
Abstractions for Collective Adaptive Systems

Omar Inverso @ GSSI Catia Trubiani @ GSSI Emilio Tuosto @ GSSI

ISoLA 2021

Póδoς
October 25-29, 2021

Research partly supported by the EU H2020 RISE programme under the
Marie Sk lodowska-Curie grant agreement No 778233

and by MIUR project PRIN 2017FTXR7S IT MATTERS (Methods and Tools for Trustworthy Smart Systems)

Take-away message

Our CAS equation

emergent behaviour := partial knowledge + interaction + local decision

Emergent behaviour “by-design”

We want abstractions

to specify CAS (ie to design emergent behaviour as easily as possible)

to verify CAS

Behavioural types for CAS

shortcomings of existing behavioural types

desiderata for suitable frameworks

an immediate by-product: quantitative analysis of CAS

Take-away message

Our CAS equation

emergent behaviour := partial knowledge + interaction + local decision

Emergent behaviour “by-design”

We want abstractions

to specify CAS (ie to design emergent behaviour as easily as possible)

to verify CAS

Behavioural types for CAS

shortcomings of existing behavioural types

desiderata for suitable frameworks

an immediate by-product: quantitative analysis of CAS

Take-away message

Our CAS equation

emergent behaviour := partial knowledge + interaction + local decision

Emergent behaviour “by-design”

We want abstractions

to specify CAS (ie to design emergent behaviour as easily as possible)

to verify CAS

Behavioural types for CAS

shortcomings of existing behavioural types

desiderata for suitable frameworks

an immediate by-product: quantitative analysis of CAS

– Prelude –

[Ruminating on CAS]

A simple scenario

Robots “pair up” to recharge batteries

def B(prefs, myID):

prefs is a finite list

for charger in prefs:

send("charging", myID) @ charger

recv("stop")

def C(aID, aPID):

while true:

recv("charging", idNew)

if choose(aID, idNew) == idNew:

send("stop") @ aID

else: send("stop") to idNew

Explicit addressing requires proper configuration (e.g., IDs should be unique, immutable, ...)

Reconfiguration is expensive (e.g., new charge stations =⇒ update prefs...for all bots!)

Tedious with point-to-point communication

identify partners
information spreads with explicit communications
update local knowledge of agents

Q: Is the code above correct? (Assuming we agree about what ’correct’ means)

A: Well...it depends on whether (most?) bots pair up eventually

A simple scenario

Robots “pair up” to recharge batteries

def B(prefs, myID):

prefs is a finite list

for charger in prefs:

send("charging", myID) @ charger

recv("stop")

def C(aID, aPID):

while true:

recv("charging", idNew)

if choose(aID, idNew) == idNew:

send("stop") @ aID

else: send("stop") to idNew

Explicit addressing requires proper configuration (e.g., IDs should be unique, immutable, ...)

Reconfiguration is expensive (e.g., new charge stations =⇒ update prefs...for all bots!)

Tedious with point-to-point communication

identify partners
information spreads with explicit communications
update local knowledge of agents

Q: Is the code above correct? (Assuming we agree about what ’correct’ means)

A: Well...it depends on whether (most?) bots pair up eventually

A simple scenario

Robots “pair up” to recharge batteries

def B(prefs, myID):

prefs is a finite list

for charger in prefs:

send("charging", myID) @ charger

recv("stop")

def C(aID, aPID):

while true:

recv("charging", idNew)

if choose(aID, idNew) == idNew:

send("stop") @ aID

else: send("stop") to idNew

Explicit addressing requires proper configuration (e.g., IDs should be unique, immutable, ...)

Reconfiguration is expensive (e.g., new charge stations =⇒ update prefs...for all bots!)

Tedious with point-to-point communication

identify partners
information spreads with explicit communications
update local knowledge of agents

Q: Is the code above correct? (Assuming we agree about what ’correct’ means)

A: Well...it depends on whether (most?) bots pair up eventually

A simple scenario

Robots “pair up” to recharge batteries

def B(prefs, myID):

prefs is a finite list

for charger in prefs:

send("charging", myID) @ charger

recv("stop")

def C(aID, aPID):

while true:

recv("charging", idNew)

if choose(aID, idNew) == idNew:

send("stop") @ aID

else: send("stop") to idNew

Explicit addressing requires proper configuration (e.g., IDs should be unique, immutable, ...)

Reconfiguration is expensive (e.g., new charge stations =⇒ update prefs...for all bots!)

Tedious with point-to-point communication

identify partners
information spreads with explicit communications
update local knowledge of agents

Q: Is the code above correct? (Assuming we agree about what ’correct’ means)

A: Well...it depends on whether (most?) bots pair up eventually

A simple scenario

Robots “pair up” to recharge batteries

def B(prefs, myID):

prefs is a finite list

for charger in prefs:

send("charging", myID) @ charger

recv("stop")

def C(aID, aPID):

while true:

recv("charging", idNew)

if choose(aID, idNew) == idNew:

send("stop") @ aID

else: send("stop") to idNew

Explicit addressing requires proper configuration (e.g., IDs should be unique, immutable, ...)

Reconfiguration is expensive (e.g., new charge stations =⇒ update prefs...for all bots!)

Tedious with point-to-point communication

identify partners
information spreads with explicit communications
update local knowledge of agents

Q: Is the code above correct? (Assuming we agree about what ’correct’ means)

A: Well...it depends on whether (most?) bots pair up eventually

A simple scenario

Robots “pair up” to recharge batteries

def B(prefs, myID):

prefs is a finite list

for charger in prefs:

send("charging", myID) @ charger

recv("stop")

def C(aID, aPID):

while true:

recv("charging", idNew)

if choose(aID, idNew) == idNew:

send("stop") @ aID

else: send("stop") to idNew

Explicit addressing requires proper configuration (e.g., IDs should be unique, immutable, ...)

Reconfiguration is expensive (e.g., new charge stations =⇒ update prefs...for all bots!)

Tedious with point-to-point communication

identify partners
information spreads with explicit communications
update local knowledge of agents

Q: Is the code above correct? (Assuming we agree about what ’correct’ means)

A: Well...it depends on whether (most?) bots pair up eventually

– Act I –

[Why Behavioural Types?]

Behavioural types & distributed applications

Natural support for choreographic design

Choreography G
global viewpoint

M1

Local viewpoint1

Mi

Local viewpoint1

Mn

Local viewpointn

Synchrony

Asynchrony

B−→C: charging

C−→O: stop C−→B: stop

+

+

	

	

Behavioural types & distributed applications

Natural support for choreographic design

Choreography G
global viewpoint

M1

Local viewpoint1

Mi

Local viewpoint1

Mn

Local viewpointn

Synchrony

Asynchrony

Pro
jec

t

P
ro

je
ct

Project B−→C: charging

C−→O: stop C−→B: stop

+

+

	

	

Behavioural types & distributed applications

Natural support for choreographic design

Choreography G
global viewpoint

M1

Local viewpoint1

Mi

Local viewpoint1

Mn

Local viewpointn

Synchrony

Asynchrony

Pro
jec

t

P
ro

je
ct

Project

Component1 Componenti Componentn

V
al

id
at

e

V
al

id
at

e V
alidate

B−→C: charging

C−→O: stop C−→B: stop

+

+

	

	

Behavioural types & CAS

A shifty protocol

B−→C: charging

C−→O: stop C−→B: stop

+

+

	

	

Not fit for purpose

Point-to-point communication is still fine, but...

arbitrary replication not supported

well-branchedness is violated

deadlock IS the goal!

reasoning about interactions is not enough:
“correctness” depends on preference lists

each instance plays a unique role

no quantitative analysis

Behavioural types & CAS

A shifty protocol

B−→C: charging

C−→O: stop

What is O?

C−→B: stop

+

+

	

	

Not fit for purpose

Point-to-point communication is still fine, but...

arbitrary replication not supported

well-branchedness is violated

deadlock IS the goal!

reasoning about interactions is not enough:
“correctness” depends on preference lists

each instance plays a unique role

no quantitative analysis

Behavioural types & CAS

A shifty protocol

B−→C: charging

C−→O: stop

What is O?

C−→B: stop

+

+

	

	

Not fit for purpose

Point-to-point communication is still fine, but...

arbitrary replication not supported

well-branchedness is violated

deadlock IS the goal!

reasoning about interactions is not enough:
“correctness” depends on preference lists

each instance plays a unique role

no quantitative analysis

Behavioural types & CAS

A shifty protocol

B−→C: charging

C−→O: stop

What is O?

C−→B: stop

+

+

	

	

Not fit for purpose

Point-to-point communication is still fine, but...

arbitrary replication not supported

well-branchedness is violated

deadlock IS the goal!

reasoning about interactions is not enough:
“correctness” depends on preference lists

each instance plays a unique role

no quantitative analysis

Behavioural types & CAS

A shifty protocol

B−→C: charging

C−→O: stop

What is O?

which one is the next C?

C−→B: stop

+

+

	

	

Not fit for purpose

Point-to-point communication is still fine, but...

arbitrary replication not supported

well-branchedness is violated

deadlock IS the goal!

reasoning about interactions is not enough:
“correctness” depends on preference lists

each instance plays a unique role

no quantitative analysis

Behavioural types & CAS

A shifty protocol

B−→C: charging

C−→O: stop

What is O?

which one is the next C?

C−→B: stop

+

+

	

	

Not fit for purpose

Point-to-point communication is still fine, but...

arbitrary replication not supported

well-branchedness is violated

deadlock IS the goal!

reasoning about interactions is not enough:
“correctness” depends on preference lists

each instance plays a unique role

no quantitative analysis

Behavioural types & CAS

A shifty protocol

B−→C: charging

C−→O: stop

What is O?

which one is the next C?

C−→B: stop

+

+

	

	

Not fit for purpose

Point-to-point communication is still fine, but...

arbitrary replication not supported

well-branchedness is violated

deadlock IS the goal!

reasoning about interactions is not enough:
“correctness” depends on preference lists

each instance plays a unique role

no quantitative analysis

AbC inspired behavioural types

New behavioural types

A new form of interaction

Apρ e f−−−→ Bpσ

interpreted as

any A satisfying ρ

generates an expression e

which any B satisfying σ “can
receive”

provided that f matches e

Charging protocol revisiteda

B
Lcharging,B.idM Lcharging,xM−−−−−−−−−−−−−−−−−−−→ Cpid = hd(B.prefs)

C
LstopM LstopM−−−−−−−−−−→ id = x C

LstopM LstopM−−−−−−−−−−→ id = C.partner

+

+

	

	

aTautologies omitted

AbC inspired behavioural types

New behavioural types

A new form of interaction

Apρ e f−−−→ Bpσ

interpreted as

any A satisfying ρ

generates an expression e

which any B satisfying σ “can
receive”

provided that f matches e

Charging protocol revisiteda

B
Lcharging,B.idM Lcharging,xM−−−−−−−−−−−−−−−−−−−→ Cpid = hd(B.prefs)

C
LstopM LstopM−−−−−−−−−−→ id = x C

LstopM LstopM−−−−−−−−−−→ id = C.partner

+

+

	

	

aTautologies omitted

AbC inspired behavioural types

New behavioural types

A new form of interaction

Apρ e f−−−→ Bpσ

interpreted as

any A satisfying ρ

generates an expression e

which any B satisfying σ “can
receive”

provided that f matches e

Charging protocol revisiteda

B
Lcharging,B.idM Lcharging,xM−−−−−−−−−−−−−−−−−−−→ Cpid = hd(B.prefs)

C
LstopM LstopM−−−−−−−−−−→ id = x C

LstopM LstopM−−−−−−−−−−→ id = C.partner

+

+

	

	

aTautologies omitted

On correctness

Assertions: Pre- and Post-conditions

B
Lcharging,B.idM Lcharging,xM−−−−−−−−−−−−−−−−−−−→ Cpid = hd(B.prefs)

C
LstopM LstopM−−−−−−−−−−→ id = x C

LstopM LstopM−−−−−−−−−−→ id = C.partner

+

+

	

	

On correctness

Assertions: Pre- and Post-conditions

B
Lcharging,B.idM Lcharging,xM−−−−−−−−−−−−−−−−−−−→ Cpid = hd(B.prefs)

B.prefs 6= ∅ ∧ ∀i ∈ B.prefs∃X : X.id = i

C.id 6∈ B.prefs′

C
LstopM LstopM−−−−−−−−−−→ id = x C

LstopM LstopM−−−−−−−−−−→ id = C.partner

C.partner′ = C.partner C.partner′ = x

+

+

	

	

– Act II –

[Some immediate consequences]

Another battery-recharging scenario

charge > 0
∧

bl ≥ eT

Loffer,id,qtM Loffer,s,rM−−−−−−−−−−−−−−−−→
reqEn > 0
∧

id 6= s

bl < l

∧
supp 6= null

Lreq,id,sel(supp),eM Lreq,c,s,eM−−−−−−−−−−−−−−−−−−−−−→ id = s

id = s
Lcancel,cM Lcancel,cM−−−−−−−−−−−−−−−→ id = cid = s

Lconfirm,c,a(e,qt)M Lconfirm,id,oM−−−−−−−−−−−−−−−−−−−−−−→ id = c

+

+

|

|

	

	

From behavioural types to QN

charge > 0
∧

bl ≥ eT

Loffer,id,qtM Loffer,s,rM−−−−−−−−−−−−−−−−→
reqEn > 0
∧

id 6= s

bl < l

∧
supp 6= null

Lreq,id,sel(supp),eM Lreq,c,s,eM−−−−−−−−−−−−−−−−−−−−−→ id = s

id = s
Lcancel,cM Lcancel,cM−−−−−−−−−−−−−−−→ id = cid = s

Lconfirm,c,a(e,qt)M Lconfirm,id,oM−−−−−−−−−−−−−−−−−−−−−−→ id = c

+

+

|

|

	

	

A QN model is a rate-regulated service centres (ie set of resources) shared by jobs

Requests arrive at a think-time dependent rate or at a job arrival rate

Apρ e e′−−−→ Bpρ′ 7→ service centre

| 7→ fork/join node

+ 7→ router node

From behavioural types to QN

charge > 0
∧

bl ≥ eT

Loffer,id,qtM Loffer,s,rM−−−−−−−−−−−−−−−−→
reqEn > 0
∧

id 6= s

bl < l

∧
supp 6= null

Lreq,id,sel(supp),eM Lreq,c,s,eM−−−−−−−−−−−−−−−−−−−−−→ id = s

id = s
Lcancel,cM Lcancel,cM−−−−−−−−−−−−−−−→ id = cid = s

Lconfirm,c,a(e,qt)M Lconfirm,id,oM−−−−−−−−−−−−−−−−−−−−−−→ id = c

+

+

|

|

	

	

A QN model is a rate-regulated service centres (ie set of resources) shared by jobs

Requests arrive at a think-time dependent rate or at a job arrival rate

Apρ e e′−−−→ Bpρ′ 7→ service centre

| 7→ fork/join node

+ 7→ router node

From behavioural types to QN

charge > 0
∧

bl ≥ eT

Loffer,id,qtM Loffer,s,rM−−−−−−−−−−−−−−−−→
reqEn > 0
∧

id 6= s

bl < l

∧
supp 6= null

Lreq,id,sel(supp),eM Lreq,c,s,eM−−−−−−−−−−−−−−−−−−−−−→ id = s

id = s
Lcancel,cM Lcancel,cM−−−−−−−−−−−−−−−→ id = cid = s

Lconfirm,c,a(e,qt)M Lconfirm,id,oM−−−−−−−−−−−−−−−−−−−−−−→ id = c

+

+

|

|

	

	

A QN model is a rate-regulated service centres (ie set of resources) shared by jobs

Requests arrive at a think-time dependent rate or at a job arrival rate

Apρ e e′−−−→ Bpρ′ 7→ service centre

| 7→ fork/join node

+ 7→ router node

Quantitative analysis

Parameter Value
robots wp=30

advertisement λ = 10
interest λ = 10

offer λ = 10
cancel λ = 10

availability π = 0.5

– Epilogue –

[What’s next?]

Some thoughts

Back to our equation

emergent behaviour := partial knowledge + interaction + local decision

what do we actually mean by “emergent behaviour”?

... whatever one can observe of a system is “emergent”

our view: “emergent behaviour” doesn’t mean “unexpected/not designed”

Some questions

How can we formally characterise general properties of CAS?
eg, stabilising, oscillating, diverging, ...

Can models be systematically used for “quantitative” analysis?
Quantitative analysis seems anyway crucial

To what extend this can be done statically?

Can emergent behaviour be inferred?

Some thoughts

Back to our equation

emergent behaviour := partial knowledge + interaction + local decision

what do we actually mean by “emergent behaviour”?

... whatever one can observe of a system is “emergent”

our view: “emergent behaviour” doesn’t mean “unexpected/not designed”

Some questions

How can we formally characterise general properties of CAS?
eg, stabilising, oscillating, diverging, ...

Can models be systematically used for “quantitative” analysis?
Quantitative analysis seems anyway crucial

To what extend this can be done statically?

Can emergent behaviour be inferred?

Some thoughts

Back to our equation

emergent behaviour := partial knowledge + interaction + local decision

what do we actually mean by “emergent behaviour”?

... whatever one can observe of a system is “emergent”

our view: “emergent behaviour” doesn’t mean “unexpected/not designed”

Some questions

How can we formally characterise general properties of CAS?
eg, stabilising, oscillating, diverging, ...

Can models be systematically used for “quantitative” analysis?
Quantitative analysis seems anyway crucial

To what extend this can be done statically?

Can emergent behaviour be inferred?

Some thoughts

Back to our equation

emergent behaviour := partial knowledge + interaction + local decision

what do we actually mean by “emergent behaviour”?

... whatever one can observe of a system is “emergent”

our view: “emergent behaviour” doesn’t mean “unexpected/not designed”

Some questions

How can we formally characterise general properties of CAS?
eg, stabilising, oscillating, diverging, ...

Can models be systematically used for “quantitative” analysis?
Quantitative analysis seems anyway crucial

To what extend this can be done statically?

Can emergent behaviour be inferred?

Some thoughts

Back to our equation

emergent behaviour := partial knowledge + interaction + local decision

what do we actually mean by “emergent behaviour”?

... whatever one can observe of a system is “emergent”

our view: “emergent behaviour” doesn’t mean “unexpected/not designed”

Some questions

How can we formally characterise general properties of CAS?
eg, stabilising, oscillating, diverging, ...

Can models be systematically used for “quantitative” analysis?
Quantitative analysis seems anyway crucial

To what extend this can be done statically?

Can emergent behaviour be inferred?

Some thoughts

Back to our equation

emergent behaviour := partial knowledge + interaction + local decision

what do we actually mean by “emergent behaviour”?

... whatever one can observe of a system is “emergent”

our view: “emergent behaviour” doesn’t mean “unexpected/not designed”

Some questions

How can we formally characterise general properties of CAS?
eg, stabilising, oscillating, diverging, ...

Can models be systematically used for “quantitative” analysis?
Quantitative analysis seems anyway crucial

To what extend this can be done statically?

Can emergent behaviour be inferred?

Some thoughts

Back to our equation

emergent behaviour := partial knowledge + interaction + local decision

what do we actually mean by “emergent behaviour”?

... whatever one can observe of a system is “emergent”

our view: “emergent behaviour” doesn’t mean “unexpected/not designed”

Some questions

How can we formally characterise general properties of CAS?
eg, stabilising, oscillating, diverging, ...

Can models be systematically used for “quantitative” analysis?
Quantitative analysis seems anyway crucial

To what extend this can be done statically?

Can emergent behaviour be inferred?

Some thoughts

Back to our equation

emergent behaviour := partial knowledge + interaction + local decision

what do we actually mean by “emergent behaviour”?

... whatever one can observe of a system is “emergent”

our view: “emergent behaviour” doesn’t mean “unexpected/not designed”

Some questions

How can we formally characterise general properties of CAS?
eg, stabilising, oscillating, diverging, ...

Can models be systematically used for “quantitative” analysis?
Quantitative analysis seems anyway crucial

To what extend this can be done statically?

Can emergent behaviour be inferred?

Bhehavioural type inference for CAS?

Round-trip engineering

Choreography G
global viewpoint

M1

Local viewpoint1

Mi

Local viewpoint1

Mn

Local viewpointn

Synchrony

Asynchrony

Bhehavioural type inference for CAS?

Round-trip engineering

Choreography G
global viewpoint

M1

Local viewpoint1

Mi

Local viewpoint1

Mn

Local viewpointn

Synchrony

Asynchrony

Pro
jec

t

P
ro

je
ct

Project

Bhehavioural type inference for CAS?

Round-trip engineering

Choreography G
global viewpoint

M1

Local viewpoint1

Mi

Local viewpoint1

Mn

Local viewpointn

Synchrony

Asynchrony

Pro
jec

t

P
ro

je
ct

Project

Component1 Componenti Componentn

V
al

id
at

e

V
al

id
at

e V
alidate

Bhehavioural type inference for CAS?

Round-trip engineering

Choreography G
global viewpoint

M1

Local viewpoint1

Mi

Local viewpoint1

Mn

Local viewpointn

Synchrony

Asynchrony

Pro
jec

t

P
ro

je
ct

Project

Component1 Componenti Componentn

V
al

id
at

e

V
al

id
at

e V
alidate

Component’1 Component’i Component’n
evolve/replace/compose

Bhehavioural type inference for CAS?

Round-trip engineering

Choreography G
global viewpoint

M1

Local viewpoint1

Mi

Local viewpoint1

Mn

Local viewpointn

Synchrony

Asynchrony

Pro
jec

t

P
ro

je
ct

Project

Component1 Componenti Componentn

V
al

id
at

e

V
al

id
at

e V
alidate

Component’1 Component’i Component’n
evolve/replace/compose

New M ′1
Local viewpoint1

New M ′i
Local viewpointi

New M ′n
Local viewpointn

E
xt

ra
ct

E
xt

ra
ct

E
xt

ra
ct

Bhehavioural type inference for CAS?

Round-trip engineering

Choreography G
global viewpoint

M1

Local viewpoint1

Mi

Local viewpoint1

Mn

Local viewpointn

Synchrony

Asynchrony

Pro
jec

t

P
ro

je
ct

Project

Component1 Componenti Componentn

V
al

id
at

e

V
al

id
at

e V
alidate

Component’1 Component’i Component’n
evolve/replace/compose

New M ′1
Local viewpoint1

New M ′i
Local viewpointi

New M ′n
Local viewpointn

E
xt

ra
ct

E
xt

ra
ct

E
xt

ra
ct

???

Bhehavioural type inference for CAS?

Round-trip engineering

Choreography G
global viewpoint

M1

Local viewpoint1

Mi

Local viewpoint1

Mn

Local viewpointn

Synchrony

Asynchrony

Pro
jec

t

P
ro

je
ct

Project

Component1 Componenti Componentn

V
al

id
at

e

V
al

id
at

e V
alidate

Component’1 Component’i Component’n
evolve/replace/compose

New M ′1
Local viewpoint1

New M ′i
Local viewpointi

New M ′n
Local viewpointn

E
xt

ra
ct

E
xt

ra
ct

E
xt

ra
ct

New choreography G′

global viewpoint

Synthesise

Outlook

Identify typing disciplines

global types
local types
projection

(it is not clear how much we can reuse from the literature)

More precise relations with related work
(expand sec. 7 of the paper)

Can static specifications help to make attribute-based interaction (more) efficient?

Thank you!

