Behavioural Types for Local-First Software

Emilio Tuosto @ GSSI

joint work with

Roland Kuhn @ Actyx

and

Hernán Melgratti 🛛 UBA

lt-Matters Lucca 11-12 July, 2023

– Prelude –

trade consistency for availability in systems of asymmetric replicated peers

trade consistency for availability in systems of asymmetric replicated peers

using local-first's principles to establish eventual consensus

trade consistency for availability in systems of asymmetric replicated peers

using local-first's principles to establish eventual consensus

formally supported by behavioural types

trade consistency for availability in systems of asymmetric replicated peers

using local-first's principles to establish eventual consensus

formally supported by behavioural types

- swarm = (machines + local logs) * imaginary global log
- swarm protocols: systems from an abstract global viewpoint
- enforce good behaviour via behavioural typing

trade consistency for availability in systems of asymmetric replicated peers

using local-first's principles to establish eventual consensus

formally supported by behavioural types

- swarm = (machines + local logs) * imaginary global log
- swarm protocols: systems from an abstract global viewpoint
- enforce good behaviour via behavioural typing

See our recent ECOOP 2023 paper

(https://drops.dagstuhl.de/opus/frontdoor.php?source_opus=18208; extended version available at https://arxiv.org/abs/2305.04848)

Distributed coordination

An "old" problem

Distributed agreement Distributed sharing Security Computer-assisted collaborative work

...

With some "solutions"

Centralisation points Consensus protocols Commutative replicated data types

• • •

Distributed coordination

An "old" problem

Distributed agreement Distributed sharing Security Computer-assisted collaborative work

Availability = Money

Kohavi et al. KDD'14

. . .

- Amazon sales down 1% if 100ms delay
- Google searches down 0.2% 0.6% if 100-400ms delay
- Bing's revenue down $\sim 1.5\%$ if 250ms delay

With some "solutions"

Centralisation points Consensus protocols Commutative replicated data types

...

A new (?) solution

What about using local-first principles?

Thou shall be autonomous

Thou shall collaborate

Thou shall recognise conflicts

Thou shall resolve conflicts

Thou shall be consistent

Plan of the talk

Some motivations

Our formalisation

Our typing discipline

Tool support

Open issues

- Motivations -

People + Real-time controllers + IT systems and networks:

- work divided among autonomous production cells
- efficiency is determined by designing and controlling the flow of resource and information

when disconnected, keep calm and move on

- Iocal twin for each device/operator
- twins are replicated where needed
- events have unique IDs and
 - record facts (e.g., from sensors) or
 - decisions (e.g., from an operator)
 - spread information asynchronously

People + Real-time controllers + IT systems and networks:

- work divided among autonomous production cells
- efficiency is determined by designing and controlling the flow of resource and information

• when disconnected, keep calm and move on

- Iocal twin for each device/operator
- twins are replicated where needed
- events have unique IDs and
 - record facts (e.g., from sensors) or
 - decisions (e.g., from an operator)
 - spread information asynchronously
- logs are local to twins

 $\label{eq:People} People + Real-time \ controllers + IT \ systems \ and \ networks:$

- work divided among autonomous production cells
- efficiency is determined by designing and controlling the flow of resource and information

• when disconnected, keep calm and move on

- Iocal twin for each device/operator
- twins are replicated where needed
- events have unique IDs and
 - record facts (e.g., from sensors) or
 - decisions (e.g., from an operator)
 - spread information asynchronously
- logs are local to twins
- a log determines the computational state of its twin

People + Real-time controllers + IT systems and networks:

- work divided among autonomous production cells
- efficiency is determined by designing and controlling the flow of resource and information

• when disconnected, keep calm and move on

- local twin for each device/operator
- twins are replicated where needed
- events have unique IDs and
 - record facts (e.g., from sensors) or
 - decisions (e.g., from an operator)
 - spread information asynchronously
- logs are local to twins
- a log determines the computational state of its twin
- replicated logs are merged

merge

propagate ;

execute ;

while true:

The execution scheme

More applications

Robots (e.g., rescue missions or space applications)

Collaborative applications (https://automerge.org/)

Home automation

IoT...really?

Why your fridge and mobile should go in the cloud to talk to each other?

"Anytime, anywhere..." really?

like the AWS's outage on 25/11/2020

or almost all Google services down on 14/12/2020

DSL typical availability of 97% (& some SLA have no lower bound) checkout https://www.internetsociety.org/blog/2022/03/what-is-the-digital-divide

Also, taking decisions locally

can reduce downtime

shifts data ownership

gets rid of any centralization point...for real

Plan of the talk

A motivating case study

Our formalisation

Our typing discipline

Tool support

Future work

– A formal model –

Ingredients (I): events & logs

Events

е

 $e_1 \cdot e_2 \dots$

Ingredients (I): events & logs

Ingredients (I): events & logs

Ingredients (II): log shipping

Machine Alice emits logs upon execution of commands (we'll see how in a moment)

Ingredients (II): log shipping

Machine Alice emits logs upon execution of commands (we'll see how in a moment) Such events are appended to the logs of machines in two phases:
Machine Alice emits logs upon execution of commands (we'll see how in a moment) Such events are appended to the logs of machines in two phases:

Phase I: emitted events are appended to the local log of the emitting machine

Machine Alice emits logs upon execution of commands (we'll see how in a moment) Such events are appended to the logs of machines in two phases:

Phase I: emitted events are appended to the local log of the emitting machine

Machine Alice emits logs upon execution of commands (we'll see how in a moment) Such events are appended to the logs of machines in two phases:

Phase I: emitted events are appended to the local log of the emitting machine

Phase II: newly emitted events are shipped to other machines

Alice e₁ e₂ e₃ a b c Bob e₃

Machine Alice emits logs upon execution of commands (we'll see how in a moment) Such events are appended to the logs of machines in two phases:

Phase I: emitted events are appended to the local log of the emitting machine

Phase II: newly emitted events are shipped to other machines

InitialP =

 $\texttt{InitialP} = \mathsf{Request} \mapsto \mathsf{Requested}$

InitialP = Request +> Requested · [Requested? AuctionP]

Initial = Request \mapsto Requested · [Requested? <u>AuctionP</u>] Auction =

InitialP = Request → Requested · [Requested? AuctionP]
AuctionP = [
Bid? Bidderld? AuctionP

InitialP = Request → Requested · [Requested? AuctionP]
AuctionP = [
Bid?Bidderld?AuctionP

- InitialP = Request +> Requested · [Requested? AuctionP]
- $\begin{array}{rcl} {\tt AuctionP} & = & {\tt Select} \mapsto {\tt Selected} \cdot {\tt PassengerId} \cdot [\\ & {\tt Bid} ? \ {\tt BidderId} ? \ {\tt AuctionP} \end{array}$

InitialP = Request +> Requested · [Requested? AuctionP]

RideP $= \cdots$

Fix a set of $\underline{commands}$ ranged over by c

Let κ range over finite maps from commands to non-empty \log types

Fix a set of <u>commands</u> ranged over by c Let κ range over finite maps from commands to non-empty <u>log types</u> Machine: deterministic regular term of \mathbb{M} ::= $\kappa \cdot [t_1 ? \mathbb{M}_1 \& \cdots \& t_n ? \mathbb{M}_n]$

Fix a set of <u>commands</u> ranged over by c Let κ range over finite maps from commands to non-empty <u>log types</u> Machine: deterministic regular term of \mathbb{M} ::= $\kappa \cdot [t_1? \mathbb{M}_1 \& \cdots \& t_n? \mathbb{M}_n]$ Think of machines as emitters/consumers of events with a semantics given in terms of <u>state transition function</u> :

$$\begin{split} \delta(\mathbf{M}, \epsilon) &= \mathbf{M} \\ \delta(\mathbf{M}, e \cdot \ell) &= \begin{cases} \delta(\mathbf{M}', \ell) & \text{if } \vdash e:t, \ \mathbf{M} \xrightarrow{t?} \mathbf{M}' \\ \delta(\mathbf{M}, \ell) & \text{otherwise} \end{cases} \end{split}$$

That is

M with local log ℓ is in the implicit state $\delta(\mathbf{M}, \ell)$ reached after processing each event in ℓ

Fix a set of <u>commands</u> ranged over by c Let κ range over finite maps from commands to non-empty <u>log types</u> Machine: deterministic regular term of \mathbb{M} ::= $\kappa \cdot [t_1 ? \mathbb{M}_1 \& \cdots \& t_n ? \mathbb{M}_n]$ Think of machines as emitters/consumers of events with a semantics given in terms of <u>state transition function</u> :

$$\begin{split} \delta(\mathbf{M}, \epsilon) &= \mathbf{M} \\ \delta(\mathbf{M}, e \cdot \ell) &= \begin{cases} \delta(\mathbf{M}', \ell) & \text{if } \vdash e: \mathsf{t}, \ \mathbf{M} \xrightarrow{\mathsf{t}?} \mathbf{M}' \\ \delta(\mathbf{M}, \ell) & \text{otherwise} \end{cases} \end{split}$$

$$\frac{\delta(\mathbf{M},\ell) \xrightarrow{\mathbf{c}/\mathbf{l}} \delta(\mathbf{M},\ell) \quad \ell' \text{ fresh} \qquad \vdash \ell':\mathbf{l}}{(\mathbf{M},\ell) \xrightarrow{\mathbf{c}/\mathbf{l}} (\mathbf{M},\ell\cdot\ell')}$$

That is

M with local log ℓ is in the implicit state $\delta(\mathbf{M}, \ell)$ reached after processing each event in ℓ

That is

after processing the events in ℓ , M reaches a state enabling c / 1 then the command execution can emit ℓ' of type 1 and append it to the local log of M

Swarms: $M_1[\ell_1] | \dots | M_n[\ell_n] | \ell$ s.t. $\ell = \bigcup_{1 \le i \le n} \ell_i$ and $\ell_i \sqsubseteq \ell$ for $1 \le i \le n$

Swarms

Swarms: $M_1[\ell_1] | \dots | M_n[\ell_n] | \ell$ s.t. $\ell = \bigcup_{1 \le i \le n} \ell_i$ and $\ell_i \sqsubseteq \ell$ for $1 \le i \le n$

where $\ell_1 \sqsubseteq \ell_2$ is the sublog relation defined as

•
$$\ell_1 \subseteq \ell_2$$
 and $<_{\ell_1} \subseteq <_{\ell_2}$ and

•
$$e \ <_{\ell_2} e', \ src(e) = src(e')$$
 and $e' \in \ell_1 \implies e \in \ell_1$

That is

all events of ℓ_1 appear in the same order in ℓ_2

That is

the per-source partitions of ℓ_1 are prefixes of the corresponding partitions of ℓ_2

Swarms

Swarms: $M_1[\ell_1] | \dots | M_n[\ell_n] | \ell$ s.t. $\ell = \bigcup_{1 \le i \le n} \ell_i$ and $\ell_i \sqsubseteq \ell$ for $1 \le i \le n$

where $\ell_1 \sqsubseteq \ell_2$ is the sublog relation defined as

 $\bullet \ \ell_1 \subseteq \ell_2 \ \text{and} \ <_{\ell_1} \subseteq <_{\ell_2} \ \text{and} \ \\$

•
$$e <_{\ell_2} e', \ src(e) = src(e') \ {\sf and} \ e' \in \ell_1 \implies e \in \ell_1$$

That is all events of ℓ_1 appear in the same order in ℓ_2

That is

the per-source partitions of ℓ_1 are prefixes of the corresponding partitions of ℓ_2

The propagation of newly generated events happens by merging logs: <u>Log merging</u>: $\ell_1 \bowtie \ell_2 = \{\ell \mid \ell \subseteq \ell_1 \cup \ell_2 \text{ and } \ell_1 \sqsubseteq \ell \text{ and } \ell_2 \sqsubseteq \ell\}$

Semantics of swarms

By rule [Local] below, a command's execution updates both local and global logs

$$\frac{\mathbf{S}(i) = \mathbf{M}_{\ell_{i}}}{(\mathbf{S}, \ell)} \xrightarrow{\mathbf{C}/1} \mathbf{M}_{\ell_{i}'} \qquad src(\ell_{i}' \setminus \ell_{i}) = \{i\} \qquad \ell' \in \ell \bowtie \ell_{i}'$$

$$(\mathbf{S}, \ell) \xrightarrow{\mathbf{C}/1} (\mathbf{S}[i \mapsto \mathbf{M}_{\ell_{i}'}], \ell')$$
[Local]

Semantics of swarms

By rule [Local] below, a command's execution updates both local and global logs

$$\frac{\mathbf{S}(i) = \mathbf{M}_{\ell_{i}}}{(\mathbf{S}, \ell)} \xrightarrow{\mathbf{C}/\mathbf{1}} \mathbf{M}_{\ell_{i}}^{\ell_{i}} \qquad src(\ell_{i}' \setminus \ell_{i}) = \{i\} \qquad \ell' \in \ell \bowtie \ell_{i}'$$

$$(\mathbf{S}, \ell) \xrightarrow{\mathbf{C}/\mathbf{1}} (\mathbf{S}[i \mapsto \mathbf{M}_{\ell_{i}}^{\ell_{i}}], \ell')$$
[Local]

$$\frac{\mathbf{S}(i) = \mathbf{M}_{\ell_i}}{(\mathbf{S}, \ell) \xrightarrow{\tau} (\mathbf{S}[i \mapsto \mathbf{M}_{\ell'}], \ell)} [\mathsf{Prop}]$$

By rule [Prop] above, the propagation of events happens

- by shipping a non-deterministically chosen subset of events in the global log
- to a non-deterministically chosen machine

Plan of the talk

A motivating case study

Our formalisation

Our typing discipline

Tool support

Future work

- Behavioural types for swarms -

Quoting W3C:

"[...] a contract [...] of the common ordering conditions and constraints under which messages are exchanged [...] from a global viewpoint [...] Each party can then use the global definition to build and test solutions [...] global specification is in turn realised by combination of the resulting local systems"

Quoting W3C:

"[...] a contract [...] of the common ordering conditions and constraints under which messages are exchanged [...] from a global viewpoint [...] Each party can then use the global definition to build and test solutions [...] global specification is in turn realised by combination of the resulting local systems"

Quoting W3C:

"[...] a contract [...] of the common ordering conditions and constraints under which messages are exchanged [...] from a global viewpoint [...] Each party can then use the global definition to build and test solutions [...] global specification is in turn realised by combination of the resulting local systems"

Quoting W3C:

"[...] a contract [...] of the common ordering conditions and constraints under which messages are exchanged [...] from a global viewpoint [...] Each party can then use the global definition to build and test solutions [...] global specification is in turn realised by combination of the resulting local systems"

Quoting W3C:

"[...] a contract [...] of the common ordering conditions and constraints under which messages are exchanged [...] from a global viewpoint [...] Each party can then use the global definition to build and test solutions [...] global specification is in turn realised by combination of the resulting local systems"

Quoting W3C:

"[...] a contract [...] of the common ordering conditions and constraints under which messages are exchanged [...] from a global viewpoint [...] Each party can then use the global definition to build and test solutions [...] global specification is in turn realised by combination of the resulting local systems"

An intuitive auction protocol for a passenger P to get a taxi T:

An intuitive auction protocol for a passenger P to get a taxi $T\colon$

Swarm protocols: global type for local-first applications

An idealised specification relying on synchronous communication

Fix a set of <u>roles</u> ranged over by **R** (e.g., **P**, **T**, and **O** on slide 31)

The syntax of <u>swarm protocols</u> is again given co-inductively:

$$\mathbf{G} ::= \sum_{i \in I} \mathbf{c}_i @\mathbf{R}_i \langle \mathbf{l}_i \rangle \cdot \mathbf{G}_i \qquad | \qquad 0 \qquad \text{where } I \text{ is a finite set (of indexes)}$$

An example

A swarm protocol for the taxi scenario on slide 31:

 $\mathsf{G} = \mathsf{Request} @ \mathsf{P} \langle \mathsf{Requested} \rangle \ . \ \mathsf{G}_{\mathsf{auction}} \\$

$$\begin{split} \mathsf{G}_{\mathsf{auction}} &= \mathsf{Offer} @ \mathsf{T} \langle \mathsf{Bid} \cdot \mathsf{BidderID} \rangle \, . \, \mathsf{G}_{\mathsf{auction}} \\ &+ \mathsf{Select} @ \mathsf{P} \langle \mathsf{Selected} \cdot \mathsf{PassengerID} \rangle \, . \, \mathsf{G}_{\mathsf{choose}} \end{split}$$

$$\begin{split} \mathsf{G}_{\mathsf{choose}} &= \mathsf{Arrive} @ \mathtt{T} \langle \mathsf{Arrived} \rangle \,.\, \mathtt{Start} @ \mathtt{P} \langle \mathtt{Started} \rangle \,.\, \mathsf{G}_{\mathsf{ride}} \\ &+\, \mathsf{Cancel} @ \mathtt{P} \langle \mathsf{Cancelled} \rangle \,.\, \mathsf{Receipt} @ \mathtt{O} \langle \mathsf{Receipt} \rangle \,.\, \mathsf{O} \end{split}$$

$$\begin{split} \mathsf{G}_{\mathsf{ride}} &= \mathsf{Record}\, @\mathsf{T} \langle \mathsf{Path} \rangle \,.\, \mathsf{G}_{\mathsf{ride}} \\ &+ \mathsf{Finish}\, @\mathsf{P} \langle \mathsf{Finished} \cdot \mathsf{Rating} \rangle \,.\, \mathsf{Receipt}\, @\mathsf{O} \langle \mathsf{Receipt} \rangle \,.\, 0 \end{split}$$

An example

A swarm protocol for the taxi scenario on slide 31:

 $\mathsf{G} = \mathsf{Request} @ \mathsf{P} \langle \mathsf{Requested} \rangle \ . \ \mathsf{G}_{\mathsf{auction}} \\$

$$\begin{split} \mathsf{G}_{\mathsf{auction}} &= \mathsf{Offer} @ \mathsf{T} \langle \mathsf{Bid} \cdot \mathsf{BidderID} \rangle \, . \, \mathsf{G}_{\mathsf{auction}} \\ &+ \mathsf{Select} @ \mathsf{P} \langle \mathsf{Selected} \cdot \mathsf{PassengerID} \rangle \, . \, \mathsf{G}_{\mathsf{choose}} \end{split}$$

Note the log types in each prefixes

$$\begin{split} \mathsf{G}_{\mathsf{choose}} &= \mathsf{Arrive} @ \mathtt{T} \langle \mathsf{Arrived} \rangle \, . \, \mathtt{Start} @ \mathtt{P} \langle \mathtt{Started} \rangle \, . \, \mathsf{G}_{\mathsf{ride}} \\ &+ \mathsf{Cancel} @ \mathtt{P} \langle \mathsf{Cancelled} \rangle \, . \, \mathsf{Receipt} @ \mathtt{O} \langle \mathsf{Receipt} \rangle \, . \, \mathsf{O} \end{split}$$

$$\begin{split} \mathsf{G}_{\mathsf{ride}} &= \mathsf{Record}\, @\mathsf{T} \langle \mathsf{Path} \rangle \,.\, \mathsf{G}_{\mathsf{ride}} \\ &+ \mathsf{Finish}\, @\mathsf{P} \langle \mathsf{Finished} \cdot \mathsf{Rating} \rangle \,.\, \mathsf{Receipt}\, @\mathsf{O} \, \langle \mathsf{Receipt} \rangle \,.\, 0 \end{split}$$

Like for machines, a swarm protocols $G = \sum_{i \in I} c_i \mathbb{Q} \mathbb{R}_i \langle \mathbf{1}_i \rangle$. G_i has an associated FSA:

• the set of states consists of G plus the states in G_i for each $i \in \{1..., n\}$

- G is the initial state
- for each $i \in I$, G has a transition to state G_i labelled with $c_i @R_i \langle 1_i \rangle$, written G $\xrightarrow{c_i / 1_i} G_i$

Semantics of swarm protocols

One rule only!

$$(\mathsf{G},\ell) \xrightarrow{\mathsf{c}/1} (\mathsf{G},\ell)$$
 [G-Cmd]
Semantics of swarm protocols

One rule only!

$$\frac{\delta(\mathsf{G},\ell) \xrightarrow{\mathsf{C}/1} \mathsf{G}'}{(\mathsf{G},\ell) \xrightarrow{\mathsf{C}/1} (\mathsf{G},\ell)} [\mathsf{G}\text{-}\mathsf{Cmd}]$$

where

$$\delta(\mathsf{G},\ell) = \begin{cases} \mathsf{G} & \text{if } \ell = \epsilon & \text{Logs to be consumed "atomically",} \\ \delta(\mathsf{G}',\ell'') & \text{if } \mathsf{G} \xrightarrow{\mathsf{C}/\mathsf{l}} \mathsf{G}' \text{ and } \vdash \ell':\mathsf{l} \text{ and } \ell = \ell' \cdot \ell'' \\ \bot & \text{otherwise} \end{cases}$$

Semantics of swarm protocols

One rule only!

$$\frac{\delta(\mathsf{G},\ell) \xrightarrow{\mathsf{C}/\mathsf{l}} \mathsf{G}' \quad \vdash \ell' : \mathsf{l} \quad \ell' \text{ log of fresh events}}{(\mathsf{G},\ell) \xrightarrow{\mathsf{C}/\mathsf{l}} (\mathsf{G},\ell \cdot \ell')} [\mathsf{G}\text{-}\mathsf{Cmd}]$$

where

$$\delta(\mathsf{G},\ell) = \begin{cases} \mathsf{G} & \text{if } \ell = \epsilon & \text{Logs to be consumed "atomically",} \\ \delta(\mathsf{G}',\ell'') & \text{if } \mathsf{G} \xrightarrow{\mathsf{C}/\mathsf{l}} \mathsf{G}' \text{ and } \vdash \ell':\mathsf{l} \text{ and } \ell = \ell' \cdot \ell'' \\ \bot & \text{otherwise} \end{cases}$$

Semantics of swarm protocols

One rule only!

$$\frac{\delta(\mathsf{G},\ell) \xrightarrow{\mathsf{C}/\mathsf{l}} \mathsf{G}' \quad \vdash \ell' : \mathsf{l} \qquad \ell' \text{ log of fresh events}}{(\mathsf{G},\ell) \xrightarrow{\mathsf{C}/\mathsf{l}} (\mathsf{G},\ell \cdot \ell')} [\mathsf{G}\text{-}\mathsf{Cmd}]$$

where

$$\delta(\mathsf{G},\ell) = \begin{cases} \mathsf{G} & \text{if } \ell = \epsilon & \text{Logs to be consumed "atomically",} \\ \delta(\mathsf{G}',\ell'') & \text{if } \mathsf{G} \xrightarrow{\mathsf{C}/1} \mathsf{G}' \text{ and } \vdash \ell':1 \text{ and } \ell = \ell' \cdot \ell'' \\ \bot & \text{otherwise} \end{cases}$$

We restrict ourselves to $\underline{deterministic}$ swarm protocols that is, on different transitions from a same state

- log types start differently
- pairs (command,role) differ

log determinism command determinism

Transitions of a swarm protocol ${\sf G}$ are labelled with a role that may invoke the command

Transitions of a swarm protocol G are labelled with a role that may invoke the command Each machine plays one role

Transitions of a swarm protocol ${\sf G}$ are labelled with a role that may invoke the command

Each machine plays one role

Obtain machines by projecting G on each role

Transitions of a swarm protocol ${\sf G}$ are labelled with a role that may invoke the command

Each machine plays one role

Obtain machines by projecting G on each role

First attempt

$$\left(\sum_{i\in I} c_i @\mathbf{R}_i \langle \mathbf{l}_i \rangle \cdot \mathbf{G}_i\right) \downarrow_{\mathbf{R}} = \kappa \cdot [\&_{i\in I} \mathbf{l}_i? \mathbf{G}_i \downarrow_{\mathbf{R}}]$$

where $\kappa = \{ (c_i / l_i) \mid R_i = R \text{ and } i \in I \}$

Transitions of a swarm protocol ${\sf G}$ are labelled with a role that may invoke the command

Each machine plays one role

Obtain machines by projecting G on each role

First attempt

$$\left(\sum_{i\in I} c_i @\mathbf{R}_i \langle \mathbf{l}_i \rangle \cdot \mathbf{G}_i\right) \downarrow_{\mathbf{R}} = \kappa \cdot [\&_{i\in I} \mathbf{l}_i? \mathbf{G}_i \downarrow_{\mathbf{R}}]$$

where
$$\kappa = \{ (c_i / l_i) \mid R_i = R \text{ and } i \in I \}$$

simple, but

- projected machines are large in all but the most trivial cases
- processing all events is undesirable: security and efficiency

Another attempt

 \int Let's subscribe to <u>subscriptions</u> : maps from roles to sets of event types

In pub-sub, processes subscribe to "topics"

Another attempt

Let's subscribe to <u>subscriptions</u> : maps from roles to sets of event types

In pub-sub, processes subscribe to "topics"

Given $\mathbf{G} = \sum_{i \in I} c_i \mathbb{Q} \mathbb{R}_i \langle \mathbf{1}_i \rangle$. \mathbf{G}_i , the projection of \mathbf{G} on a role \mathbb{R} with respect to subscription σ is

$$\mathsf{G}\downarrow^{\sigma}_{\mathtt{R}} = \kappa \cdot [\&_{j \in J} \text{ filter}(\mathtt{l}_{j}, \sigma(\mathtt{R}))? \mathsf{G}_{j} \downarrow^{\sigma}_{\mathtt{R}}] \qquad \qquad \mathsf{where}$$

Another attempt

Let's subscribe to $\underline{subscriptions}$: maps from roles to sets of event types

In pub-sab, processes subscribe to "topics"

Given $\mathbf{G} = \sum_{i \in I} c_i @\mathbf{R}_i \langle \mathbf{1}_i \rangle \cdot \mathbf{G}_i$, the projection of \mathbf{G} on a role \mathbf{R} with respect to subscription σ is

 $\mathsf{G}\downarrow^{\sigma}_{\mathtt{R}} = \kappa \cdot [\&_{j \in J} \operatorname{filter}(\mathtt{l}_j, \sigma(\mathtt{R}))? \mathsf{G}_j \downarrow^{\sigma}_{\mathtt{R}}] \qquad \qquad \mathsf{where}$

$$\kappa = \{ c_i / l_i \mid \mathbb{R}_i = \mathbb{R} \text{ and } i \in I \}$$

$$J = \{ i \in I \mid \text{filter}(l_i, \sigma(\mathbb{R})) \neq \epsilon \}$$
filter(l, E) =
$$\begin{cases} \epsilon, & \text{if } t = \epsilon \\ t \cdot \text{filter}(l', E) & \text{if } t \in E \text{ and } l = t \cdot l' \\ \text{filter}(l, E) & \text{otherwise} \end{cases}$$

Well-formedness

Trading consistency for availability has implications:

Well-formedness = Causality

Trading consistency for availability has implications:

Explicit re-enabling $\sigma(\mathbf{R}_i) \cap \mathbf{1}_i \neq \emptyset$

Propagation of events is non-atomic (cf. rule [Prop])

 \implies differences in how machines perceive the (state of the) computation

Causality

Fix a subscription σ . For each branch $i \in I$ of $\mathbf{G} = \sum_{i \in I} c_i \mathbb{Q} \mathbb{R}_i \langle \mathbf{1}_i \rangle \cdot \mathbf{G}_i$

If R should have c enabled after c' then $\sigma({\bf R})$ contains some event type emitted by c'

Command causality if **R** can execute a command in **G**_i then $\sigma(\mathbf{R}) \cap \mathbf{1}_i \neq \emptyset$ and $\sigma(\mathbf{R}) \cap \mathbf{1}_i \supseteq \bigcup_{\mathbf{R}' \in \sigma \mathbf{G}_i} \sigma(\mathbf{R}') \cap \mathbf{1}_i$

Well-formedness = Causality + Determinacy

Trading consistency for availability has implications: Propagation of events is non-atomic (cf. rule [Prop])

 \implies different roles may take inconsistent decisions

Causality & Determinacy

Fix a subscription σ . For each branch $i \in I$ of $G = \sum_{i \in I} c_i @R_i \langle l_i \rangle . G_i$

Explicit re-enabling $\sigma(\mathbf{R}_i) \cap \mathbf{1}_i \neq \emptyset$ Command causalityif \mathbf{R} can execute a command in \mathbf{G}_i
then $\sigma(\mathbf{R}) \cap \mathbf{1}_i \neq \emptyset$ and $\sigma(\mathbf{R}) \cap \mathbf{1}_i \supseteq \bigcup_{\mathbf{R}' \in \sigma \mathbf{G}_i} \sigma(\mathbf{R}') \cap \mathbf{1}_i$ Determinacy $\mathbf{R} \in_{\sigma} \mathbf{G}_i \implies \mathbf{1}_i[\mathbf{0}] \in \sigma(\mathbf{R})$

Well-formedness = Causality + Determinacy - Confusion

Trading consistency for availability has implications:

Propagation of events is non-atomic (cf. rule [Prop])

 \implies branches unambiguously identified and events emitted on eventually discharged branches ignored

Causality & Determinacy & Confusion freeness

Fix a subscription σ . For each branch $i \in I$ of $G = \sum_{i \in I} c_i @R_i \langle l_i \rangle . G_i$

Explicit re-enabling $\sigma(\mathbf{R}_i) \cap \mathbf{1}_i \neq \emptyset$ Command causalityif \mathbf{R} can execute a command in \mathbf{G}_i
then $\sigma(\mathbf{R}) \cap \mathbf{1}_i \neq \emptyset$ and $\sigma(\mathbf{R}) \cap \mathbf{1}_i \supseteq \bigcup_{\mathbf{R}' \in \sigma \mathbf{G}_i} \sigma(\mathbf{R}') \cap \mathbf{1}_i$ Determinacy $\mathbf{R} \in_{\sigma} \mathbf{G}_i \implies \mathbf{1}_i[0] \in \sigma(\mathbf{R})$ Confusion freenessfor each t starting a log emitted by a command in \mathbf{G}
there is a unique state \mathbf{G}' reachable from \mathbf{G} which emits t

Implementations

A (σ, G) -realisation is a swarm (S, ϵ) such that, for each $i \in \text{dom } S$, there exists a role $\mathbb{R} \in \text{roles}(G, \sigma)$ such that $S(i) = G \downarrow_{\mathbb{R}}^{\sigma}$

Implementations

A (σ, G) -realisation is a swarm (S, ϵ) such that, for each $i \in \text{dom } S$, there exists a role $\mathbb{R} \in \text{roles}(G, \sigma)$ such that $S(i) = G \downarrow_{\mathbb{R}}^{\sigma}$

Write $\ell \equiv_{G,\sigma} \ell'$ when ℓ and ℓ' have the same <u>effective type</u> wrt G and σ A swarm (S, ϵ) is eventually faithful to G and σ if $(S, \epsilon) \Longrightarrow (S, \ell)$ then there is $(G, \epsilon) \Longrightarrow (G, \ell')$ with $\ell \equiv_{G,\sigma} \ell'$

Implementations & projections

A (σ, G) -realisation is a swarm (S, ϵ) such that, for each $i \in \text{dom } S$, there exists a role $R \in \text{roles}(G, \sigma)$ such that $S(i) = G \downarrow_R^{\sigma}$

Write $\ell \equiv_{G,\sigma} \ell'$ when ℓ and ℓ' have the same <u>effective type</u> wrt G and σ A swarm (S, ϵ) is eventually faithful to G and σ if $(S, \epsilon) \Longrightarrow (S, \ell)$ then there is $(G, \epsilon) \Longrightarrow (G, \ell')$ with $\ell \equiv_{G,\sigma} \ell'$

Lemma (Projections of well-formed protocols are eventually faithful) If G is a σ -WF protocol and $(\delta(G \downarrow_{R}^{\sigma}, \ell)) \downarrow_{c/1}$ then there exists $\ell' \equiv_{G,\sigma} \ell$ such that $(G, \epsilon) \Longrightarrow (G, \ell')$ and $\delta(G, \ell') \xrightarrow{c/1} G'$

On correct realisations

On correct realisations

On correct realisations

Admissibility

A log ℓ is <u>admissible</u> for a σ -WF protocol G if there are consistent runs $\{(G, \epsilon) \Longrightarrow (G, \ell_i)\}_{1 \le i \le k}$ and a log $\ell' \in (\bowtie_{1 \le i \le k} \ell_i)$ such that

$$\ell = \bigcup_{1 \le i \le k} \ell_i, \quad \ell' \equiv_{\mathsf{G},\sigma} \ell, \quad \text{and} \quad \ell_i^{(j)} \sqsubseteq \ell \text{ for all } 1 \le i \le k$$

Results

Let G be well-formed; a $\underline{realisation}$ is a swarm whose components are projections of G

Lemma (Well-formedness generates any admissible log)

If ℓ is admissible for G then there is a log ℓ' such that $(G, \epsilon) \Longrightarrow (G, \ell')$ and $\ell \equiv_{G, \sigma} \ell'$

Theorem (Realisations of WF protocols are admissible)

If $(S, \epsilon) \Longrightarrow (S', \ell)$ for (S, ϵ) realisation of G then ℓ is admissible for G

Corollary

Every realisation of G is eventually faithful wrt G and σ

Theorem (Full realisations are complete)

If S is a <u>full realisation</u> of G and $(G, \epsilon) \Longrightarrow (G, \ell')$ then there is S' s.t. $(S, \epsilon) \Longrightarrow (S', \ell)$

Plan of the talk

A motivating case study

Our formalisation

Our typing discipline

Tool support

Future work

– Tooling –

// analogous for other events; "type" property matches type name (checked by tool)
type Requested = { type: 'Requested'; pickup: string; dest: string }
type Events = Requested | Bid | BidderID | Selected | ...

Request / Requested

machine-runner

		TypeChecking
		Well-Formedness
language support	(machine-check)	Projection
 our tool		rejection
 TypeScript code		Equivalence test
data type		
 inputs	simulator	

- TypeChecking implements the functionalities of our typing discipline
- simulator simulates the semantics of swarm realisations
- machine-check and machine-runner integrate our framework in the Actyx platform

- TypeChecking implements the functionalities of our typing discipline
- simulator simulates the semantics of swarm realisations
- machine-check and machine-runner integrate our framework in the Actyx platform

- TypeChecking implements the functionalities of our typing discipline
- simulator simulates the semantics of swarm realisations
- machine-check and machine-runner integrate our framework in the Actyx platform

- TypeChecking implements the functionalities of our typing discipline
- simulator simulates the semantics of swarm realisations
- machine-check and machine-runner integrate our framework in the Actyx platform

- TypeChecking implements the functionalities of our typing discipline
- simulator simulates the semantics of swarm realisations
- machine-check and machine-runner integrate our framework in the Actyx platform

If you want to play with our prototype?

Have a look at

- our ECOOP artifact paper (https://drops.dagstuhl.de/opus/volltexte/2023/18254/)
- code at https://doi.org/10.5281/zenodo.7737188
- An ISSTA tool paper from Actyx (https://arxiv.org/abs/2306.09068)

Plan of the talk

A motivating case study

Our formalisation

Our typing discipline

Tool support

Future work

– Epilogue –

To be continued....

There are a number of future directions to explore:

To be continued....

There are a number of future directions to explore:

Identify weaker conditions for well-formedness

To be continued....

There are a number of future directions to explore:

Identify weaker conditions for well-formedness

"Efficiency"
There are a number of future directions to explore:

Identify weaker conditions for well-formedness "Efficiency"

Subscriptions are hard to determine

There are a number of future directions to explore:

Identify weaker conditions for well-formedness "Efficiency"

Subscriptions are hard to determine

Relax some of our assumptions

There are a number of future directions to explore:

Identify weaker conditions for well-formedness "Efficiency" Subscriptions are hard to determine Relax some of our assumptions Compensations

Unreliable propagation

There are a number of future directions to explore:

Identify weaker conditions for well-formedness "Efficiency" Subscriptions are hard to determine Relax some of our assumptions Compensations Unreliable propagation Adversarial contexts

.

There are a number of future directions to explore:

Identify weaker conditions for well-formedness "Efficiency" Subscriptions are hard to determine Relax some of our assumptions Compensations Unreliable propagation Adversarial contexts

An interesting paradigm grounded on principles for local-first principles: temporary inconsistency are tolerated provided that they can be (and are) resolved at some point

An interesting paradigm grounded on principles for local-first principles: temporary inconsistency are tolerated provided that they can be (and are) resolved at some point

A formal semantics that faithfully captures Actyx's platform

An interesting paradigm grounded on principles for local-first principles: temporary inconsistency are tolerated provided that they can be (and are) resolved at some point

A formal semantics that faithfully captures Actyx's platform

and behavioural types to specify and verify eventual consensus

Thank you!