
Behavioural Types for Local-First Software

Emilio Tuosto @ GSSI

joint work with

Roland Kuhn @ Actyx and Hernán Melgratti @ UBA

It-Matters
Lucca 11-12 July, 2023

1 / 58

– Prelude –

2 / 58

Take-away message

An approach to

trade consistency for availability in systems of asymmetric replicated peers

using local-first’s principles to establish eventual consensus

formally supported by behavioural types

swarm = (machines + local logs) ∗ imaginary global log
swarm protocols: systems from an abstract global viewpoint
enforce good behaviour via behavioural typing

See our recent ECOOP 2023 paper
(https://drops.dagstuhl.de/opus/frontdoor.php?source_opus=18208;
extended version available at https://arxiv.org/abs/2305.04848)

3 / 58

https://drops.dagstuhl.de/opus/frontdoor.php?source_opus=18208
https://arxiv.org/abs/2305.04848

Take-away message

An approach to

trade consistency for availability in systems of asymmetric replicated peers

using local-first’s principles to establish eventual consensus

formally supported by behavioural types

swarm = (machines + local logs) ∗ imaginary global log
swarm protocols: systems from an abstract global viewpoint
enforce good behaviour via behavioural typing

See our recent ECOOP 2023 paper
(https://drops.dagstuhl.de/opus/frontdoor.php?source_opus=18208;
extended version available at https://arxiv.org/abs/2305.04848)

3 / 58

https://drops.dagstuhl.de/opus/frontdoor.php?source_opus=18208
https://arxiv.org/abs/2305.04848

Take-away message

An approach to

trade consistency for availability in systems of asymmetric replicated peers

using local-first’s principles to establish eventual consensus

formally supported by behavioural types

swarm = (machines + local logs) ∗ imaginary global log
swarm protocols: systems from an abstract global viewpoint
enforce good behaviour via behavioural typing

See our recent ECOOP 2023 paper
(https://drops.dagstuhl.de/opus/frontdoor.php?source_opus=18208;
extended version available at https://arxiv.org/abs/2305.04848)

3 / 58

https://drops.dagstuhl.de/opus/frontdoor.php?source_opus=18208
https://arxiv.org/abs/2305.04848

Take-away message

An approach to

trade consistency for availability in systems of asymmetric replicated peers

using local-first’s principles to establish eventual consensus

formally supported by behavioural types

swarm = (machines + local logs) ∗ imaginary global log
swarm protocols: systems from an abstract global viewpoint
enforce good behaviour via behavioural typing

See our recent ECOOP 2023 paper
(https://drops.dagstuhl.de/opus/frontdoor.php?source_opus=18208;
extended version available at https://arxiv.org/abs/2305.04848)

3 / 58

https://drops.dagstuhl.de/opus/frontdoor.php?source_opus=18208
https://arxiv.org/abs/2305.04848

Take-away message

An approach to

trade consistency for availability in systems of asymmetric replicated peers

using local-first’s principles to establish eventual consensus

formally supported by behavioural types

swarm = (machines + local logs) ∗ imaginary global log
swarm protocols: systems from an abstract global viewpoint
enforce good behaviour via behavioural typing

See our recent ECOOP 2023 paper
(https://drops.dagstuhl.de/opus/frontdoor.php?source_opus=18208;
extended version available at https://arxiv.org/abs/2305.04848)

3 / 58

https://drops.dagstuhl.de/opus/frontdoor.php?source_opus=18208
https://arxiv.org/abs/2305.04848

Distributed coordination

An “old” problem

Distributed agreement
Distributed sharing
Security
Computer-assisted collaborative work
...

consistency

availability partitioning

Availability = Money
Kohavi et al. KDD’14

Amazon sales down 1% if 100ms delay

Google searches down 0.2% - 0.6% if
100-400ms delay

Bing’s revenue down ∼1.5% if 250ms delay

With some “solutions”

Centralisation points
Consensus protocols
Commutative replicated data types
...

4 / 58

Distributed coordination

An “old” problem

Distributed agreement
Distributed sharing
Security
Computer-assisted collaborative work
...

consistency

availability partitioning

Availability = Money
Kohavi et al. KDD’14

Amazon sales down 1% if 100ms delay

Google searches down 0.2% - 0.6% if
100-400ms delay

Bing’s revenue down ∼1.5% if 250ms delay

With some “solutions”

Centralisation points
Consensus protocols
Commutative replicated data types
...

4 / 58

A new (?) solution

What about using local-first principles?
Thou shall be autonomous

Thou shall collaborate

Thou shall recognise conflicts

Thou shall resolve conflicts

Thou shall be consistent

5 / 58

Plan of the talk

Some motivations

Our formalisation

Our typing discipline

Tool support

Open issues

6 / 58

– Motivations –

7 / 58

A collaborative environment and its execution model
(t

he
pi

ct
ur

es
ar

e
co

ur
te

sy
of

A
ct

yx
A
G

)

8 / 58

A collaborative environment and its execution model
(t

he
pi

ct
ur

es
ar

e
co

ur
te

sy
of

A
ct

yx
A
G

)

People + Real-time controllers + IT systems and networks:

work divided among autonomous production cells

efficiency is determined by designing and controlling
the flow of resource and information

when disconnected, keep calm and move on

8 / 58

A collaborative environment and its execution model
(t

he
pi

ct
ur

es
ar

e
co

ur
te

sy
of

A
ct

yx
A
G

)

People + Real-time controllers + IT systems and networks:

work divided among autonomous production cells

efficiency is determined by designing and controlling
the flow of resource and information

when disconnected, keep calm and move on

8 / 58

A collaborative environment and its execution model
(t

he
pi

ct
ur

es
ar

e
co

ur
te

sy
of

A
ct

yx
A
G

)

People + Real-time controllers + IT systems and networks:

work divided among autonomous production cells

efficiency is determined by designing and controlling
the flow of resource and information

when disconnected, keep calm and move on

8 / 58

A collaborative environment and its execution model
(t

he
pi

ct
ur

es
ar

e
co

ur
te

sy
of

A
ct

yx
A
G

)

People + Real-time controllers + IT systems and networks:

work divided among autonomous production cells

efficiency is determined by designing and controlling
the flow of resource and information

when disconnected, keep calm and move on

8 / 58

A collaborative environment and its execution model
(t

he
pi

ct
ur

es
ar

e
co

ur
te

sy
of

A
ct

yx
A
G

)

People + Real-time controllers + IT systems and networks:

work divided among autonomous production cells

efficiency is determined by designing and controlling
the flow of resource and information

when disconnected, keep calm and move on

Operational model

local twin for each device/operator

twins are replicated where needed

events have unique IDs and
record facts (e.g., from sensors) or
decisions (e.g., from an operator)
spread information asynchronously

logs are local to twins

a log determines the computational state of its twin

replicated logs are merged

8 / 58

A collaborative environment and its execution model
(t

he
pi

ct
ur

es
ar

e
co

ur
te

sy
of

A
ct

yx
A
G

)

People + Real-time controllers + IT systems and networks:

work divided among autonomous production cells

efficiency is determined by designing and controlling
the flow of resource and information

when disconnected, keep calm and move on

Operational model

local twin for each device/operator

twins are replicated where needed

events have unique IDs and
record facts (e.g., from sensors) or
decisions (e.g., from an operator)
spread information asynchronously

logs are local to twins

a log determines the computational state of its twin

replicated logs are merged

8 / 58

A collaborative environment and its execution model
(t

he
pi

ct
ur

es
ar

e
co

ur
te

sy
of

A
ct

yx
A
G

)

People + Real-time controllers + IT systems and networks:

work divided among autonomous production cells

efficiency is determined by designing and controlling
the flow of resource and information

when disconnected, keep calm and move on

Operational model

local twin for each device/operator

twins are replicated where needed

events have unique IDs and
record facts (e.g., from sensors) or
decisions (e.g., from an operator)
spread information asynchronously

logs are local to twins

a log determines the computational state of its twin

replicated logs are merged

8 / 58

A collaborative environment and its execution model
(t

he
pi

ct
ur

es
ar

e
co

ur
te

sy
of

A
ct

yx
A
G

)

People + Real-time controllers + IT systems and networks:

work divided among autonomous production cells

efficiency is determined by designing and controlling
the flow of resource and information

when disconnected, keep calm and move on

Operational model

local twin for each device/operator

twins are replicated where needed

events have unique IDs and
record facts (e.g., from sensors) or
decisions (e.g., from an operator)
spread information asynchronously

logs are local to twins

a log determines the computational state of its twin

replicated logs are merged

8 / 58

A collaborative environment and its execution model
(t

he
pi

ct
ur

es
ar

e
co

ur
te

sy
of

A
ct

yx
A
G

)

People + Real-time controllers + IT systems and networks:

work divided among autonomous production cells

efficiency is determined by designing and controlling
the flow of resource and information

when disconnected, keep calm and move on

Operational model

local twin for each device/operator

twins are replicated where needed

events have unique IDs and
record facts (e.g., from sensors) or
decisions (e.g., from an operator)
spread information asynchronously

logs are local to twins

a log determines the computational state of its twin

replicated logs are merged

8 / 58

A collaborative environment and its execution model
(t

he
pi

ct
ur

es
ar

e
co

ur
te

sy
of

A
ct

yx
A
G

)

People + Real-time controllers + IT systems and networks:

work divided among autonomous production cells

efficiency is determined by designing and controlling
the flow of resource and information

when disconnected, keep calm and move on

Operational model

local twin for each device/operator

twins are replicated where needed

events have unique IDs and
record facts (e.g., from sensors) or
decisions (e.g., from an operator)
spread information asynchronously

logs are local to twins

a log determines the computational state of its twin

replicated logs are merged

8 / 58

A collaborative environment and its execution model
(t

he
pi

ct
ur

es
ar

e
co

ur
te

sy
of

A
ct

yx
A
G

)

People + Real-time controllers + IT systems and networks:

work divided among autonomous production cells

efficiency is determined by designing and controlling
the flow of resource and information

when disconnected, keep calm and move on

Operational model

local twin for each device/operator

twins are replicated where needed

events have unique IDs and
record facts (e.g., from sensors) or
decisions (e.g., from an operator)
spread information asynchronously

logs are local to twins

a log determines the computational state of its twin

replicated logs are merged

8 / 58

The execution scheme

while true:

execute ;

propagate ;

merge

9 / 58

Other application domains / motivations

More applications
Robots (e.g., rescue missions or space applications)

Collaborative applications (https://automerge.org/)

Home automation

10 / 58

https://automerge.org/

Other application domains / motivations

IoT...really?
Why your fridge and mobile should go in the cloud to talk to each other?

10 / 58

Other application domains / motivations

“Anytime, anywhere...” really?
like the AWS’s outage on 25/11/2020

or almost all Google services down on 14/12/2020

DSL typical availability of 97% (& some SLA have no lower bound) checkout
https://www.internetsociety.org/blog/2022/03/what-is-the-digital-divide

10 / 58

https://www.internetsociety.org/blog/2022/03/what-is-the-digital-divide

Other application domains / motivations

Also, taking decisions locally
can reduce downtime

shifts data ownership

gets rid of any centralization point...for real

10 / 58

Plan of the talk

A motivating case study

Our formalisation

Our typing discipline

Tool support

Future work

12 / 58

– A formal model –

13 / 58

Ingredients (I): events & logs

Events

⊢

e

: t

src(e)

Logs

⊢

e1 · e2 . . .

: t1 · t2 . . .
order induced by ℓ = e1 · · · en e i <ℓ e j ⇐⇒ i < j

14 / 58

Ingredients (I): events & logs

Events ⊢ e : t

src(e)

Logs ⊢ e1 · e2 . . . : t1 · t2 . . .

order induced by ℓ = e1 · · · en e i <ℓ e j ⇐⇒ i < j

14 / 58

Ingredients (I): events & logs

Events ⊢ e : t

src(e)

Logs ⊢ e1 · e2 . . . : t1 · t2 . . .
order induced by ℓ = e1 · · · en e i <ℓ e j ⇐⇒ i < j

14 / 58

Ingredients (II): log shipping
Machine Alice emits logs upon execution of commands (we’ll see how in a moment)

Such events are appended to the logs of machines in two phases:

Phase I: emitted events are appended to the local log of the emitting machine
Alice e1 e2 e3

Phase II: newly emitted events are shipped to other machines
Alice e1 e2 e3

Bob e3

propagating b
−−−−−−−−−→

Alice e1 e2 e3

Bob e2 e3 a b

15 / 58

Ingredients (II): log shipping
Machine Alice emits logs upon execution of commands (we’ll see how in a moment)
Such events are appended to the logs of machines in two phases:

Phase I: emitted events are appended to the local log of the emitting machine
Alice e1 e2 e3

Phase II: newly emitted events are shipped to other machines
Alice e1 e2 e3

Bob e3

propagating b
−−−−−−−−−→

Alice e1 e2 e3

Bob e2 e3 a b

15 / 58

Ingredients (II): log shipping
Machine Alice emits logs upon execution of commands (we’ll see how in a moment)
Such events are appended to the logs of machines in two phases:

Phase I: emitted events are appended to the local log of the emitting machine

Alice e1 e2 e3

a · b · c

Phase II: newly emitted events are shipped to other machines
Alice e1 e2 e3

Bob e3

propagating b
−−−−−−−−−→

Alice e1 e2 e3

Bob e2 e3 a b

15 / 58

Ingredients (II): log shipping
Machine Alice emits logs upon execution of commands (we’ll see how in a moment)
Such events are appended to the logs of machines in two phases:

Phase I: emitted events are appended to the local log of the emitting machine

Alice e1 e2 e3

a · b · c

a b c

Phase II: newly emitted events are shipped to other machines
Alice e1 e2 e3

Bob e3

propagating b
−−−−−−−−−→

Alice e1 e2 e3

Bob e2 e3 a b

15 / 58

Ingredients (II): log shipping
Machine Alice emits logs upon execution of commands (we’ll see how in a moment)
Such events are appended to the logs of machines in two phases:

Phase I: emitted events are appended to the local log of the emitting machine

Alice e1 e2 e3

a · b · c

a b c

Phase II: newly emitted events are shipped to other machines
Alice e1 e2 e3 a b c

Bob e3

propagating b
−−−−−−−−−→

Alice e1 e2 e3 a b c

Bob e2 e3 a b

15 / 58

Ingredients (II): log shipping
Machine Alice emits logs upon execution of commands (we’ll see how in a moment)
Such events are appended to the logs of machines in two phases:

Phase I: emitted events are appended to the local log of the emitting machine

Alice e1 e2 e3

a · b · c

a b c

Phase II: newly emitted events are shipped to other machines
Alice e1 e2 e3 a b c

Bob e3

propagating b
−−−−−−−−−→

Alice e1 e2 e3 a b c

Bob e2 e3 a b

15 / 58

Machines by example

InitialP

InitialP =

Request 7→ Requested·

[Requested? AuctionP]

AuctionP = Select 7→ Selected ·PassengerId· [
Bid?BidderId? AuctionP
&
Selected?PassengerId? RideP

]

RideP = · · ·

18 / 58

Machines by example

InitialP

Request /Requested

InitialP = Request 7→ Requested·

[Requested? AuctionP]

AuctionP = Select 7→ Selected ·PassengerId· [
Bid?BidderId? AuctionP
&
Selected?PassengerId? RideP

]

RideP = · · ·

18 / 58

Machines by example

InitialP AuctionP

Request /Requested

Requested?

InitialP = Request 7→ Requested· [Requested? AuctionP]

AuctionP = Select 7→ Selected ·PassengerId· [
Bid?BidderId? AuctionP
&
Selected?PassengerId? RideP

]

RideP = · · ·

18 / 58

Machines by example

InitialP AuctionP

Request /Requested

Requested?

InitialP = Request 7→ Requested· [Requested? AuctionP]

AuctionP =

Select 7→ Selected ·PassengerId· [
Bid?BidderId? AuctionP
&
Selected?PassengerId? RideP

]

RideP = · · ·

18 / 58

Machines by example

InitialP AuctionP

1

Request /Requested

Requested?

Bi
d?

InitialP = Request 7→ Requested· [Requested? AuctionP]

AuctionP =

Select 7→ Selected ·PassengerId·

[
Bid?BidderId? AuctionP

&
Selected?PassengerId? RideP

]

RideP = · · ·

18 / 58

Machines by example

InitialP AuctionP

1

Request /Requested

Requested?

Bi
d?

Bi
dd

er
ID
?

InitialP = Request 7→ Requested· [Requested? AuctionP]

AuctionP =

Select 7→ Selected ·PassengerId·

[
Bid?BidderId? AuctionP

&
Selected?PassengerId? RideP

]

RideP = · · ·

18 / 58

Machines by example

InitialP AuctionP

1

Request /Requested

Requested?

Select /Selected ·PassengerID

Bi
d?

Bi
dd

er
ID
?

InitialP = Request 7→ Requested· [Requested? AuctionP]

AuctionP = Select 7→ Selected ·PassengerId· [
Bid?BidderId? AuctionP

&
Selected?PassengerId? RideP

]

RideP = · · ·

18 / 58

Machines by example

InitialP AuctionP 2 RideP

1

Request /Requested

Requested?

Select /Selected ·PassengerID

Bi
d?

Bi
dd

er
ID
?

Selected? PassengerID?

InitialP = Request 7→ Requested· [Requested? AuctionP]

AuctionP = Select 7→ Selected ·PassengerId· [
Bid?BidderId? AuctionP
&
Selected?PassengerId? RideP

]

RideP = · · ·

18 / 58

Machines, formally

Fix a set of commands ranged over by c
Let κ range over finite maps from commands to non-empty log types

Machine: deterministic regular term of M
co
::= κ·[t1? M1 & · · ·& tn? Mn]

Think of machines as emitters/consumers of events with a semantics given in terms of
state transition function :

δ(M, ϵ) = M

δ(M, e · ℓ) =

{
δ(M′, ℓ) if ⊢ e : t , M t?−−→ M′

δ(M, ℓ) otherwise

That is
M with local log ℓ is in the im-
plicit state δ(M, ℓ) reached after
processing each event in ℓ

δ(M, ℓ)
c / l−−−→ δ(M, ℓ) ℓ′ fresh ⊢ ℓ′ : l

(M, ℓ)
c / l−−−→ (M, ℓ · ℓ′)

That is
after processing the events in
ℓ, M reaches a state enabling
c / l then the command execu-
tion can emit ℓ′ of type l and
append it to the local log of M

19 / 58

Machines, formally

Fix a set of commands ranged over by c
Let κ range over finite maps from commands to non-empty log types

Machine: deterministic regular term of M
co
::= κ·[t1? M1 & · · ·& tn? Mn]

Think of machines as emitters/consumers of events with a semantics given in terms of
state transition function :

δ(M, ϵ) = M

δ(M, e · ℓ) =

{
δ(M′, ℓ) if ⊢ e : t , M t?−−→ M′

δ(M, ℓ) otherwise

That is
M with local log ℓ is in the im-
plicit state δ(M, ℓ) reached after
processing each event in ℓ

δ(M, ℓ)
c / l−−−→ δ(M, ℓ) ℓ′ fresh ⊢ ℓ′ : l

(M, ℓ)
c / l−−−→ (M, ℓ · ℓ′)

That is
after processing the events in
ℓ, M reaches a state enabling
c / l then the command execu-
tion can emit ℓ′ of type l and
append it to the local log of M

19 / 58

Machines, formally

Fix a set of commands ranged over by c
Let κ range over finite maps from commands to non-empty log types

Machine: deterministic regular term of M
co
::= κ·[t1? M1 & · · ·& tn? Mn]

Think of machines as emitters/consumers of events with a semantics given in terms of
state transition function :

δ(M, ϵ) = M

δ(M, e · ℓ) =

{
δ(M′, ℓ) if ⊢ e : t , M t?−−→ M′

δ(M, ℓ) otherwise

That is
M with local log ℓ is in the im-
plicit state δ(M, ℓ) reached after
processing each event in ℓ

δ(M, ℓ)
c / l−−−→ δ(M, ℓ) ℓ′ fresh ⊢ ℓ′ : l

(M, ℓ)
c / l−−−→ (M, ℓ · ℓ′)

That is
after processing the events in
ℓ, M reaches a state enabling
c / l then the command execu-
tion can emit ℓ′ of type l and
append it to the local log of M

19 / 58

Machines, formally

Fix a set of commands ranged over by c
Let κ range over finite maps from commands to non-empty log types

Machine: deterministic regular term of M
co
::= κ·[t1? M1 & · · ·& tn? Mn]

Think of machines as emitters/consumers of events with a semantics given in terms of
state transition function :

δ(M, ϵ) = M

δ(M, e · ℓ) =

{
δ(M′, ℓ) if ⊢ e : t , M t?−−→ M′

δ(M, ℓ) otherwise

That is
M with local log ℓ is in the im-
plicit state δ(M, ℓ) reached after
processing each event in ℓ

δ(M, ℓ)
c / l−−−→ δ(M, ℓ) ℓ′ fresh ⊢ ℓ′ : l

(M, ℓ)
c / l−−−→ (M, ℓ · ℓ′)

That is
after processing the events in
ℓ, M reaches a state enabling
c / l then the command execu-
tion can emit ℓ′ of type l and
append it to the local log of M

19 / 58

Swarms

Swarms: M1 ℓ1 | . . . | Mn ℓn | ℓ s.t. ℓ =
⋃

1≤i≤n ℓi and ℓi ⊑ ℓ for 1 ≤ i ≤ n

where ℓ1 ⊑ ℓ2 is the sublog relation defined as

ℓ1 ⊆ ℓ2 and <ℓ1 ⊆<ℓ2 and
That is

all events of ℓ1 appear in the
same order in ℓ2

e <ℓ2 e ′, src(e) = src(e ′) and e ′ ∈ ℓ1 =⇒ e ∈ ℓ1

That is
the per-source partitions of
ℓ1 are prefixes of the corre-
sponding partitions of ℓ2

The propagation of newly generated events happens by merging logs:
Log merging: ℓ1 ▷◁ ℓ2 = {ℓ

∣∣ ℓ ⊆ ℓ1 ∪ ℓ2 and ℓ1 ⊑ ℓ and ℓ2 ⊑ ℓ}

23 / 58

Swarms

Swarms: M1 ℓ1 | . . . | Mn ℓn | ℓ s.t. ℓ =
⋃

1≤i≤n ℓi and ℓi ⊑ ℓ for 1 ≤ i ≤ n

where ℓ1 ⊑ ℓ2 is the sublog relation defined as

ℓ1 ⊆ ℓ2 and <ℓ1 ⊆<ℓ2 and
That is

all events of ℓ1 appear in the
same order in ℓ2

e <ℓ2 e ′, src(e) = src(e ′) and e ′ ∈ ℓ1 =⇒ e ∈ ℓ1

That is
the per-source partitions of
ℓ1 are prefixes of the corre-
sponding partitions of ℓ2

The propagation of newly generated events happens by merging logs:
Log merging: ℓ1 ▷◁ ℓ2 = {ℓ

∣∣ ℓ ⊆ ℓ1 ∪ ℓ2 and ℓ1 ⊑ ℓ and ℓ2 ⊑ ℓ}

23 / 58

Swarms

Swarms: M1 ℓ1 | . . . | Mn ℓn | ℓ s.t. ℓ =
⋃

1≤i≤n ℓi and ℓi ⊑ ℓ for 1 ≤ i ≤ n

where ℓ1 ⊑ ℓ2 is the sublog relation defined as

ℓ1 ⊆ ℓ2 and <ℓ1 ⊆<ℓ2 and
That is

all events of ℓ1 appear in the
same order in ℓ2

e <ℓ2 e ′, src(e) = src(e ′) and e ′ ∈ ℓ1 =⇒ e ∈ ℓ1

That is
the per-source partitions of
ℓ1 are prefixes of the corre-
sponding partitions of ℓ2

The propagation of newly generated events happens by merging logs:
Log merging: ℓ1 ▷◁ ℓ2 = {ℓ

∣∣ ℓ ⊆ ℓ1 ∪ ℓ2 and ℓ1 ⊑ ℓ and ℓ2 ⊑ ℓ}

23 / 58

Semantics of swarms

By rule [Local] below, a command’s execution updates both local and global logs

S(i) = M ℓi M ℓi
c / l−−−→ M ℓ′i src(ℓ′i \ ℓi) = {i} ℓ′ ∈ ℓ ▷◁ ℓ′i

(S, ℓ)
c / l−−−→ (S[i 7→ M ℓ′i], ℓ

′)
[Local]

S(i) = M ℓi ℓi ⊑ ℓ′⊑ ℓ ℓi ⊂ ℓ′

(S, ℓ) τ−−→ (S[i 7→ M ℓ′], ℓ)
[Prop]

By rule [Prop] above, the propagation of events happens
by shipping a non-deterministically chosen subset of events in the global log
to a non-deterministically chosen machine

25 / 58

Semantics of swarms

By rule [Local] below, a command’s execution updates both local and global logs

S(i) = M ℓi M ℓi
c / l−−−→ M ℓ′i src(ℓ′i \ ℓi) = {i} ℓ′ ∈ ℓ ▷◁ ℓ′i

(S, ℓ)
c / l−−−→ (S[i 7→ M ℓ′i], ℓ

′)
[Local]

S(i) = M ℓi ℓi ⊑ ℓ′⊑ ℓ ℓi ⊂ ℓ′

(S, ℓ) τ−−→ (S[i 7→ M ℓ′], ℓ)
[Prop]

By rule [Prop] above, the propagation of events happens
by shipping a non-deterministically chosen subset of events in the global log
to a non-deterministically chosen machine

25 / 58

Plan of the talk

A motivating case study

Our formalisation

Our typing discipline

Tool support

Future work

28 / 58

– Behavioural types for swarms –

29 / 58

Inspired by choreographies

Quoting W3C:
“[...] a contract [...] of the common ordering conditions and constraints under which messages are
exchanged [...] from a global viewpoint [...]
Each party can then use the global definition to build and test solutions [...]
global specification is in turn realised by combination of the resulting local systems”

Choreography G
global viewpoint

M1
Local viewpoint1

Mi

Local viewpointi
Mn

Local viewpointn

30 / 58

Inspired by choreographies

Quoting W3C:
“[...] a contract [...] of the common ordering conditions and constraints under which messages are
exchanged [...] from a global viewpoint [...]
Each party can then use the global definition to build and test solutions [...]
global specification is in turn realised by combination of the resulting local systems”

Choreography G
global viewpoint

M1
Local viewpoint1

Mi

Local viewpointi
Mn

Local viewpointn

Synchrony

Asynchrony

30 / 58

Inspired by choreographies

Quoting W3C:
“[...] a contract [...] of the common ordering conditions and constraints under which messages are
exchanged [...] from a global viewpoint [...]
Each party can then use the global definition to build and test solutions [...]
global specification is in turn realised by combination of the resulting local systems”

Choreography G
global viewpoint

M1
Local viewpoint1

Mi

Local viewpointi
Mn

Local viewpointn

Synchrony

Asynchrony spec,no code

30 / 58

Inspired by choreographies

Quoting W3C:
“[...] a contract [...] of the common ordering conditions and constraints under which messages are
exchanged [...] from a global viewpoint [...]
Each party can then use the global definition to build and test solutions [...]
global specification is in turn realised by combination of the resulting local systems”

Choreography G
global viewpoint

M1
Local viewpoint1

Mi

Local viewpointi
Mn

Local viewpointn

Synchrony

Asynchrony spec,no code

Well-formedness

30 / 58

Inspired by choreographies

Quoting W3C:
“[...] a contract [...] of the common ordering conditions and constraints under which messages are
exchanged [...] from a global viewpoint [...]
Each party can then use the global definition to build and test solutions [...]
global specification is in turn realised by combination of the resulting local systems”

Choreography G
global viewpoint

M1
Local viewpoint1

Mi

Local viewpointi
Mn

Local viewpointn

Synchrony

Asynchrony spec,no code

Well-formedness

P
roject

Project
Project

30 / 58

Inspired by choreographies

Quoting W3C:
“[...] a contract [...] of the common ordering conditions and constraints under which messages are
exchanged [...] from a global viewpoint [...]
Each party can then use the global definition to build and test solutions [...]
global specification is in turn realised by combination of the resulting local systems”

Choreography G
global viewpoint

M1
Local viewpoint1

Mi

Local viewpointi
Mn

Local viewpointn

Synchrony

Asynchrony spec,no code

Well-formedness

P
roject

Project
Project

Component1 Componenti Componentn

V
erify

V
erify

V
erify

30 / 58

Swarm protocols by example

An intuitive auction protocol for a passenger P to get a taxi T:

1 2 3 4 5 6 7
Request@P

Offer@T

Select@P

Arrive@T Start@P

Record@T

Finish@P

Cancel@P

Receipt@O

31 / 58

Swarm protocols by example

An intuitive auction protocol for a passenger P to get a taxi T:

1 2 3 4 5 6 7
Request@P

Offer@T

Select@P

Arrive@T Start@P

Record@T

Finish@P

Cancel@P

Receipt@O

31 / 58

Swarm protocols: global type for local-first applications

An idealised specification relying on synchronous communication

Fix a set of roles ranged over by R (e.g., P, T, and O on slide 31)

The syntax of swarm protocols is again given co-inductively:

G
co
::=

∑
i∈I

ci@Ri ⟨li ⟩ .Gi

∣∣ 0 where I is a finite set (of indexes)

32 / 58

An example
A swarm protocol for the taxi scenario on slide 31:

G = Request@P⟨Requested⟩ .Gauction

Gauction = Offer@T⟨Bid ·BidderID⟩ .Gauction

+ Select@P⟨Selected ·PassengerID⟩ .Gchoose

Gchoose = Arrive@T⟨Arrived⟩ . Start@P⟨Started⟩ .Gride

+ Cancel@P⟨Cancelled⟩ .Receipt@O⟨Receipt⟩ . 0

Gride = Record@T⟨Path⟩ .Gride

+ Finish@P⟨Finished ·Rating⟩ .Receipt@O⟨Receipt⟩ . 0

Note the log types
in each prefixes

33 / 58

An example
A swarm protocol for the taxi scenario on slide 31:

G = Request@P⟨Requested⟩ .Gauction

Gauction = Offer@T⟨Bid ·BidderID⟩ .Gauction

+ Select@P⟨Selected ·PassengerID⟩ .Gchoose

Gchoose = Arrive@T⟨Arrived⟩ . Start@P⟨Started⟩ .Gride

+ Cancel@P⟨Cancelled⟩ .Receipt@O⟨Receipt⟩ . 0

Gride = Record@T⟨Path⟩ .Gride

+ Finish@P⟨Finished ·Rating⟩ .Receipt@O⟨Receipt⟩ . 0

Note the log types
in each prefixes

33 / 58

Swarm protocols as FSA

Like for machines, a swarm protocols G =
∑

i∈I ci@Ri ⟨li ⟩ .Gi has an associated FSA:

the set of states consists of G plus the states in Gi for each i ∈ {1 . . . , n}

G is the initial state

for each i ∈ I , G has a transition to state Gi labelled with ci@Ri ⟨li ⟩, written

G
ci / li−−−→ Gi

34 / 58

Semantics of swarm protocols
One rule only!

δ(G, ℓ)
c / l−−−→ G′ ⊢ ℓ′ : l ℓ′ log of fresh events

(G, ℓ)
c / l−−−→ (G, ℓ

· ℓ′

)
[G-Cmd]

where

δ(G, ℓ) =

G if ℓ = ϵ

δ(G′, ℓ′′) if G
c / l−−−→ G′ and ⊢ ℓ′ : l and ℓ = ℓ′ · ℓ′′

⊥ otherwise

Logs to be consumed “atomically”,
hence δ(G, ℓ) may be undefined

We restrict ourselves to deterministic swarm protocols that is, on different transitions
from a same state

log types start differently log determinism
pairs (command,role) differ command determinism

36 / 58

Semantics of swarm protocols
One rule only!

δ(G, ℓ)
c / l−−−→ G′

⊢ ℓ′ : l ℓ′ log of fresh events

(G, ℓ)
c / l−−−→ (G, ℓ

· ℓ′

)
[G-Cmd]

where

δ(G, ℓ) =

G if ℓ = ϵ

δ(G′, ℓ′′) if G
c / l−−−→ G′ and ⊢ ℓ′ : l and ℓ = ℓ′ · ℓ′′

⊥ otherwise

Logs to be consumed “atomically”,
hence δ(G, ℓ) may be undefined

We restrict ourselves to deterministic swarm protocols that is, on different transitions
from a same state

log types start differently log determinism
pairs (command,role) differ command determinism

36 / 58

Semantics of swarm protocols
One rule only!

δ(G, ℓ)
c / l−−−→ G′ ⊢ ℓ′ : l ℓ′ log of fresh events

(G, ℓ)
c / l−−−→ (G, ℓ · ℓ′)

[G-Cmd]

where

δ(G, ℓ) =

G if ℓ = ϵ

δ(G′, ℓ′′) if G
c / l−−−→ G′ and ⊢ ℓ′ : l and ℓ = ℓ′ · ℓ′′

⊥ otherwise

Logs to be consumed “atomically”,
hence δ(G, ℓ) may be undefined

We restrict ourselves to deterministic swarm protocols that is, on different transitions
from a same state

log types start differently log determinism
pairs (command,role) differ command determinism

36 / 58

Semantics of swarm protocols
One rule only!

δ(G, ℓ)
c / l−−−→ G′ ⊢ ℓ′ : l ℓ′ log of fresh events

(G, ℓ)
c / l−−−→ (G, ℓ · ℓ′)

[G-Cmd]

where

δ(G, ℓ) =

G if ℓ = ϵ

δ(G′, ℓ′′) if G
c / l−−−→ G′ and ⊢ ℓ′ : l and ℓ = ℓ′ · ℓ′′

⊥ otherwise

Logs to be consumed “atomically”,
hence δ(G, ℓ) may be undefined

We restrict ourselves to deterministic swarm protocols that is, on different transitions
from a same state

log types start differently log determinism
pairs (command,role) differ command determinism

36 / 58

From swarm protocols to machines

Transitions of a swarm protocol G are labelled with a role that may invoke the command

Each machine plays one role

Obtain machines by projecting G on each role

First attempt (∑
i∈I

ci@Ri ⟨li ⟩ .Gi

)
↓R= κ · [&i∈I li?Gi ↓R]

where κ = {(ci / li)
∣∣ Ri = R and i ∈ I}

simple, but
projected machines are large in all but the most trivial cases
processing all events is undesirable: security and efficiency

37 / 58

From swarm protocols to machines

Transitions of a swarm protocol G are labelled with a role that may invoke the command

Each machine plays one role

Obtain machines by projecting G on each role

First attempt (∑
i∈I

ci@Ri ⟨li ⟩ .Gi

)
↓R= κ · [&i∈I li?Gi ↓R]

where κ = {(ci / li)
∣∣ Ri = R and i ∈ I}

simple, but
projected machines are large in all but the most trivial cases
processing all events is undesirable: security and efficiency

37 / 58

From swarm protocols to machines

Transitions of a swarm protocol G are labelled with a role that may invoke the command

Each machine plays one role

Obtain machines by projecting G on each role

First attempt (∑
i∈I

ci@Ri ⟨li ⟩ .Gi

)
↓R= κ · [&i∈I li?Gi ↓R]

where κ = {(ci / li)
∣∣ Ri = R and i ∈ I}

simple, but
projected machines are large in all but the most trivial cases
processing all events is undesirable: security and efficiency

37 / 58

From swarm protocols to machines

Transitions of a swarm protocol G are labelled with a role that may invoke the command

Each machine plays one role

Obtain machines by projecting G on each role

First attempt (∑
i∈I

ci@Ri ⟨li ⟩ .Gi

)
↓R= κ · [&i∈I li?Gi ↓R]

where κ = {(ci / li)
∣∣ Ri = R and i ∈ I}

simple, but
projected machines are large in all but the most trivial cases
processing all events is undesirable: security and efficiency

37 / 58

From swarm protocols to machines

Transitions of a swarm protocol G are labelled with a role that may invoke the command

Each machine plays one role

Obtain machines by projecting G on each role

First attempt (∑
i∈I

ci@Ri ⟨li ⟩ .Gi

)
↓R= κ · [&i∈I li?Gi ↓R]

where κ = {(ci / li)
∣∣ Ri = R and i ∈ I}

simple, but
projected machines are large in all but the most trivial cases
processing all events is undesirable: security and efficiency

37 / 58

Another attempt

Let’s subscribe to subscriptions : maps from roles to sets of event types

In pub-sub,
processes subscribe
to “topics”

Given G =
∑

i∈I ci@Ri ⟨li ⟩ .Gi , the
projection of G on a role R with respect to subscription σ is

G ↓σR= κ· [&j∈J filter(lj, σ(R))?Gj ↓σR] where

κ = {ci / li
∣∣ Ri = R and i ∈ I}

J = {i ∈ I
∣∣ filter(li , σ(R)) ̸= ϵ}

filter(l,E) =

ϵ, if t = ϵ

t · filter(l′,E) if t ∈ E and l = t · l′

filter(l,E) otherwise

38 / 58

Another attempt

Let’s subscribe to subscriptions : maps from roles to sets of event types

In pub-sub,
processes subscribe
to “topics”

Given G =
∑

i∈I ci@Ri ⟨li ⟩ .Gi , the
projection of G on a role R with respect to subscription σ is

G ↓σR= κ· [&j∈J filter(lj, σ(R))?Gj ↓σR] where

κ = {ci / li
∣∣ Ri = R and i ∈ I}

J = {i ∈ I
∣∣ filter(li , σ(R)) ̸= ϵ}

filter(l,E) =

ϵ, if t = ϵ

t · filter(l′,E) if t ∈ E and l = t · l′

filter(l,E) otherwise

38 / 58

Another attempt

Let’s subscribe to subscriptions : maps from roles to sets of event types

In pub-sub,
processes subscribe
to “topics”

Given G =
∑

i∈I ci@Ri ⟨li ⟩ .Gi , the
projection of G on a role R with respect to subscription σ is

G ↓σR= κ· [&j∈J filter(lj, σ(R))?Gj ↓σR] where

κ = {ci / li
∣∣ Ri = R and i ∈ I}

J = {i ∈ I
∣∣ filter(li , σ(R)) ̸= ϵ}

filter(l,E) =

ϵ, if t = ϵ

t · filter(l′,E) if t ∈ E and l = t · l′

filter(l,E) otherwise

38 / 58

Well-formedness

= Causality + Determinacy - Confusion

Trading consistency for availability has implications:

Propagation of events is non-atomic (cf. rule [Prop])

Causality

& Determinacy & Confusion freeness

Fix a subscription σ. For each branch i ∈ I of G =
∑

i∈I ci@Ri ⟨li ⟩ .Gi

Explicit re-enabling σ(Ri) ∩ li ̸= ∅

Command causality if R can execute a command in Gi

then σ(R) ∩ li ̸= ∅ and σ(R) ∩ li ⊇
⋃

R′∈σGi
σ(R′) ∩ li

Determinacy R ∈σ Gi =⇒ li [0] ∈ σ(R)

Confusion freeness for each t starting a log emitted by a command in G
there is a unique state G′ reachable from G which emits t

If R should have c enabled after c′ then σ(R)
contains some event type emitted by c′

41 / 58

Well-formedness = Causality

+ Determinacy - Confusion

Trading consistency for availability has implications:
Propagation of events is non-atomic (cf. rule [Prop])
=⇒ differences in how machines perceive the (state of the) computation

Causality

& Determinacy & Confusion freeness

Fix a subscription σ. For each branch i ∈ I of G =
∑

i∈I ci@Ri ⟨li ⟩ .Gi

Explicit re-enabling σ(Ri) ∩ li ̸= ∅

Command causality if R can execute a command in Gi

then σ(R) ∩ li ̸= ∅ and σ(R) ∩ li ⊇
⋃

R′∈σGi
σ(R′) ∩ li

Determinacy R ∈σ Gi =⇒ li [0] ∈ σ(R)

Confusion freeness for each t starting a log emitted by a command in G
there is a unique state G′ reachable from G which emits t

If R should have c enabled after c′ then σ(R)
contains some event type emitted by c′

41 / 58

Well-formedness = Causality + Determinacy

- Confusion

Trading consistency for availability has implications:
Propagation of events is non-atomic (cf. rule [Prop])
=⇒ different roles may take inconsistent decisions

Causality & Determinacy

& Confusion freeness

Fix a subscription σ. For each branch i ∈ I of G =
∑

i∈I ci@Ri ⟨li ⟩ .Gi

Explicit re-enabling σ(Ri) ∩ li ̸= ∅

Command causality if R can execute a command in Gi

then σ(R) ∩ li ̸= ∅ and σ(R) ∩ li ⊇
⋃

R′∈σGi
σ(R′) ∩ li

Determinacy R ∈σ Gi =⇒ li [0] ∈ σ(R)

Confusion freeness for each t starting a log emitted by a command in G
there is a unique state G′ reachable from G which emits t

If R should have c enabled after c′ then σ(R)
contains some event type emitted by c′

41 / 58

Well-formedness = Causality + Determinacy - Confusion
Trading consistency for availability has implications:

Propagation of events is non-atomic (cf. rule [Prop])
=⇒ branches unambiguously identified and events emitted on eventually discharged
branches ignored

Causality & Determinacy & Confusion freeness
Fix a subscription σ. For each branch i ∈ I of G =

∑
i∈I ci@Ri ⟨li ⟩ .Gi

Explicit re-enabling σ(Ri) ∩ li ̸= ∅

Command causality if R can execute a command in Gi

then σ(R) ∩ li ̸= ∅ and σ(R) ∩ li ⊇
⋃

R′∈σGi
σ(R′) ∩ li

Determinacy R ∈σ Gi =⇒ li [0] ∈ σ(R)

Confusion freeness for each t starting a log emitted by a command in G
there is a unique state G′ reachable from G which emits t

If R should have c enabled after c′ then σ(R)
contains some event type emitted by c′

41 / 58

Implementations

& projections

A (σ,G)-realisation is a swarm (S, ϵ) such that, for each i ∈ dom S, there exists a role
R ∈ roles(G, σ) such that S(i) = G ↓σR

Write ℓ ≡G,σ ℓ′ when ℓ and ℓ′ have the same effective type wrt G and σ

A swarm (S, ϵ) is eventually faithful to G and σ if (S, ϵ) ==⇒ (S, ℓ) then there is
(G, ϵ) ==⇒ (G, ℓ′) with ℓ ≡G,σ ℓ′

Lemma (Projections of well-formed protocols are eventually faithful)

If G is a σ-WF protocol and
(
δ(G ↓σR , ℓ)

)
↓c / l then there exists ℓ′ ≡G,σ ℓ such that

(G, ϵ) ==⇒ (G, ℓ′) and δ(G, ℓ′)
c / l−−−→ G′

45 / 58

Implementations

& projections

A (σ,G)-realisation is a swarm (S, ϵ) such that, for each i ∈ dom S, there exists a role
R ∈ roles(G, σ) such that S(i) = G ↓σR

Write ℓ ≡G,σ ℓ′ when ℓ and ℓ′ have the same effective type wrt G and σ

A swarm (S, ϵ) is eventually faithful to G and σ if (S, ϵ) ==⇒ (S, ℓ) then there is
(G, ϵ) ==⇒ (G, ℓ′) with ℓ ≡G,σ ℓ′

Lemma (Projections of well-formed protocols are eventually faithful)

If G is a σ-WF protocol and
(
δ(G ↓σR , ℓ)

)
↓c / l then there exists ℓ′ ≡G,σ ℓ such that

(G, ϵ) ==⇒ (G, ℓ′) and δ(G, ℓ′)
c / l−−−→ G′

45 / 58

Implementations & projections

A (σ,G)-realisation is a swarm (S, ϵ) such that, for each i ∈ dom S, there exists a role
R ∈ roles(G, σ) such that S(i) = G ↓σR

Write ℓ ≡G,σ ℓ′ when ℓ and ℓ′ have the same effective type wrt G and σ

A swarm (S, ϵ) is eventually faithful to G and σ if (S, ϵ) ==⇒ (S, ℓ) then there is
(G, ϵ) ==⇒ (G, ℓ′) with ℓ ≡G,σ ℓ′

Lemma (Projections of well-formed protocols are eventually faithful)

If G is a σ-WF protocol and
(
δ(G ↓σR , ℓ)

)
↓c / l then there exists ℓ′ ≡G,σ ℓ such that

(G, ϵ) ==⇒ (G, ℓ′) and δ(G, ℓ′)
c / l−−−→ G′

45 / 58

On correct realisations

(S, ϵ)

(S, ℓ1)

(S, ℓ2)

consistent if there is ℓ s.t. (S, ϵ) (S, ℓ)

(S, ℓ′1)

(S, ℓ′2)

with ℓ1 = ℓ · ℓ′1 and ℓ2 = ℓ · ℓ′2 and ℓ′1 ∩ ℓ′2 = ∅

A set of runs is consistent
when its elements are
pair-wise consistent

Notation

For (G, ϵ)
c1 / l1−−−−→ (G, ℓ1)

c2 / l2−−−−→ · · · cn / ln−−−−→ (G,

=ℓ︷ ︸︸ ︷
ℓ1 · ℓ2 · · · · ℓn)

let ℓ(j) = ℓ1 · · · · · ℓj

Admissibility
A log ℓ is admissible for a σ-WF protocol G if there are consistent runs
{(G, ϵ) ==⇒ (G, ℓi)}1≤i≤k and a log ℓ′ ∈ (▷◁1≤i≤k ℓi) such that

ℓ =
⋃

1≤i≤k

ℓi , ℓ′ ≡G,σ ℓ, and ℓ
(j)
i ⊑ ℓ for all 1 ≤ i ≤ k

46 / 58

On correct realisations

(S, ϵ)

(S, ℓ1)

(S, ℓ2)

consistent if there is ℓ s.t. (S, ϵ) (S, ℓ)

(S, ℓ′1)

(S, ℓ′2)

with ℓ1 = ℓ · ℓ′1 and ℓ2 = ℓ · ℓ′2 and ℓ′1 ∩ ℓ′2 = ∅

A set of runs is consistent
when its elements are
pair-wise consistent

Notation

For (G, ϵ)
c1 / l1−−−−→ (G, ℓ1)

c2 / l2−−−−→ · · · cn / ln−−−−→ (G,

=ℓ︷ ︸︸ ︷
ℓ1 · ℓ2 · · · · ℓn)

let ℓ(j) = ℓ1 · · · · · ℓj

Admissibility
A log ℓ is admissible for a σ-WF protocol G if there are consistent runs
{(G, ϵ) ==⇒ (G, ℓi)}1≤i≤k and a log ℓ′ ∈ (▷◁1≤i≤k ℓi) such that

ℓ =
⋃

1≤i≤k

ℓi , ℓ′ ≡G,σ ℓ, and ℓ
(j)
i ⊑ ℓ for all 1 ≤ i ≤ k

46 / 58

On correct realisations

(S, ϵ)

(S, ℓ1)

(S, ℓ2)

consistent if there is ℓ s.t. (S, ϵ) (S, ℓ)

(S, ℓ′1)

(S, ℓ′2)

with ℓ1 = ℓ · ℓ′1 and ℓ2 = ℓ · ℓ′2 and ℓ′1 ∩ ℓ′2 = ∅

A set of runs is consistent
when its elements are
pair-wise consistent

Notation

For (G, ϵ)
c1 / l1−−−−→ (G, ℓ1)

c2 / l2−−−−→ · · · cn / ln−−−−→ (G,

=ℓ︷ ︸︸ ︷
ℓ1 · ℓ2 · · · · ℓn)

let ℓ(j) = ℓ1 · · · · · ℓj

Admissibility
A log ℓ is admissible for a σ-WF protocol G if there are consistent runs
{(G, ϵ) ==⇒ (G, ℓi)}1≤i≤k and a log ℓ′ ∈ (▷◁1≤i≤k ℓi) such that

ℓ =
⋃

1≤i≤k

ℓi , ℓ′ ≡G,σ ℓ, and ℓ
(j)
i ⊑ ℓ for all 1 ≤ i ≤ k

46 / 58

Results

Let G be well-formed; a realisation is a swarm whose components are projections of G

Lemma (Well-formedness generates any admissible log)
If ℓ is admissible for G then there is a log ℓ′ such that (G, ϵ) ==⇒ (G, ℓ′) and ℓ ≡G,σ ℓ′

Theorem (Realisations of WF protocols are admissible)
If (S, ϵ) ==⇒ (S′, ℓ) for (S, ϵ) realisation of G then ℓ is admissible for G

Corollary
Every realisation of G is eventually faithful wrt G and σ

Theorem (Full realisations are complete)
If S is a full realisation of G and (G, ϵ) ==⇒ (G, ℓ′) then there is S′ s.t. (S, ϵ) ==⇒ (S′, ℓ)

47 / 58

Plan of the talk

A motivating case study

Our formalisation

Our typing discipline

Tool support

Future work

49 / 58

– Tooling –

50 / 58

InitialP

AuctionP

RideP

1

2

Request /Requested

Requested?

Select / Selected ·PassengerID

Bid?
BidderID?

Selected?

PassengerID?

// analogous for other events; "type" property matches type name (checked by tool)
type Requested = { type: 'Requested'; pickup: string; dest: string }
type Events = Requested | Bid | BidderID | Selected | ...

/** Initial state for role P */
@proto('taxiRide') // decorator injects inferred protocol into runtime
export class InitialP extends State<Events> {

constructor(public id: string) { super() }
execRequest(pickup: string, dest: string) {

return this.events({ type: 'Requested', pickup, dest })
}
onRequested(ev: Requested) {

return new AuctionP(this.id, ev.pickup, ev.dest, [])
}

}
@proto('taxiRide')
export class AuctionP extends State<Events> {

constructor(public id: string, public pickup: string, public dest: string,
public bids: BidData[]) { super() }

onBid(ev1: Bid, ev2: BidderID) {
const [price, time] = ev1
this.bids.push({ price, time, bidderID: ev2.id })
return this

}
execSelect(taxiId: string) {

return this.events({ type: 'Selected', taxiID },
{ type: 'PassengerID', id: this.id })

}
onSelected(ev: Selected, id: PassengerID) {

return new RideP(this.id, ev.taxiID)
}

}
@proto('taxiRide')
export class RideP extends State<Events> { ... }

51 / 58

Architecture

· · · language support

· · · our tool

· · · TypeScript code

· · · data type
inputs

machine-runner

machine-check

simulator

TypeChecking

Well-Formedness

Projection

Equivalence test

TypeChecking implements the functionalities of our typing discipline
simulator simulates the semantics of swarm realisations
machine-check and machine-runner integrate our framework in the Actyx
platform

52 / 58

Architecture

· · · language support

· · · our tool

· · · TypeScript code

· · · data type
inputs

machine-runner

machine-check

simulator

TypeChecking

Well-Formedness

Projection

Equivalence test

LocalTypes
initial State
transitions [...]

subscription
Map MachineID (Set EventType)

GlobalType
initial State
transitions [...]

TypeChecking implements the functionalities of our typing discipline
simulator simulates the semantics of swarm realisations
machine-check and machine-runner integrate our framework in the Actyx
platform

52 / 58

Architecture

· · · language support

· · · our tool

· · · TypeScript code

· · · data type
inputs

machine-runner

machine-check

simulator

TypeChecking

Well-Formedness

Projection

Equivalence test

LocalTypes
initial State
transitions [...]

subscription
Map MachineID (Set EventType)

GlobalType
initial State
transitions [...]

TypeChecking implements the functionalities of our typing discipline
simulator simulates the semantics of swarm realisations
machine-check and machine-runner integrate our framework in the Actyx
platform

52 / 58

Architecture

· · · language support

· · · our tool

· · · TypeScript code

· · · data type
inputs

machine-runner

machine-check

simulator

TypeChecking

Well-Formedness

Projection

Equivalence test

LocalTypes
initial State
transitions [...]

subscription
Map MachineID (Set EventType)

GlobalType
initial State
transitions [...]

Machines
(TypeScript code)

TypeScript
compiler

uses
1

analyses 2
infers

3

infe
rs
3

TypeChecking implements the functionalities of our typing discipline
simulator simulates the semantics of swarm realisations
machine-check and machine-runner integrate our framework in the Actyx
platform

52 / 58

Architecture

· · · language support

· · · our tool

· · · TypeScript code

· · · data type
inputs

machine-runner

machine-check

simulator

TypeChecking

Well-Formedness

Projection

Equivalence test

LocalTypes
initial State
transitions [...]

subscription
Map MachineID (Set EventType)

GlobalType
initial State
transitions [...]

Machines
(TypeScript code)

TypeScript
compiler

Actyx
SDK

uses
4 5

executes
6

TypeChecking implements the functionalities of our typing discipline
simulator simulates the semantics of swarm realisations
machine-check and machine-runner integrate our framework in the Actyx
platform

52 / 58

If you want to play with our prototype?

Have a look at

our ECOOP artifact paper
(https://drops.dagstuhl.de/opus/volltexte/2023/18254/)

code at https://doi.org/10.5281/zenodo.7737188

An ISSTA tool paper from Actyx (https://arxiv.org/abs/2306.09068)

53 / 58

https://drops.dagstuhl.de/opus/volltexte/2023/18254/
https://doi.org/10.5281/zenodo.7737188
https://arxiv.org/abs/2306.09068

Plan of the talk

A motivating case study

Our formalisation

Our typing discipline

Tool support

Future work

54 / 58

– Epilogue –

55 / 58

To be continued....

There are a number of future directions to explore:

Identify weaker conditions for well-formedness

“Efficiency”

Subscriptions are hard to determine

Relax some of our assumptions

Compensations

Unreliable propagation

Adversarial contexts

...............

56 / 58

To be continued....

There are a number of future directions to explore:

Identify weaker conditions for well-formedness

“Efficiency”

Subscriptions are hard to determine

Relax some of our assumptions

Compensations

Unreliable propagation

Adversarial contexts

...............

56 / 58

To be continued....

There are a number of future directions to explore:

Identify weaker conditions for well-formedness

“Efficiency”

Subscriptions are hard to determine

Relax some of our assumptions

Compensations

Unreliable propagation

Adversarial contexts

...............

56 / 58

To be continued....

There are a number of future directions to explore:

Identify weaker conditions for well-formedness

“Efficiency”

Subscriptions are hard to determine

Relax some of our assumptions

Compensations

Unreliable propagation

Adversarial contexts

...............

56 / 58

To be continued....

There are a number of future directions to explore:

Identify weaker conditions for well-formedness

“Efficiency”

Subscriptions are hard to determine

Relax some of our assumptions

Compensations

Unreliable propagation

Adversarial contexts

...............

56 / 58

To be continued....

There are a number of future directions to explore:

Identify weaker conditions for well-formedness

“Efficiency”

Subscriptions are hard to determine

Relax some of our assumptions

Compensations

Unreliable propagation

Adversarial contexts

...............

56 / 58

To be continued....

There are a number of future directions to explore:

Identify weaker conditions for well-formedness

“Efficiency”

Subscriptions are hard to determine

Relax some of our assumptions

Compensations

Unreliable propagation

Adversarial contexts

...............

56 / 58

To be continued....

There are a number of future directions to explore:

Identify weaker conditions for well-formedness

“Efficiency”

Subscriptions are hard to determine

Relax some of our assumptions

Compensations

Unreliable propagation

Adversarial contexts

...............

56 / 58

Summary

An interesting paradigm grounded on principles for local-first principles: temporary
inconsistency are tolerated provided that they can be (and are) resolved at some point

A formal semantics that faithfully captures Actyx’s platform

and behavioural types to specify and verify eventual consensus

57 / 58

Summary

An interesting paradigm grounded on principles for local-first principles: temporary
inconsistency are tolerated provided that they can be (and are) resolved at some point

A formal semantics that faithfully captures Actyx’s platform

and behavioural types to specify and verify eventual consensus

57 / 58

Summary

An interesting paradigm grounded on principles for local-first principles: temporary
inconsistency are tolerated provided that they can be (and are) resolved at some point

A formal semantics that faithfully captures Actyx’s platform

and behavioural types to specify and verify eventual consensus

57 / 58

Thank you!

58 / 58

