Machine: deterministic regular term of M = Ket1?7My & -+ - &t 7 M,

19/58

Machines, formally

Fix a set of commands ranged over by c

Let x range over finite maps from commands to non-empty log types

Machine: deterministic regular term of M = Ket1?7My & -+ - &t 7 M,

Think of machines as emitters/consumers of events with a semantics given in terms of
state transition function :

=M

M with local log ¢ is in the im-
plicit state §(M, £) reached after
processing each event in ¢

0 if Fert, ML W

otherwise

o(M,e-?)

19/58

Machines, formally

Fix a set of commands ranged over by c

Let x range over finite maps from commands to non-empty log types

Machine: deterministic regular term of M =

state transition function :

5(M7€) =M
! .) t? ,
oM, e-l) = oM, l) if Feit, M— M
d(M,¢) otherwise
s, 0) L5 s, 0) ¢ fresh F 001
(m,0) <25 (e 0)

Relti?My & -+ &tp?7 M)
Think of machines as emitters/consumers of events with a semantics given in terms of

M with local log ¢ is in the im-
plicit state §(M, £) reached after
processing each event in ¢

after processing the events in
¢, M reaches a state enabling
c /1 then the command execu-
tion can emit ¢’ of type 1 and
append it to the local log of M

19/58

Swarms

Swarms: Mia|| ... [Mp6|[£ st £ = Ulgigngi and (;Clfor1<i<n

23/58

Swarms

Swarms: Mia|| ... [Mp6|[£ st £ = Ulgigngi and (;Clfor1<i<n
where /1 C /5 is the sublog relation defined as

] 51 - 62 and <¢ - <ty and all events of ¢; appear in the
same order in />

the per-source partitions of
£y are prefixes of the corre-
sponding partitions of />

0 e <y €, src(e)=src(e)and € €l = eely

23/58

Swarms

Swarms: Mia|| ... [Mp6|[£ st £ = Ulgigngi and (;Clfor1<i<n
where /1 C /5 is the sublog relation defined as

] 51 - 62 and <¢ - <ty and all events of ¢; appear in the
same order in />

the per-source partitions of
£y are prefixes of the corre-
sponding partitions of />

0 e <y €, src(e)=src(e)and € €l = eely

The propagation of newly generated events happens by merging logs:
Log merging: ¢10x4p = {4 ! 0 CliUlyand (10 and (o C 0}

23/58

Semantics of swarms

By rule [Local] below, a command'’s execution updates both local and global logs

c/l

sre(i\ 4;) = {i} e lal]
(8,0) == (S[i — Mel, €'

S(i) =Mz M

[Local]

25 /58

Semantics of swarms

By rule [Local] below, a command's execution updates both local and global logs

c/l

src(\) ={i} 0 ell]
(s,0) == (S[i — Mel, €'

s(i)=Ma] Mg

[Local]

s(iy=Mz] GCOTE 4 Cl
(8,£) s (S[i = M), £)

[Prop]

By rule [Prop] above, the propagation of events happens
@ by shipping a non-deterministically chosen subset of events in the global log

@ to a non-deterministically chosen machine

25 /58

Plan of the talk

A motivating case study

Our formalisation

Our typing discipline

Tool support

Future work

28 /58

— Behavioural types for swarms —

20 /58

Inspired by choreographies

Quoting W3C:

“[...] a contract [...] of the common ordering conditions and constraints under which messages are
exchanged [...] from a global viewpoint [...]

Each party can then use the global definition to build and test solutions |[...]

global specification is in turn realised by combination of the resulting local systems”

30/58

Inspired by choreographies

Quoting W3C:

“[...] a contract [...] of the common ordering conditions and constraints under which messages are
exchanged [...] from a global viewpoint [...]

Each party can then use the global definition to build and test solutions |[...]

global specification is in turn realised by combination of the resulting local systems”

Choreography G

Synchrony global viewpoint
My M; My
Asynchrony Local viewpointy Local viewpoint; Local viewpoint,

30/58

Inspired by choreographies

Quoting W3C:

“[...] a contract [...] of the common ordering conditions and constraints under which messages are
exchanged [...] from a global viewpoint [...]

Each party can then use the global definition to build and test solutions |[...]

global specification is in turn realised by combination of the resulting local systems”

Choreography G

Synchrony global viewpoint
My M; M,
Asynchrony Local viewpoint; Local viewpoint; Local viewpoint, SPEE/ID R

30/58

Inspired by choreographies

Quoting W3C:

“[...] a contract [...] of the common ordering conditions and constraints under which messages are

exchanged [...] from a global viewpoint [...]
Each party can then use the global definition to build and test solutions |[...]
global specification is in turn realised by combination of the resulting local systems”

Synchrony Choreography G

global viewpoint Well-formedness
My M; M,
Asynchrony Local viewpoint; Local viewpoint; Local viewpoint, SPEE/ID R

30/58

Inspired by choreographies

Quoting W3C:

“[...] a contract [...] of the common ordering conditions and constraints under which messages are

exchanged [...] from a global viewpoint [...]
Each party can then use the global definition to build and test solutions [...]

global specification is in turn realised by combination of the resulting local systems”

Choreography G
Synchron: A n
Y! Y global viewpoint Well-formedness

o
8
o.
2
My M; M,
Asynchron; . . - T - N spec,no code
Y! Yy Local viewpoint; Local viewpoint; Local viewpoint, i

30/58

Inspired by choreographies

Quoting W3C:

“[...] a contract [...] of the common ordering conditions and constraints under which messages are

exchanged [...] from a global viewpoint [...]
Each party can then use the global definition to build and test solutions |[...]

global specification is in turn realised by combination of the resulting local systems”

Choreography G
Synchron: A n
Y! Y global viewpoint Well-formedness

o
8
o.
2

My M; M,

Asynchron; . . B T B N spec,no code
Y! Yy Local viewpoint; Local viewpoint; Local viewpoint, i
1 1 1
1 1

< < <

12 12 12

12 132 1<

1 1 1

h 4 A 4 v

Componenty s Component; Beevevees Component,

30/58

Swarm protocols by example

An intuitive auction protocol for a passenger P to get a taxi T:

Cancel@P

Request@P ~ Arrive@T ~ Start@pP ~ Receipt@0

—>(1) 2 3 4 5
U Select@P = ~ U Finishep

OffereT Record@T

31/58

Swarm protocols by example

An intuitive auction protocol for a passenger P to get a taxi T:

Cancel@P

Request@P Receipt@0

Arrive@T Start@P
() (5
—>(1) 2 3 4 5 (6)————— :
U Select@P O O U Finishep

OffereT Record@T

31/58

Swarm protocols: global type for local-first applications

An idealised specification relying on synchronous communication

Fix a set of roles ranged over by R (e.g., P, T, and O on slide 31)

The syntax of swarm protocols is again given co-inductively:

G = Zc;@R;(l;) G | 0 where [is a finite set (of indexes)
icl

32/58

An example

A swarm protocol for the taxi scenario on slide 31:

G = Request@P (Requested) . G,uction

Gauction = Offer@T (Bid - BidderID) . G,uction
+ Select@P (Selected - PassengerID) . Gehoose

Gchoose = Arrive@T (Arrived) . Start@P (Started) . Gyige
+ Cancel@P(Cancelled) . Receipt@0(Receipt) . 0

Gride = Record@T (Path) . Gyide

+ Finish@P (Finished - Rating) . Receipt@0(Receipt) .

33/58

An example

A swarm protocol for the taxi scenario on slide 31:

G = Request@P (Requested) . Gayction

the
Gascion = OfferaT (Bid - BidderD) . aeror h

+ Select@P (Selected - PassengerID) . Genoose

Gchoose = Arrive@T (Arrived) . Start@P (Started) . Gyige
+ Cancel@P(Cancelled) . Receipt@0(Receipt) . 0

Gride = Record@T (Path) . Gyide
+ Finish@P (Finished - Rating) . Receipt@0(Receipt) . 0

33/58

Swarm protocols as FSA

Like for machines, a swarm protocols G = > ;- ¢;@R;(1;) . G; has an associated FSA:

@ the set of states consists of G plus the states in G; for each i € {1...,n}
@ G is the initial state

e for each i € I, G has a transition to state G; labelled with ¢;0R;(1;), written

G ci/1i G

34/58

Semantics of swarm protocols

One rule only!

[G-Cmd]

36 /58

Semantics of swarm protocols

One rule only!

5(G,0) L5 @

/1 [G-Cmd]
(G, 0) == (G,¢)
where "
G |f€:6 4094&146.:"«' d “‘at

N tence (G, () may be andefened
5(G,0) = 5(G, ") if 6L5 G and i1 and €= ¢

1 otherwise

. gy

36 /58

Semantics of swarm protocols

One rule only!

0(G, 1) e Hel ?" log of fresh events
1 [G-Cmd]
(G,) == (G, - 1")
where "
G |f€:6 4094&146.:"«' d “‘at

N tence (G, () may be andefened
5(G,0) = 5(G, ") if 6L5 G and i1 and €= ¢

1 otherwise

. gy

36 /58

Semantics of swarm protocols

One rule only!

6(G, ?) RNyl AR ¢ log of fresh events

/ [G-Cmd]
(G, 0) <L (G, 0. 1)
where
G 0= ¢ Logs ta be cousamed “atomicatly’.
/1 tence (G, () may be andefened

o(G,0) =< 6(G, ") if G-

1 otherwise

Gand F¢:1land ¢ =10"-¢"

We restrict ourselves to deterministic swarm protocols that is, on different transitions
from a same state

o log types start differently log determinism
@ pairs (command,role) differ command determinism

36 /58

From swarm protocols to machines

Transitions of a swarm protocol G are labelled with a role that may invoke the command

37/58

From swarm protocols to machines

Transitions of a swarm protocol G are labelled with a role that may invoke the command

Each machine plays one role

37/58

From swarm protocols to machines

Transitions of a swarm protocol G are labelled with a role that may invoke the command

Each machine plays one role

@ Obtain machines by projecting G on each role

37/58

From swarm protocols to machines

Transitions of a swarm protocol G are labelled with a role that may invoke the command

Each machine plays one role

@ Obtain machines by projecting G on each role

First attempt

(Z C,'@R,'<l,'> . G,) \LR: K - [&iE/ 1,7G; i/R]

iel

where k= {(c; /1;) |[Ri=R and i € I}

37/58

From swarm protocols to machines

Transitions of a swarm protocol G are labelled with a role that may invoke the command

Each machine plays one role

@ Obtain machines by projecting G on each role

First attempt
(Z CiOR;(1;) .G,-) la=k - [&ic1 1,7 Gi 1]
iel
where k= {(c; /1;) |[Ri=R and i € I}
simple, but
@ projected machines are large in all but the most trivial cases

@ processing all events is undesirable: security and efficiency

37/58

Another attempt

@ Let's subscribe to subscriptions : maps from roles to sets of event types

Tt pcb-2ict,
processes sabscribe
s “tasies”

38/58

Another attempt

- Let's subscribe to subscriptions : maps from roles to sets of event types

T pab-04b,
processes sabscribe
ta “topics”
Given G =) ;. ci@R;(1;) . G;, the
projection of G on a role R with respect to subscription o is
Glg= k- [&jEJ filter(lj, o(R))? G_,' 7] where

38/58

Another attempt

@ Let's subscribe to subscriptions : maps from roles to sets of event types

D ppocb-0t,
processes sabscribe
20 “topics”
Given G = Ziel C;@R,‘(l;> . G;, the
projection of G on a role R with respect to subscription o is
G li= k- [&jeyfilter(15,0(R))? G; 7] where
/s:{c,-/l,-|R,-:Randiel} €, ift=ce
filter(1,E) = ¢ t-filter(1’,E) ifte€Eandl =1t -1’
J={iel|fiter(1;,0(R)) # €} filter(1, E) otherwise

38/58

Well-formedness

Trading consistency for availability has implications:

41/58

Well-formedness = Causality

Trading consistency for availability has implications:
Propagation of events is non-atomic (cf. rule [Prop])
— differences in how machines perceive the (state of the) computation

Causality
Fix a subscription o. For each branch i € I of G =3, ,ciCR;(1;).G;

YR adowld bave c enabled after ¢ then o(R)
Explicit re-enabling o(R;))N1; # 0 contains some event type emitted by '

Command causality if R can execute a command in G;
then c(R)N1; #0 and o(R)N1j 2 U, g o(R)NL;

41/58

Well-formedness = Causality + Determinacy

Trading consistency for availability has implications:
Propagation of events is non-atomic (cf. rule [Prop])
— different roles may take inconsistent decisions

Causality & Determinacy

Fix a subscription o. For each branch i € I of G =3, ,ciCR;(1;).G;

Explicit re-enabling o(R;)N1; # 0

Command causality if R can execute a command in G;

then c(R)N1; #0 and o(R)N1i 2 Upe, g o(R) N1

Determinacy Re, G = 1;[0] € o(R)

41/58

Well-formedness = Causality + Determinacy - Confusion

Trading consistency for availability has implications:
Propagation of events is non-atomic (cf. rule [Prop])
— branches unambiguously identified and events emitted on eventually discharged

branches ignored

Causality & Determinacy & Confusion freeness
Fix a subscription . For each branch i € I of G =}, ciCR;(1;).G;

Explicit re-enabling o(R;)N1; #0

Command causality if R can execute a command in G;
then o(R)N1; #0 and o(R)N1;i 2 Upe g o(R) N1

Determinacy R e, G = 1;[0] € o(R)

Confusion freeness for each t starting a log emitted by a command in G
there is a unique state G’ reachable from G which emits t

41/58

Implementations

A (o, G)-realisation is a swarm (S, €) such that, for each i € dom S, there exists a role
R € roles(G, o) such that S(i) = G | [|

45 /58

Implementations

A (o, G)-realisation is a swarm (S, €) such that, for each i € dom S, there exists a role
R € roles(G, o) such that S(i) = G | [|

Write ¢ =g, ¢’ when ¢ and ¢’ have the same effective type wrt G and o

A swarm (S, €) is eventually faithful to G and o if (S,¢e) = (8, ¢) then there is
(G,e) = (G, V') with ¢ =g, '

45 /58

Implementations & projections

A (o, G)-realisation is a swarm (S, €) such that, for each i € dom S, there exists a role
R € roles(G, o) such that S(i) = G | [|
Write ¢ =g, ¢’ when ¢ and ¢’ have the same effective type wrt G and o

A swarm (S, €) is eventually faithful to G and o if (S,¢e) = (8, ¢) then there is
(G,e) = (G, V') with ¢ =g, '

Lemma (Projections of well-formed protocols are eventually faithful)

If G is a o-WF protocol and (6(G ¢g,£)) be /1 then there exists {' =¢ , { such that
(G, &) = (G, #) and §(G,¢') <% &

45 /58

On correct realisations

(s,

(S’el)

/

consistent

N

(5762)

if there is ¢ s.t.

(S,e) - (S,[)

(s,41)

A
N

with £4 =00} and fo = £ -0y and £} N0y = 0

(s,43)

A4 set of nuns co consistent
when cto elements are
pacr-wise conscstent

46 /58

On correct realisations

(s,41) (s,41)

with £4 =00} and fo = £ -0y and £} N0y = 0

~ -~
i i (s,¢) => (5,0)
N

(S,€) consistent if there is ¢ s.t.
N A et of nans s consiotent
(8,42) (S,4) when cte elements are
pacn-aise conscatent
=¢

—
c2/l2, cn/ln (G, 0y 03+ £y)

For (G,) @/l (G e)
let 00) = 1 -4

46 /58

On correct realisations

(s,41) (s,41)

4/2H

(S,€) consistent if there is £ s.t. (S,e) = (S,¢)

N

A4 set of nuns co consistent

with f4 = 0- ¢ and o = €€, and £} N ¢, =
wten cts elements are

(s,42) (s,45)
pacn-wise consiatent
=t
For E/G 1/l (G, £1) c2/l2, <o/l (G, 71 - La---£5)
IetZ =fy - f'
Admissibility

A log ¢ is admissible for a o-WF protocol G if there are consistent runs
{(G,€) = (G, li)}1<i<k and a log ¢' € (><1<j<k ¢;) such that

U b, C=c.t, and PClforall1<i<k

1<i<k
46 /58

Results

Let G be well-formed; a realisation is a swarm whose components are projections of G

Lemma !Well—formedness ﬁenerates anz admissible |o%= |

If ¢ is admissible for G then there is a log ¢ such that (G,e) = (G, ') and { =¢ , I

Theorem (Realisations of WF protocols are admissible
If (8,€) = (8, 1) for (S, ¢€) realisation of G then ¢ is admissible for G

Corollarx |

Every realisation of G is eventually faithful wrt G and o

Theorem (Full realisations are complete
If S is a full realisation of G and (G, e) = (G, (') then there is S s.t. (S,e) = (8',¢)

47 /58

Plan of the talk

A motivating case study

Our formalisation

Our typing discipline

Tool support

Future work

49/58

— Tooling —

50/58

// analogous for other events; "type" property matches type name (checked by tool)

type Requested = { type: 'Requested'; pickup: string; dest: string }
type Events = Requested | Bid | BidderID | Selected |

/** Initial state for role P */
@proto('taxiRide') // decorator injects inferred protocol into runtime
export class InitialP extends State<Events> {
constructor(public id: string) { super() }
execRequest (pickup: string, dest: string) {
return this.events({ type: 'Requested', pickup, dest })
}
onRequested(ev: Requested) {
return new AuctionP(this.id, ev.pickup, ev.dest, (D)
}
T
{@proto('taxiRide')
export class AuctionP extends State<Events> {
constructor(public id: string, public pickup: string, public dest: string,
public bids: BidData[]) { super() }
onBid(evl: Bid, ev2: BidderID) {
const [price, time] = evl
this.bids.push({ price, time, bidderID: ev2.id })
return this
}
execSelect(taxild: string) {
return this.events({ type: 'Selected', taxiID },
{ type: 'PassengerID', id: this.id })
}
onSelected(ev: Selected, id: PassengerID) {
return new RideP(this.id, ev.taxiID)

¥
{@proto('taxiRide')
export class RideP extends State<Events> { ... }

Request / Requested

InitialP

Requested?

B/dds,,D S AuctionP

Select / Selected - PassengerlD

Selected?

PassengerID?

51/58

Architecture

TypeChecking
Well-Formedness
=
-
o
Equivalence test
.

@ TypeChecking implements the functionalities of our typing discipline
@ simulator simulates the semantics of swarm realisations

@ machine-check and machine-runner integrate our framework in the Actyx
platform

52/58

Architecture

LocalTypes
machine-runner initial T || A —— N
[ransttions | [...1] i

TypeChecking

B Well-Formedness
subscription
Lenguage support @achincscheck [Hep HachineID (sev Eventlype) | >
GlobalType

Equivalence test
s 4

T ———
transitions

@ TypeChecking implements the functionalities of our typing discipline
@ simulator simulates the semantics of swarm realisations

@ machine-check and machine-runner integrate our framework in the Actyx
platform

52/58

Architecture

LocalTypes

transitions | [...]]

TypeChecking

B Well-Formedness
subscription
language support Gachinsachack [Map MachineId (Set EventIype) | Projection
(-] our 1 -

""/’ Equivalence test
-t
simulator | -=-=-=:=- — [initi :

transitions

@ TypeChecking implements the functionalities of our typing discipline
@ simulator simulates the semantics of swarm realisations

@ machine-check and machine-runner integrate our framework in the Actyx
platform

52/58

Architecture

LocalTypes
machine-runner initial State
[ransttions | [...]

Machines
(TypeScript code) (s
YP! P K&&

TypeChecking

analyses @

ses i - py——y- Well-Formedness
TypeScript uses infers subscription
compiler fachine caeg [Map MachineId (Set EventIype) | Projection

Equivalence test

GlobalType

simulator

@ TypeChecking implements the functionalities of our typing discipline
@ simulator simulates the semantics of swarm realisations

@ machine-check and machine-runner integrate our framework in the Actyx
platform

52/58

Architecture

uses

Actyx
SDKy < @- {machine-runner |« 5
executes e

(TypeScript code)

LocalTypes

TypeChecking

. s Well-Formedness
Typeseripe — e
X machine-check N . —
compiler — ‘ Map MachineID (Set EventType) ‘ Projection

Equivalence test

da GlobalType
es inputs [imitial | State |

@ TypeChecking implements the functionalities of our typing discipline
@ simulator simulates the semantics of swarm realisations

@ machine-check and machine-runner integrate our framework in the Actyx
platform

52/58

If you want to play with our prototype?

Have a look at

@ our ECOOP artifact paper
(https://drops.dagstuhl.de/opus/volltexte/2023/18254/)

@ code at https://doi.org/10.5281/zenodo.7737188

@ An ISSTA tool paper from Actyx (https://arxiv.org/abs/2306.09068)

53/58

https://drops.dagstuhl.de/opus/volltexte/2023/18254/
https://doi.org/10.5281/zenodo.7737188
https://arxiv.org/abs/2306.09068

Plan of the talk

A motivating case study

Our formalisation

Our typing discipline

Tool support

Future work

54 /58

— Epilogue -

55 /58

To be continued....

There are a number of future directions to explore:

56 /58

To be continued....

There are a number of future directions to explore:

Identify weaker conditions for well-formedness

56 /58

To be continued....

There are a number of future directions to explore:
Identify weaker conditions for well-formedness

“Efficiency”

56 /58

To be continued....

There are a number of future directions to explore:
Identify weaker conditions for well-formedness
“Efficiency”

Subscriptions are hard to determine

56 /58

To be continued....

There are a number of future directions to explore:
Identify weaker conditions for well-formedness
“Efficiency”

Subscriptions are hard to determine

Relax some of our assumptions

56 /58

To be continued....

There are a number of future directions to explore:
Identify weaker conditions for well-formedness
“Efficiency”

Subscriptions are hard to determine
Relax some of our assumptions
Compensations

Unreliable propagation

56 /58

To be continued....

There are a number of future directions to explore:
Identify weaker conditions for well-formedness
“Efficiency”

Subscriptions are hard to determine

Relax some of our assumptions
Compensations
Unreliable propagation

Adversarial contexts

56 /58

To be continued....

There are a number of future directions to explore:
Identify weaker conditions for well-formedness
“Efficiency”

Subscriptions are hard to determine

Relax some of our assumptions
Compensations
Unreliable propagation

Adversarial contexts

56 /58

Summary

An interesting paradigm grounded on principles for local-first principles: temporary
inconsistency are tolerated provided that they can be (and are) resolved at some point

57/58

Summary

An interesting paradigm grounded on principles for local-first principles: temporary
inconsistency are tolerated provided that they can be (and are) resolved at some point

A formal semantics that faithfully captures Actyx's platform

57/58

Summary

An interesting paradigm grounded on principles for local-first principles: temporary
inconsistency are tolerated provided that they can be (and are) resolved at some point

A formal semantics that faithfully captures Actyx's platform

and behavioural types to specify and verify eventual consensus

57/58

Yteank you!

