Behavioural Types for Local-First Software

Emilio Tuosto @ GSSI
joint work with

and
Hernán Melgratti @ UBA

It-Matters
Lucca 11-12 July, 2023

- Prelude -

Take-away message

An approach to
trade consistency for availability in systems of asymmetric replicated peers

Take-away message

An approach to
trade consistency for availability in systems of asymmetric replicated peers
using local-first's principles to establish eventual consensus

Take-away message

An approach to
trade consistency for availability in systems of asymmetric replicated peers
using local-first's principles to establish eventual consensus
formally supported by behavioural types

Take-away message

An approach to
trade consistency for availability in systems of asymmetric replicated peers
using local-first's principles to establish eventual consensus
formally supported by behavioural types

- swarm $=($ machines + local logs) $*$ imaginary global log
- swarm protocols: systems from an abstract global viewpoint
- enforce good behaviour via behavioural typing

Take-away message

An approach to
trade consistency for availability in systems of asymmetric replicated peers
using local-first's principles to establish eventual consensus
formally supported by behavioural types

- swarm $=($ machines + local logs) $*$ imaginary global log
- swarm protocols: systems from an abstract global viewpoint
- enforce good behaviour via behavioural typing

See our recent ECOOP 2023 paper
(https://drops.dagstuhl.de/opus/frontdoor.php?source_opus=18208;
extended version available at https://arxiv.org/abs/2305.04848)

Distributed coordination

An "old" problem

Distributed agreement
Distributed sharing
Security
Computer-assisted collaborative work

With some "solutions"
Centralisation points
Consensus protocols
Commutative replicated data types

Distributed coordination

An "old" problem

Distributed agreement
Distributed sharing Security

Computer-assisted collaborative work

Availability $=$ Money

Kohavi et al. KDD'14

- Amazon sales down 1% if 100 ms delay
- Google searches down $0.2 \%-0.6 \%$ if $100-400 \mathrm{~ms}$ delay
- Bing's revenue down $\sim 1.5 \%$ if 250 ms delay

With some "solutions"
Centralisation points Consensus protocols
Commutative replicated data types
...

A new (?) solution

What about using local-first principles?

Thou shall be autonomous

Thou shall collaborate

Thou shall recognise conflicts

Thou shall resolve conflicts

Thou shall be consistent

Plan of the talk

Some motivations

Our formalisation

Our typing discipline

Tool support

Open issues

- Motivations -

A collaborative environment and its execution model

A collaborative environment and its execution model

A collaborative environment and its execution model

A collaborative environment and its execution model

A collaborative environment and its execution model

A collaborative environment and its execution model

A collaborative environment and its execution model

A collaborative environment and its execution model

A collaborative environment and its execution model

A collaborative environment and its execution model

A collaborative environment and its execution model

A collaborative environment and its execution model

while true:

execute ;
propagate ;
merge

Other application domains / motivations

More applications

Robots (e.g., rescue missions or space applications)

Collaborative applications (https://automerge.org/)

Home automation

Other application domains / motivations

loT...really?

Why your fridge and mobile should go in the cloud to talk to each other?

Other application domains / motivations

"Anytime, anywhere..." really?

like the AWS's outage on $25 / 11 / 2020$
or almost all Google services down on 14/12/2020
DSL typical availability of 97\% (\& some SLA have no lower bound) checkout https://www.internetsociety.org/blog/2022/03/what-is-the-digital-divide

Other application domains / motivations

Also, taking decisions locally
can reduce downtime
shifts data ownership
gets rid of any centralization point...for real

Plan of the talk

A motivating case study

Our formalisation

Our typing discipline

Tool support

Future work

- A formal model -

Ingredients (I): events \& logs

Events

e

Logs

$$
e_{1} \cdot e_{2} \ldots
$$

Ingredients (I): events \& logs

Events $\quad \vdash \quad$: t $\operatorname{src}(e)$

Logs $\quad \vdash e_{1} \cdot e_{2} \ldots: t_{1} \cdot t_{2} \ldots$

Ingredients (I): events \& logs

Events $\quad \vdash \quad e \quad t$ $\operatorname{src}(e)$

$$
\text { Logs } \quad \vdash e_{1} \cdot e_{2} \ldots: \mathrm{t}_{1} \cdot \mathrm{t}_{2} \ldots
$$

order induced by $\ell=e_{1} \cdots e_{n} e_{i}<_{\ell} e_{j} \Longleftrightarrow i<j$

Ingredients (II): log shipping

Machine Alice emits logs upon execution of commands (we'll see how in a moment)

Ingredients (II): log shipping

Machine Alice emits logs upon execution of commands (we'll see how in a moment) Such events are appended to the logs of machines in two phases:

Ingredients (II): log shipping

Machine Alice emits logs upon execution of commands (we'll see how in a moment) Such events are appended to the logs of machines in two phases:

Phase I: emitted events are appended to the local log of the emitting machine

e_{1}	e_{2}	e_{3}

Ingredients (II): log shipping

Machine Alice emits logs upon execution of commands (we'll see how in a moment) Such events are appended to the logs of machines in two phases:

Phase I: emitted events are appended to the local log of the emitting machine

e_{1}	e_{2}	e_{3}	a	b	c

Ingredients (II): log shipping

Machine Alice emits logs upon execution of commands (we'll see how in a moment) Such events are appended to the logs of machines in two phases:

Phase I: emitted events are appended to the local log of the emitting machine

e_{1}	e_{2}	e_{3}	a	b	c

Phase II: newly emitted events are shipped to other machines

Alice

e_{1}	e_{2}	e_{3}	a	b	c

Bob

```
    e3
```


Ingredients (II): log shipping

Machine Alice emits logs upon execution of commands (we'll see how in a moment) Such events are appended to the logs of machines in two phases:

Phase I: emitted events are appended to the local log of the emitting machine

e_{1}	e_{2}	e_{3}	a	b	c

Phase II: newly emitted events are shipped to other machines

Alice	e_{1}	e_{2}	e_{3}	a	b	C	propagating b	Alice	e	e		e_{3}			b	C
Bob	e_{3}							Bob	e_{2}	e_{3}			b			

Machines by example
InitialP =

Machines by example

Request / Requested

InitialP $=$ Request \mapsto Requested.

Machines by example

InitialP $=$ Request \mapsto Requested [Requested? AuctionP]

Machines by example

$$
\begin{aligned}
& \text { InitialP }=\text { Request } \mapsto \text { Requested } \cdot[\text { Requested? AuctionP }] \\
& \text { AuctionP }=
\end{aligned}
$$

Machines by example

$$
\begin{array}{cc}
\text { InitialP }=\text { Request } \mapsto \text { Requested } \cdot[\text { Requested? AuctionP] }] \\
\text { AuctionP }= & {[} \\
\text { Bid? Bidderld? AuctionP }
\end{array}
$$

Machines by example

$$
\begin{array}{cc}
\text { InitialP }= & \text { Request } \mapsto \text { Requested } \cdot[\text { Requested? AuctionP }] \\
\text { AuctionP }= & {[} \\
\text { Bid? Bidderld? AuctionP }
\end{array}
$$

Machines by example

$$
\begin{array}{r}
\text { InitialP }=\text { Request } \mapsto \text { Requested } \cdot[\text { Requested? AuctionP }] \\
\text { AuctionP }=\begin{array}{r}
\text { Select } \mapsto
\end{array} \text { Selected } \cdot \text { Passengerld } \cdot[\\
\text { Bid? Bidderld? AuctionP }
\end{array}
$$

Machines by example


```
InitialP = Request }\mapsto\mathrm{ Requested. [Requested? AuctionP]
AuctionP = Select }\mapsto\mathrm{ Selected · Passengerld}\cdot
                        Bid? Bidderld? AuctionP
    &
    Selected? Passengerld? RideP
]
RideP = \cdots
```


Machines, formally

Fix a set of commands ranged over by c
Let κ range over finite maps from commands to non-empty log types

Machines, formally

Fix a set of commands ranged over by c
Let κ range over finite maps from commands to non-empty log types
Machine: deterministic regular term of $M:: \circ \kappa \kappa \cdot\left[t_{1} ? M_{1} \& \cdots \& t_{n} ? M_{n}\right]$

Machines, formally

Fix a set of commands ranged over by c
Let κ range over finite maps from commands to non-empty log types
Machine: deterministic regular term of $M:: \circ \kappa \cdot\left[t_{1} ? M_{1} \& \cdots \& t_{n} ? M_{n}\right]$
Think of machines as emitters/consumers of events with a semantics given in terms of state transition function :

$$
\begin{aligned}
\delta(\mathrm{M}, \epsilon) & =\mathrm{M} \\
\delta(\mathrm{M}, e \cdot \ell) & = \begin{cases}\delta\left(\mathrm{M}^{\prime}, \ell\right) & \text { if } \vdash e: \mathrm{t}, \mathrm{M} \xrightarrow{\mathrm{t} ?} \mathrm{M}^{\prime} \\
\delta(\mathrm{M}, \ell) & \text { otherwise }\end{cases}
\end{aligned}
$$

That is

M with local $\log \ell$ is in the implicit state $\delta(\mathrm{M}, \ell)$ reached after processing each event in ℓ

Machines, formally

Fix a set of commands ranged over by c
Let κ range over finite maps from commands to non-empty log types
Machine: deterministic regular term of $M:: \circ \kappa \kappa \cdot\left[t_{1} ? M_{1} \& \cdots \& t_{n} ? M_{n}\right]$
Think of machines as emitters/consumers of events with a semantics given in terms of state transition function :

$$
\begin{aligned}
& \delta(\mathrm{M}, \epsilon)=\mathrm{M} \\
& \delta(\mathrm{M}, e \cdot \ell)= \begin{cases}\delta\left(\mathrm{M}^{\prime}, \ell\right) & \text { if } \vdash e: \mathrm{t}, \mathrm{M} \xrightarrow{\mathrm{t} ?} \mathrm{M}^{\prime} \\
\delta(\mathrm{M}, \ell) & \text { otherwise }\end{cases} \\
& \frac{(\mathrm{M}, \ell) \xrightarrow{\mathrm{c} / \mathrm{l}} \delta(\mathrm{M}, \ell) \quad \ell^{\prime} \text { fresh } \quad \vdash \ell^{\prime}: 1}{} \\
&(\mathrm{M}, \ell) \xrightarrow{\mathrm{c} / \mathrm{l}}\left(\mathrm{M}, \ell \cdot \ell^{\prime}\right)
\end{aligned}
$$

That is

M with local $\log \ell$ is in the implicit state $\delta(\mathrm{M}, \ell)$ reached after processing each event in ℓ

That is

after processing the events in ℓ, M reaches a state enabling c / I then the command execution can emit ℓ^{\prime} of type 1 and append it to the local \log of M

Swarms

Swarms: $M_{1} \ell_{1}|\ldots| M_{n} \ell_{n} \mid \ell$ s.t. $\ell=\bigcup_{1 \leq i \leq n} \ell_{i}$ and $\ell_{i} \sqsubseteq \ell$ for $1 \leq i \leq n$

Swarms

Swarms: $M _ { 1 } \longdiv { \ell _ { 1 } } | \ldots | M _ { n } | \ell _ { n } | \ell$ s.t. $\ell=\bigcup_{1 \leq i \leq n} \ell_{i}$ and $\ell_{i} \sqsubseteq \ell$ for $1 \leq i \leq n$
where $\ell_{1} \sqsubseteq \ell_{2}$ is the sublog relation defined as

- $\ell_{1} \subseteq \ell_{2}$ and $<_{\ell_{1}} \subseteq<_{\ell_{2}}$ and

That is

all events of ℓ_{1} appear in the same order in ℓ_{2}

That is

the per-source partitions of ℓ_{1} are prefixes of the corresponding partitions of ℓ_{2}

Swarms

Swarms: $M _ { 1 } \longdiv { \ell _ { 1 } } | \ldots | M _ { n } | \ell _ { n } | \ell$ s.t. $\ell=\bigcup_{1 \leq i \leq n} \ell_{i}$ and $\ell_{i} \sqsubseteq \ell$ for $1 \leq i \leq n$ where $\ell_{1} \sqsubseteq \ell_{2}$ is the sublog relation defined as

- $\ell_{1} \subseteq \ell_{2}$ and $<_{\ell_{1}} \subseteq<_{\ell_{2}}$ and

That is

all events of ℓ_{1} appear in the same order in ℓ_{2}

That is

the per-source partitions of ℓ_{1} are prefixes of the corresponding partitions of ℓ_{2}

The propagation of newly generated events happens by merging logs: Log merging: $\ell_{1} \bowtie \ell_{2}=\left\{\ell \mid \ell \subseteq \ell_{1} \cup \ell_{2}\right.$ and $\ell_{1} \sqsubseteq \ell$ and $\left.\ell_{2} \sqsubseteq \ell\right\}$

Semantics of swarms

By rule [Local] below, a command's execution updates both local and global logs

Semantics of swarms

By rule [Local] below, a command's execution updates both local and global logs

$$
\begin{aligned}
& \xrightarrow[{\mathrm{S}(i)=\mathrm{M}\left[\begin{array} { l }
{ \ell _ { i } }
\end{array} \mathrm { M } \left[\ell _ { i } \xrightarrow { \mathrm { c } / \mathrm { l } } \mathrm { M } \left[\begin{array}{l}
\ell_{i}^{\prime}
\end{array} \operatorname{src}\left(\ell_{i}^{\prime} \backslash \ell_{i}\right)=\{i\} \quad \ell^{\prime} \in \ell \bowtie \ell_{i}^{\prime}\right.\right.\right.}]{(\mathrm{S}, \ell) \xrightarrow{\mathrm{c} / 1}\left(\mathrm{~S}\left[i \mapsto \mathrm{M}\left[\begin{array}{l}
\ell_{i}^{\prime}
\end{array}\right], \ell^{\prime}\right)\right.}[\text { Local }] \\
& \frac{\mathrm{S}(i)=\mathrm{M} \ell_{i} \quad \ell_{i} \sqsubseteq \ell^{\prime} \sqsubseteq \ell \quad \ell_{i} \subset \ell^{\prime}}{(\mathrm{S}, \ell) \xrightarrow{\tau}\left(\mathrm{S}\left[i \mapsto \mathrm{M}\left[\ell^{\prime}\right], \ell\right)\right.}[\text { Prop }]
\end{aligned}
$$

By rule [Prop] above, the propagation of events happens

- by shipping a non-deterministically chosen subset of events in the global log
- to a non-deterministically chosen machine

Plan of the talk

A motivating case study

Our formalisation

Our typing discipline

Tool support

Future work

- Behavioural types for swarms -

Inspired by choreographies

Quoting W3C:

"[...] a contract [...] of the common ordering conditions and constraints under which messages are exchanged [...] from a global viewpoint [...]
Each party can then use the global definition to build and test solutions [...] global specification is in turn realised by combination of the resulting local systems"

Inspired by choreographies

Quoting W3C:

"[...] a contract [...] of the common ordering conditions and constraints under which messages are exchanged [...] from a global viewpoint [...]
Each party can then use the global definition to build and test solutions [...] global specification is in turn realised by combination of the resulting local systems"

Inspired by choreographies

Quoting W3C:

"[...] a contract [...] of the common ordering conditions and constraints under which messages are exchanged [...] from a global viewpoint [...]
Each party can then use the global definition to build and test solutions [...] global specification is in turn realised by combination of the resulting local systems"

Synchrony \quad| Choreography G |
| :--- |
| global viewpoint |

Asynchrony

Inspired by choreographies

Quoting W3C:

"[...] a contract [...] of the common ordering conditions and constraints under which messages are exchanged [...] from a global viewpoint [...]
Each party can then use the global definition to build and test solutions [...] global specification is in turn realised by combination of the resulting local systems"

Inspired by choreographies

Quoting W3C:

"[...] a contract [...] of the common ordering conditions and constraints under which messages are exchanged [...] from a global viewpoint [...]
Each party can then use the global definition to build and test solutions [...] global specification is in turn realised by combination of the resulting local systems"

Inspired by choreographies

Quoting W3C:

"[...] a contract [...] of the common ordering conditions and constraints under which messages are exchanged [...] from a global viewpoint [...]
Each party can then use the global definition to build and test solutions [...] global specification is in turn realised by combination of the resulting local systems"

Swarm protocols by example

An intuitive auction protocol for a passenger P to get a taxi T :

Swarm protocols by example

An intuitive auction protocol for a passenger P to get a taxi T :

Swarm protocols: global type for local-first applications

An idealised specification relying on synchronous communication

Fix a set of roles ranged over by $R \quad$ (e.g., P, T, and 0 on slide 31)

The syntax of swarm protocols is again given co-inductively:

$$
\mathrm{G}:::=\sum_{i \in I} \mathrm{c}_{i} @ \mathrm{R}_{i}\left\langle 1_{i}\right\rangle \cdot \mathrm{G}_{i} \quad \mid \quad 0 \quad \text { where } I \text { is a finite set (of indexes) }
$$

An example

A swarm protocol for the taxi scenario on slide 31:

$$
\begin{aligned}
\mathrm{G} & =\text { Request } @ P\langle\text { Requested }\rangle \cdot \mathrm{G}_{\text {auction }} \\
\mathrm{G}_{\text {auction }} & =\text { Offer@T }\langle\text { Bid } \cdot \text { BidderID }\rangle \cdot \mathrm{G}_{\text {auction }} \\
& + \text { Select } @\langle\text { Selected } \cdot \text { PassengerID }\rangle \text {. } \mathrm{G}_{\text {choose }} \\
\mathrm{G}_{\text {choose }} & =\text { Arrive@T }\langle\text { Arrived }\rangle \cdot \text { Start } @ P\langle\text { Started }\rangle \cdot \mathrm{G}_{\text {ride }} \\
& + \text { Cancel@P }\langle\text { Cancelled }\rangle \cdot \text { Receipt } 0\langle\text { Receipt }\rangle \cdot 0 \\
G_{\text {ride }} & =\text { Record } @\langle\text { Path }\rangle \cdot G_{\text {ride }} \\
& + \text { Finish } @\langle\text { Finished } \cdot \text { Rating }\rangle \cdot \text { Receipt } @\langle\text { Receipt }\rangle \cdot 0
\end{aligned}
$$

An example

A swarm protocol for the taxi scenario on slide 31:

```
    G = Request@P\langleRequested\rangle.Gauction
Gauction}=\mathrm{ Offer@T <Bid . BidderID \ . Gauction
    + Select@P\langleSelected · PassengerID\rangle . Gchoose
```



```
        + Cancel@P\langleCancelled\rangle. Receipt@O\langleReceipt\rangle .0
    Gride }=\mathrm{ Record@T<Path}\rangle.\mp@subsup{G}{\mathrm{ ride }}{
    + Finish@P〈Finished · Rating\rangle.Receipt@O\langleReceipt\rangle.0
```


Swarm protocols as FSA

Like for machines, a swarm protocols $\mathrm{G}=\sum_{i \in I} \mathrm{c}_{i} @ R_{i}\left\langle 1_{i}\right\rangle . \mathrm{G}_{i}$ has an associated FSA:

- the set of states consists of G plus the states in G_{i} for each $i \in\{1 \ldots, n\}$
- G is the initial state
- for each $i \in I$, G has a transition to state G_{i} labelled with $\mathrm{c}_{i} @ R_{i}\left\langle 1_{i}\right\rangle$, written $\mathrm{G} \xrightarrow{\mathrm{c}_{i} / 1_{i}} \mathrm{G}_{i}$

Semantics of swarm protocols

One rule only!

Semantics of swarm protocols

One rule only!

$$
\frac{\delta(\mathrm{G}, \ell) \stackrel{\mathrm{c} / \mathrm{l}}{\longrightarrow} \mathrm{G}^{\prime}}{(\mathrm{G}, \ell) \xrightarrow{\mathrm{c} / 1}(\mathrm{G}, \ell)}[\mathrm{G}-\mathrm{Cmd}]
$$

where

$$
\delta(\mathrm{G}, \ell)= \begin{cases}\mathrm{G} & \text { if } \ell=\epsilon \\
\begin{array}{l}
\text { Lags ta be consumed "atamically"". } \\
\text { hence } \delta(\mathrm{G}, \ell) \text { may be undeficed }
\end{array} \\
\delta\left(\mathrm{G}^{\prime}, \ell^{\prime \prime}\right) & \text { if } \mathrm{G} \xrightarrow{\mathrm{c} / 1} \mathrm{G}^{\prime} \text { and } \vdash \ell^{\prime}: 1 \text { and } \ell=\ell^{\prime} \cdot \ell^{\prime \prime} \\
\perp & \text { otherwise }\end{cases}
$$

Semantics of swarm protocols

One rule only!

$$
\frac{\delta(\mathrm{G}, \ell) \xrightarrow{\mathrm{c} / 1} \mathrm{G}^{\prime} \quad \vdash \ell^{\prime}: 1 \quad \ell^{\prime} \text { log of fresh events }}{(\mathrm{G}, \ell) \xrightarrow{\mathrm{c} / 1}\left(\mathrm{G}, \ell \cdot \ell^{\prime}\right)}[\mathrm{G}-\mathrm{Cmd}]
$$

where

$$
\delta(\mathrm{G}, \ell)= \begin{cases}\mathrm{G} & \text { if } \ell=\epsilon \\
\begin{array}{l}
\text { Lags ta be consumed "atamically"". } \\
\text { hence } \delta(\mathrm{G}, \ell) \text { may be undeficed }
\end{array} \\
\delta\left(\mathrm{G}^{\prime}, \ell^{\prime \prime}\right) & \text { if } \mathrm{G} \xrightarrow{\mathrm{c} / 1} \mathrm{G}^{\prime} \text { and } \vdash \ell^{\prime}: 1 \text { and } \ell=\ell^{\prime} \cdot \ell^{\prime \prime} \\
\perp & \text { otherwise }\end{cases}
$$

Semantics of swarm protocols

One rule only!

$$
\frac{\delta(\mathrm{G}, \ell) \xrightarrow{\mathrm{c} / 1} \mathrm{G}^{\prime} \quad \vdash \ell^{\prime}: 1 \quad \ell^{\prime} \text { log of fresh events }}{(\mathrm{G}, \ell) \xrightarrow{\mathrm{c} / 1}\left(\mathrm{G}, \ell \cdot \ell^{\prime}\right)}[\mathrm{G}-\mathrm{Cmd}]
$$

where

$$
\delta(\mathrm{G}, \ell)= \begin{cases}\mathrm{G} & \text { if } \ell=\epsilon \\ \delta\left(\mathrm{G}^{\prime}, \ell^{\prime \prime}\right) & \text { if } \mathrm{G} \xrightarrow{\mathrm{c} / 1} \mathrm{G}^{\prime} \text { and } \vdash \ell^{\prime}: 1 \text { and } \ell=\ell^{\prime} \cdot \ell^{\prime \prime} \\ \perp & \text { otherwise ta be consumed "atomically". }\end{cases}
$$

We restrict ourselves to deterministic swarm protocols that is, on different transitions from a same state

- log types start differently
- pairs (command,role) differ

From swarm protocols to machines

Transitions of a swarm protocol G are labelled with a role that may invoke the command

From swarm protocols to machines

Transitions of a swarm protocol G are labelled with a role that may invoke the command
Each machine plays one role

From swarm protocols to machines

Transitions of a swarm protocol G are labelled with a role that may invoke the command
Each machine plays one role
Obtain machines by projecting G on each role

From swarm protocols to machines

Transitions of a swarm protocol G are labelled with a role that may invoke the command
Each machine plays one role
Obtain machines by projecting G on each role

First attempt

$$
\left(\sum_{i \in I} \mathrm{c}_{i} @ \mathrm{R}_{i}\left\langle\mathrm{l}_{i}\right\rangle \cdot \mathrm{G}_{i}\right) \downarrow_{\mathrm{R}}=\kappa \cdot\left[\&_{i \in I} \mathrm{l}_{i} ? \mathrm{G}_{i} \downarrow_{\mathrm{R}}\right]
$$

$$
\text { where } \kappa=\left\{\left(c_{i} / l_{i}\right) \mid R_{i}=R \text { and } i \in I\right\}
$$

From swarm protocols to machines

Transitions of a swarm protocol G are labelled with a role that may invoke the command
Each machine plays one role
$\stackrel{(1)}{*}$ Obtain machines by projecting G on each role
First attempt

$$
\left(\sum_{i \in I} \mathrm{c}_{i} \odot \mathrm{R}_{i}\left\langle\mathrm{l}_{i}\right\rangle \cdot \mathrm{G}_{i}\right) \downarrow_{\mathrm{R}}=\kappa \cdot\left[\&_{i \in I} \mathrm{l}_{i} ? \mathrm{G}_{i} \downarrow_{\mathrm{R}}\right]
$$

$$
\text { where } \kappa=\left\{\left(c_{i} / l_{i}\right) \mid R_{i}=R \text { and } i \in I\right\}
$$

simple, but

- projected machines are large in all but the most trivial cases
- processing all events is undesirable: security and efficiency

Another attempt

Let's subscribe to subscriptions : maps from roles to sets of event types

In pub-sab, pracesses subscribe to "topics"

Another attempt

Let's subscribe to subscriptions : maps from roles to sets of event types

> 7n pub-sul, pracesses subscribe ta "topics"

Given $G=\sum_{i \in I} \mathrm{c}_{i} @ \mathrm{R}_{i}\left\langle\mathrm{l}_{i}\right\rangle . \mathrm{G}_{i}$, the projection of G on a role R with respect to subscription σ is

$$
\mathrm{G} \downarrow_{\mathrm{R}}^{\sigma}=\kappa \cdot\left[\&_{j \in J} \text { filter }\left(\mathrm{l}_{\mathrm{j}}, \sigma(\mathrm{R})\right) ? \mathrm{G}_{j} \downarrow_{\mathrm{R}}^{\sigma}\right]
$$

where

Another attempt

Let's subscribe to subscriptions: maps from roles to sets of event types

7u pul-sul,
 processes sulbscribe to "topics"

Given $G=\sum_{i \in I} \mathrm{c}_{i} @ \mathrm{R}_{i}\left\langle 1_{i}\right\rangle . \mathrm{G}_{i}$, the projection of G on a role R with respect to subscription σ is

$$
\begin{gathered}
G \downarrow_{\mathrm{R}}^{\sigma}=\kappa \cdot\left[\&_{j \in J} \text { filter }\left(\mathrm{l}_{\mathrm{j}}, \sigma(\mathrm{R})\right) ? \mathrm{G}_{j} \downarrow_{\mathrm{R}}^{\sigma}\right] \\
\kappa=\left\{\mathrm{c}_{i} / l_{i} \mid \mathrm{R}_{i}=\mathrm{R} \text { and } i \in I\right\} \\
J=\left\{i \in I \mid \text { filter }\left(l_{i}, \sigma(\mathrm{R})\right) \neq \epsilon\right\}
\end{gathered} \quad \text { filter }(1, E)= \begin{cases}\epsilon, & \text { if } \mathrm{t}=\epsilon \\
\mathrm{t} \cdot \text { filter }\left(\mathrm{l}^{\prime}, E\right) & \text { if } \mathrm{t} \in E \text { and } \mathrm{l}=\mathrm{t} \cdot \mathrm{l}^{\prime} \\
\text { filter }(1, E) & \text { otherwise }\end{cases}
$$

Well-formedness

Trading consistency for availability has implications:

Well-formedness = Causality

Trading consistency for availability has implications:
Propagation of events is non-atomic (cf. rule [Prop])
\Longrightarrow differences in how machines perceive the (state of the) computation

Causality

Fix a subscription σ. For each branch $i \in I$ of $G=\sum_{i \in I} \mathrm{c}_{i} @ \mathrm{R}_{i}\left\langle l_{i}\right\rangle . \mathrm{G}_{i}$

If R should have c enabled after c^{\prime} then $\sigma(R)$ cantains same euent type emitted by c^{\prime}

Command causality if R can execute a command in G_{i} then $\sigma(\mathrm{R}) \cap l_{i} \neq \emptyset \quad$ and $\quad \sigma(\mathrm{R}) \cap l_{i} \supseteq \bigcup_{\mathrm{R}^{\prime} \in_{\sigma} \mathrm{G}_{i}} \sigma\left(\mathrm{R}^{\prime}\right) \cap l_{i}$

Well-formedness $=$ Causality + Determinacy

Trading consistency for availability has implications:
Propagation of events is non-atomic (cf. rule [Prop])
\Longrightarrow different roles may take inconsistent decisions

Causality \& Determinacy

Fix a subscription σ. For each branch $i \in I$ of $G=\sum_{i \in I} \mathrm{c}_{i} @ \mathrm{R}_{i}\left\langle l_{i}\right\rangle . \mathrm{G}_{i}$
Explicit re-enabling $\sigma\left(R_{i}\right) \cap 1_{i} \neq \emptyset$
Command causality if $\quad \mathrm{R}$ can execute a command in G_{i} then $\sigma(\mathrm{R}) \cap l_{i} \neq \emptyset \quad$ and $\quad \sigma(\mathrm{R}) \cap l_{i} \supseteq \bigcup_{\mathrm{R}^{\prime} \in_{\sigma} \mathrm{G}_{i}} \sigma\left(\mathrm{R}^{\prime}\right) \cap l_{i}$
Determinacy $\quad \mathrm{R} \in{ }_{\sigma} \mathrm{G}_{i} \Longrightarrow \mathrm{I}_{i}[0] \in \sigma(\mathrm{R})$

Well-formedness $=$ Causality + Determinacy - Confusion

Trading consistency for availability has implications:
Propagation of events is non-atomic (cf. rule [Prop])
\Longrightarrow branches unambiguously identified and events emitted on eventually discharged branches ignored

Causality \& Determinacy \& Confusion freeness

Fix a subscription σ. For each branch $i \in I$ of $G=\sum_{i \in I} \mathrm{c}_{i} @ R_{i}\left\langle l_{i}\right\rangle . \mathrm{G}_{i}$
Explicit re-enabling $\sigma\left(R_{i}\right) \cap l_{i} \neq \emptyset$
Command causality if $\quad \mathrm{R}$ can execute a command in G_{i} then $\sigma(\mathrm{R}) \cap 1_{i} \neq \emptyset \quad$ and $\quad \sigma(\mathrm{R}) \cap 1_{i} \supseteq \bigcup_{\mathrm{R}^{\prime} \in_{\sigma} \mathrm{G}_{i}} \sigma\left(\mathrm{R}^{\prime}\right) \cap 1_{i}$
Determinacy $\mathrm{R} \in_{\sigma} \mathrm{G}_{i} \Longrightarrow \mathrm{l}_{i}[0] \in \sigma(\mathrm{R})$
Confusion freeness for each t starting a log emitted by a command in G there is a unique state G^{\prime} reachable from G which emits t

Implementations

A (σ, G)-realisation is a swarm (S, ϵ) such that, for each $i \in \operatorname{dom} \mathrm{~S}$, there exists a role $\mathrm{R} \in \operatorname{roles}(\mathrm{G}, \sigma)$ such that $\left.\mathrm{S}(i)=\mathrm{G} \downarrow_{\mathrm{R}}^{\sigma}\right]$

Implementations

A (σ, G)-realisation is a swarm (S, ϵ) such that, for each $i \in \operatorname{dom} \mathrm{~S}$, there exists a role $\mathrm{R} \in \operatorname{roles}(\mathrm{G}, \sigma)$ such that $\left.\mathrm{S}(i)=\mathrm{G} \downarrow_{\mathrm{R}}^{\sigma}\right]$

Write $\ell \equiv \equiv_{\mathrm{G}, \sigma} \ell^{\prime}$ when ℓ and ℓ^{\prime} have the same effective type wrt G and σ A swarm (S, ϵ) is eventually faithful to G and σ if $(\mathrm{S}, \epsilon) \Longrightarrow(\mathrm{S}, \ell)$ then there is $(\mathrm{G}, \epsilon) \Longrightarrow\left(\mathrm{G}, \ell^{\prime}\right)$ with $\ell \equiv_{\mathrm{G}, \sigma} \ell^{\prime}$

Implementations \& projections

A (σ, G)-realisation is a swarm (S, ϵ) such that, for each $i \in \operatorname{dom} \mathrm{~S}$, there exists a role $\mathrm{R} \in \operatorname{roles}(\mathrm{G}, \sigma)$ such that $\left.\mathrm{S}(i)=\mathrm{G} \downarrow_{\mathrm{R}}^{\sigma}\right]$

Write $\ell \equiv \mathrm{G}, \sigma \ell^{\prime}$ when ℓ and ℓ^{\prime} have the same effective type wrt G and σ A swarm (S, ϵ) is eventually faithful to G and σ if $(\mathrm{S}, \epsilon) \Longrightarrow(\mathrm{S}, \ell)$ then there is $(\mathrm{G}, \epsilon) \Longrightarrow\left(\mathrm{G}, \ell^{\prime}\right)$ with $\ell \equiv_{\mathrm{G}, \sigma} \ell^{\prime}$

Lemma (Projections of well-formed protocols are eventually faithful)

If G is a σ-WF protocol and $\left(\delta\left(\mathrm{G} \downarrow_{\mathrm{R}}^{\sigma}, \ell\right)\right) \downarrow_{\mathrm{c} / \perp}$ then there exists $\ell^{\prime} \equiv_{\mathrm{G}, \sigma} \ell$ such that $(\mathrm{G}, \epsilon) \Longrightarrow\left(\mathrm{G}, \ell^{\prime}\right)$ and $\delta\left(\mathrm{G}, \ell^{\prime}\right) \xrightarrow{\mathrm{c} / \mathrm{l}} \mathrm{G}^{\prime}$

On correct realisations

On correct realisations

On correct realisations

Notation

$$
\underset{\text { let } \ell(j)=\ell_{1} \cdots \cdot \ell_{j}}{\text { For }\left(G, \ell_{1}\right) \xrightarrow{c_{1} / l_{1}}(G) \xrightarrow{c_{2} / l_{2}} \cdots \xrightarrow{c_{n} / 1_{n}}(G, \overbrace{\ell_{1} \cdot \ell_{2} \cdots \cdot \ell_{n}}^{=\ell}))}
$$

Admissibility

A $\log \ell$ is admissible for a σ-WF protocol G if there are consistent runs $\left\{(\mathrm{G}, \epsilon) \Longrightarrow\left(\mathrm{G}, \ell_{i}\right)\right\}_{1 \leq i \leq k}$ and a $\log \ell^{\prime} \in\left(\bowtie_{1 \leq i \leq k} \ell_{i}\right)$ such that

$$
\ell=\bigcup_{1 \leq i \leq k} \ell_{i}, \quad \ell^{\prime} \equiv \mathrm{G}, \sigma \ell, \quad \text { and } \quad \ell_{i}^{(j)} \sqsubseteq \ell \text { for all } 1 \leq i \leq k
$$

Results

Let G be well-formed; a realisation is a swarm whose components are projections of G
Lemma (Well-formedness generates any admissible log)
If ℓ is admissible for G then there is a $\log \ell^{\prime}$ such that $(\mathrm{G}, \epsilon) \Longrightarrow\left(\mathrm{G}, \ell^{\prime}\right)$ and $\ell \equiv_{\mathrm{G}, \sigma} \ell^{\prime}$

Theorem (Realisations of WF protocols are admissible)

If $(\mathrm{S}, \epsilon) \Longrightarrow\left(\mathrm{S}^{\prime}, \ell\right)$ for (S, ϵ) realisation of G then ℓ is admissible for G

Corollary

Every realisation of G is eventually faithful wrt G and σ

Theorem (Full realisations are complete)

If S is a full realisation of G and $(\mathrm{G}, \epsilon) \Longrightarrow\left(\mathrm{G}, \ell^{\prime}\right)$ then there is S^{\prime} s.t. $(\mathrm{S}, \epsilon) \Longrightarrow\left(\mathrm{S}^{\prime}, \ell\right)$

Plan of the talk

A motivating case study

Our formalisation

Our typing discipline

Tool support

Future work

- Tooling -

```
// analogous for other events; "type" property matches type name (checked by tool)
type Requested = { type: 'Requested'; pickup: string; dest: string }
type Events = Requested | Bid | BidderID | Selected | ...
/** Initial state for role P */
@proto('taxiRide') // decorator injects inferred protocol into runtime
export class InitialP extends State<Events> {
    constructor(public id: string) { super() }
    execRequest(pickup: string, dest: string) {
        return this.events({ type: 'Requested', pickup, dest })
    }
    onRequested(ev: Requested) {
        return new AuctionP(this.id, ev.pickup, ev.dest, [])
    }
}
Gproto('taxiRide')
export class AuctionP extends State<Events> {
    constructor(public id: string, public pickup: string, public dest: string,
        public bids: BidData[]) { super() }
    onBid(ev1: Bid, ev2: BidderID) {
        const [ price, time ] = ev1
        this.bids.push({ price, time, bidderID: ev2.id })
        return this
    }
    execSelect(taxiId: string) {
        return this.events({ type: 'Selected', taxiID },
                            { type: 'PassengerID', id: this.id })
    }
    onSelected(ev: Selected, id: PassengerID) {
        return new RideP(this.id, ev.taxiID)
    }
}
@proto('taxiRide')
export class RideP extends State<Events> { ... }
```


Architecture

machine-runner
machine-check

- TypeChecking implements the functionalities of our typing discipline
- simulator simulates the semantics of swarm realisations
- machine-check and machine-runner integrate our framework in the Actyx platform

Architecture

- TypeChecking implements the functionalities of our typing discipline
- simulator simulates the semantics of swarm realisations
- machine-check and machine-runner integrate our framework in the Actyx platform

Architecture

machine-runner
anguage supportour tool
TypeScript code
data type
$\rightarrow \quad$ inputs

TypeChecking
Well-Formedness
Projection
Equivalence test

- TypeChecking implements the functionalities of our typing discipline
- simulator simulates the semantics of swarm realisations
- machine-check and machine-runner integrate our framework in the Actyx platform

Architecture

- TypeChecking implements the functionalities of our typing discipline
- simulator simulates the semantics of swarm realisations
- machine-check and machine-runner integrate our framework in the Actyx platform

Architecture

TypeChecking
Well-Formedness
Projection
Equivalence test

- TypeChecking implements the functionalities of our typing discipline
- simulator simulates the semantics of swarm realisations
- machine-check and machine-runner integrate our framework in the Actyx platform

If you want to play with our prototype?

Have a look at

- our ECOOP artifact paper
(https://drops.dagstuhl.de/opus/volltexte/2023/18254/)
- code at https://doi.org/10.5281/zenodo. 7737188
- An ISSTA tool paper from Actyx (https://arxiv.org/abs/2306.09068)

Plan of the talk

A motivating case study

Our formalisation

Our typing discipline

Tool support

Future work

- Epilogue -

To be continued....

There are a number of future directions to explore:

To be continued...

There are a number of future directions to explore:
Identify weaker conditions for well-formedness

To be continued....

There are a number of future directions to explore:
Identify weaker conditions for well-formedness
"Efficiency"

To be continued....

There are a number of future directions to explore:
Identify weaker conditions for well-formedness
"Efficiency"
Subscriptions are hard to determine

To be continued....

There are a number of future directions to explore:
Identify weaker conditions for well-formedness
"Efficiency"
Subscriptions are hard to determine
Relax some of our assumptions

To be continued....

There are a number of future directions to explore:
Identify weaker conditions for well-formedness
"Efficiency"
Subscriptions are hard to determine
Relax some of our assumptions
Compensations
Unreliable propagation

To be continued....

There are a number of future directions to explore:
Identify weaker conditions for well-formedness
"Efficiency"
Subscriptions are hard to determine
Relax some of our assumptions
Compensations
Unreliable propagation
Adversarial contexts

To be continued....

There are a number of future directions to explore:
Identify weaker conditions for well-formedness
"Efficiency"
Subscriptions are hard to determine
Relax some of our assumptions
Compensations
Unreliable propagation
Adversarial contexts

Summary

An interesting paradigm grounded on principles for local-first principles: temporary inconsistency are tolerated provided that they can be (and are) resolved at some point

Summary

An interesting paradigm grounded on principles for local-first principles: temporary inconsistency are tolerated provided that they can be (and are) resolved at some point

A formal semantics that faithfully captures Actyx's platform

Summary

An interesting paradigm grounded on principles for local-first principles: temporary inconsistency are tolerated provided that they can be (and are) resolved at some point

A formal semantics that faithfully captures Actyx's platform
and behavioural types to specify and verify eventual consensus

Thauk you!

