Abstractions for Collective Adaptive Systems

Omar Inverso Catia Trubiani Emilio Tuosto
ISoLA 2021
Pédog

“ Research partly supported by the EU H2020 RISE programme under the

o
Marie Sktodowska-Curie grant agreement No 778233 o- °PE§API“

and by MIUR project PRIN 2017FTXR7S IT MATTERS (Methods and Tools for Trustworthy Smart Systems)

Take-away message

Our CAS equation
emergent behaviour := partial knowledge + interaction + local decision

Take-away message

Our CAS equation
emergent behaviour := partial knowledge + interaction + local decision

Emergent behaviour “by-design”

We want abstractions
e to specify CAS (ie to design emergent behaviour as easily as possible)
o to verify CAS

Take-away message

Our CAS equation

emergent behaviour := partial knowledge + interaction + local decision

Emergent behaviour “by-design”

We want abstractions
e to specify CAS (ie to design emergent behaviour as easily as possible)
o to verify CAS

Behavioural types for CAS

@ shortcomings of existing behavioural types
@ desiderata for suitable frameworks
e an immediate by-product: quantitative analysis of CAS

— Prelude —

| Ruminating on CAS |

A simple scenario

Robots “pair up” to recharge batteries

def B(prefs, myID): def C(aID, aPID):
prefs is a finite list while true:
for charger in prefs: recv("charging", idNew)
send("charging", myID) @ charger if choose(aID, idNew) == idNew:
recv("stop") send("stop") @ aID

else: send("stop") to idNew

A simple scenario

Robots “pair up” to recharge batteries

def B(prefs, myID): def C(aID, aPID):
prefs is a finite list while true:
for charger in prefs: recv("charging", idNew)
send ("charging", myID) @ charger if choose(aID, idNew) == idNew:
recv("stop") send("stop") @ aID

else: send("stop") to idNew

@ Explicit addressing requires proper configuration (e.g., IDs should be unique, immutable, ...)

A simple scenario

Robots “pair up” to recharge batteries

def B(prefs, myID):
prefs is a finite list
for charger in prefs:
send ("charging", myID) @ charger
recv("stop")

def C(aID, aPID):
while true:
recv("charging", idNew)
if choose(aID, idNew) == idNew:
send("stop") @ aID
else: send("stop") to idNew

@ Explicit addressing requires proper configuration (e.g., IDs should be unique, immutable, ...)

@ Reconfiguration is expensive (e.g., new charge stations = update prefs...for all bots!)

A simple scenario

Robots “pair up” to recharge batteries

def B(prefs, myID): def C(aID, aPID):
prefs is a finite list while true:
for charger in prefs: recv("charging", idNew)
send ("charging", myID) @ charger if choose(aID, idNew) == idNew:
recv("stop") send("stop") @ aID

else: send("stop") to idNew

@ Explicit addressing requires proper configuration (e.g., IDs should be unique, immutable, ...)
@ Reconfiguration is expensive (e.g., new charge stations = update prefs...for all bots!)
@ Tedious with point-to-point communication

o identify partners
@ information spreads with explicit communications
e update local knowledge of agents

A simple scenario

Robots “pair up” to recharge batteries

def B(prefs, myID): def C(aID, aPID):
prefs is a finite list while true:
for charger in prefs: recv("charging", idNew)
send ("charging", myID) @ charger if choose(aID, idNew) == idNew:
recv("stop") send("stop") @ aID

else: send("stop") to idNew

@ Explicit addressing requires proper configuration (e.g., IDs should be unique, immutable, ...)
@ Reconfiguration is expensive (e.g., new charge stations = update prefs...for all bots!)
@ Tedious with point-to-point communication

o identify partners
@ information spreads with explicit communications
e update local knowledge of agents

Q: Is the code above correct? (Assuming we agree about what 'correct’ means)

A simple scenario

Robots “pair up” to recharge batteries

def B(prefs, myID): def C(aID, aPID):
prefs is a finite list while true:
for charger in prefs: recv("charging", idNew)
send ("charging", myID) @ charger if choose(aID, idNew) == idNew:
recv("stop") send("stop") @ aID

else: send("stop") to idNew

@ Explicit addressing requires proper configuration (e.g., IDs should be unique, immutable, ...)
@ Reconfiguration is expensive (e.g., new charge stations = update prefs...for all bots!)
@ Tedious with point-to-point communication

o identify partners
@ information spreads with explicit communications
e update local knowledge of agents

Q: Is the code above correct? (Assuming we agree about what 'correct’ means)

A: Well...it depends on whether (most?) bots pair up eventually

Why Behavioural Types?

Behavioural types & distributed applications

Natural support for choreographic design

Synchrony

(B—C: charging)

M; M M, Asynchrony :
Local viewpoint; Local viewpoint; Local viewpoint,, p N p N
[C—O: stop| ([C—B: stop|

H

Behavioural types & distributed applications

Natural support for choreographic design

Synchrony

M; My
Local viewpoint; ocal viewpoint

,,,,,,,,,, M, Asynchrony
1 Local viewpoint,

\:BHC‘ charging\

([C—0: stop)

(C—B: stop|

)

H

Behavioural types & distributed applications

Natural support for choreographic design

Choreography G
global viewpoint Synchrony
(B—C: charging)
Mo Mo M, Asynchrony
Local viewpoint; Local viewpoint; Local viewpoint,, p N p N
[C—O: stop| ([C—B: stop|
£] 15 L.
S 5t 15
Component; Component; Component,

-—

Behavioural types & CAS

A shifty protocol Not fit for purpose

B—C: charging
v)

l’

Point-to-point communication is still fine, but...

<O>—

Behavioural types & CAS

A shifty protocol Not fit for purpose

B—C: charging
What is O?l & l

Point-to-point communication is still fine, but...

@ arbitrary replication not supported

<O>—

Behavioural types & CAS

A shifty protocol

—

B—C: charging

What is O?l $ l
C—0O: stop @ C—B: stop

(? J

<O>—

Not fit for purpose
Point-to-point communication is still fine, but...
@ arbitrary replication not supported

@ well-branchedness is violated

Behavioural types & CAS

A shifty protocol

—

B—C: charging

What is O?l $ l
C—0O: stop @ C—B: stop

(? J

<O>—

Not fit for purpose

Point-to-point communication is still fine, but...
@ arbitrary replication not supported
@ well-branchedness is violated

@ deadlock IS the goal!

Behavioural types & CAS

A shifty protocol

—

B—C: charging

What is 0—1)-l—\ l
C—0O: stop @ C—B: stop

| ? J

<O>—

which one is the next C?

Not fit for purpose

Point-to-point communication is still fine, but...
@ arbitrary replication not supported
@ well-branchedness is violated
@ deadlock IS the goal!

@ reasoning about interactions is not enough:
“correctness” depends on preference lists

Behavioural types & CAS

A shifty protocol

?
B—C: charging

What is O?i)4—\ l
C—0O: stop @ C—B: stop

| \Jf J

<@>—

which one is the next C?

Not fit for purpose

Point-to-point communication is still fine, but...
@ arbitrary replication not supported
@ well-branchedness is violated
@ deadlock IS the goal!

@ reasoning about interactions is not enough:
“correctness” depends on preference lists

@ each instance plays a unique role

Behavioural types & CAS

A shifty protocol

?
B—C: charging

What is O?i)4—\ l
C—0O: stop @ C—B: stop

| \Jf J

<@>—

which one is the next C?

Not fit for purpose

Point-to-point communication is still fine, but...

arbitrary replication not supported
well-branchedness is violated
deadlock IS the goal!

reasoning about interactions is not enough:
“correctness” depends on preference lists

each instance plays a unique role

no quantitative analysis

AbC inspired behavioural types

New behavioural types

A new form of interaction

Aip ¢ Bo

AbC inspired behavioural types

New behavioural types

A new form of interaction
e f
Ap —— Bio

interpreted as
@ any A satisfying p
@ generates an expression e

@ which any B satisfying ¢ “can
receive”

@ provided that f matches e

AbC inspired behavioural types

New behavioural types

A new form of interaction
e f
Ap —— Bio

interpreted as
@ any A satisfying p
@ generates an expression e

@ which any B satisfying ¢ “can
receive”

@ provided that f matches e

Charging protocol revisited?
O

B (charging,B.id) (charging,x)

&

Ciid = hd(B.prefs)

I

(stop) (stop)

C id=x

l

(stop) .
I

J

C l=top)

d=

(C.partne

:

“Tautologies omitted

r

On correctness

Assertions: Pre- and Post-conditions

O

B (charging,B.id) (charging,x) Cid = hd(Bprefs)

+

6

C (stop) (stop) i C (stop) (stop)

J

=x id = C.partner

On correctness

Assertions: Pre- and Post-conditions
O <

B.prefs #) AVi € B.prefs3X : X.id =i
PS8y P (charging,B.id) (charging,x)

B

+

Ciid = hd(B.prefs
(B prefs) C.id & B.prefs’

C (stop) (stop) id

=X

C (stop) (stop)

J

id = C.partner

C.partner’ = C.partner

C.partner’ = x

+
<§/

Some immediate consequences

Another battery-recharging scenario

charge > 0
A
bl > eT

(offer,id,qt)

{1

|

(offer,s,r) reqkn >0

A
id#s

. (confirm,c,a(e,qt)
id=s

bl <1

A (req,id,sel(supp),e) (req,c,s,e)

supp # null
$

id=s

)

(confirm,id,o)

t

d—c id—s (cancel,c) (cancel,c) .

. |
b

7

id =

a

From behavioural types to QN

in

@ A QN model is a rate-regulated service centres (ie set of resources) shared by jobs

@ Requests arrive at a think-time dependent rate or at a job arrival rate

From behavioural types to QN

charge >0 o iorigan) forrers reqEn >0 bh<t d,sel(supp).e) (reacsied ., _
A A A id=s
bl > eT id# s supp # null
y_ (e.at) mida) L el.c) (eancel

@ A QN model is a rate-regulated service centres (ie set of resources) shared by jobs

@ Requests arrive at a think-time dependent rate or at a job arrival rate

From behavioural types to QN

[b |
charge >0\ ia) (ottors) "S9EN >0 Bl st s,
b\geT id;s supp # null e
[|
-)‘[EN o J‘ .
o b
by
@ A QN model is a rate-regulated service centres (ie set of resources) shared by jobs
@ Requests arrive at a think-time dependent rate or at a job arrival rate
’
@ Ap =—5Bip) +— service centre
@m +~— fork/join node
O router node

Quantitative analysis

Parameter Value
robots wp=30
advertisement A=10
interest A=10
offer A=10
cancel A=10
availability m=0.5

system response time (seconds)

0.8

0.7 -

0.6 -

0.5

0.4

03

0.2

0.1

L
30

L
45

.
63
number of robots

L
81

L
99

— Epilogue —

| What's next? |

Some thoughts
Back to our equation

emergent behaviour := partial knowledge + interaction + local decision

Some thoughts

Back to our equation

emergent behaviour := partial knowledge + interaction + local decision

what do we actually mean by “emergent behaviour”?

Some thoughts

Back to our equation

emergent behaviour := partial knowledge + interaction + local decision

what do we actually mean by “emergent behaviour”?

. whatever one can observe of a system is “emergent”

Some thoughts

Back to our equation

emergent behaviour := partial knowledge + interaction + local decision

what do we actually mean by “emergent behaviour”?
. whatever one can observe of a system is “emergent”

our view: “emergent behaviour” doesn’'t mean “unexpected/not designed”

Some thoughts

Back to our equation

emergent behaviour := partial knowledge + interaction + local decision

what do we actually mean by “emergent behaviour”?
. whatever one can observe of a system is “emergent”

our view: “emergent behaviour” doesn’'t mean “unexpected/not designed”

Some questions

@ How can we formally characterise general properties of CAS?
eg, stabilising, oscillating, diverging, ...

Some thoughts

Back to our equation

emergent behaviour := partial knowledge + interaction + local decision

what do we actually mean by “emergent behaviour”?
. whatever one can observe of a system is “emergent”

our view: “emergent behaviour” doesn’'t mean “unexpected/not designed”

Some questions

@ How can we formally characterise general properties of CAS?
eg, stabilising, oscillating, diverging, ...

@ Can models be systematically used for “quantitative” analysis?
Quantitative analysis seems anyway crucial

Some thoughts
Back to our equation

emergent behaviour := partial knowledge + interaction + local decision

what do we actually mean by “emergent behaviour”?
. whatever one can observe of a system is “emergent”

our view: “emergent behaviour” doesn’'t mean “unexpected/not designed”

Some questions
@ How can we formally characterise general properties of CAS?
eg, stabilising, oscillating, diverging, ...
@ Can models be systematically used for “quantitative” analysis?
Quantitative analysis seems anyway crucial

@ To what extend this can be done statically?

Some thoughts
Back to our equation

emergent behaviour := partial knowledge + interaction + local decision

what do we actually mean by “emergent behaviour”?
. whatever one can observe of a system is “emergent”

our view: “emergent behaviour” doesn’'t mean “unexpected/not designed”

Some questions

@ How can we formally characterise general properties of CAS?
eg, stabilising, oscillating, diverging, ...

@ Can models be systematically used for “quantitative” analysis?
Quantitative analysis seems anyway crucial

@ To what extend this can be done statically?

@ Can emergent behaviour be inferred?

Bhehavioural type inference for CAS?

Round-trip engineering

Choreography G
Synehony
2 My M, Asynchrony
Local viewpoint, Local viewpoint; Local viewpoint,,

Bhehavioural type inference for CAS?

Round-trip engineering

Choreography G
global viewpoint

Synchrony

M;
Local viewpoint;

,,,,,,,,,, M, Asynchrony
Local viewpoint,

Bhehavioural type inference for CAS?

Round-trip engineering

Choreography G
global viewpoint Synchrony
Mo Mo N M, Asynchrony
Local viewpoint; Local viewpoint; Local viewpoint,
ELl 2 15
5! St 15
R4 R4
C Component; Component,

Bhehavioural type inference for CAS?

Round-trip engineering

Choreography G
global viewpoint Synchrony
MW Mo M, Asynchrony
Local viewpoint; Local viewpoint; Local viewpoint,
L % 15
o < 15
R4 R4
evolve/replace/compose
G Component; Component, massssssnnnsnnnnns) Component'; Component'; Component’,,

Bhehavioural type inference for CAS?

Round-trip engineering

Choreography G

global viewpoint Synchrony

New M, New M, New M,
Mo Mmool M, Asynchrony Local viewpointy Local viewpoint; Local viewpoint,
Local viewpoint; Local viewpoint; Local viewpoint,

8 8 < ‘SI ﬁl ‘JI
=l st Iz]]]
Sl] © g g g
= = T & i @i
R4 R4 h 4 1 1 1
evolve/replace/compose
C Component; Component, msssssssnnsnsnnnns) Component'; Component’; Component’,,

Bhehavioural type inference for CAS?

Round-trip engineering

Choreography G
global viewpoint

Synchrony 7 ? ?

New M, New M, New M,
Mo Mmool M, Asynchrony Local viewpointy Local viewpoint; Local viewpoint,
Local viewpoint; Local viewpoint; Local viewpoint,

8 8 < ‘SI ﬁl ‘JI
=l st Iz]]]
Sl] © g g g
= = T & i @i
R4 R4 1 1 1
evolve/replace/compose
C Component; Component, msssssssnnsnsnnnns) Component'; Component’; Component’,,

Bhehavioural type inference for CAS?

Round-trip engineering

Choreography G

S hi New choreography G'
global viewpoint ynchrony global viewpoint
Z S
Synthesise
" " "
Mol M, M, Asynchrony ” c:“e‘.'; A8 " . 'I“’W M . =N ““e‘_” M, .
Local viewpoint; Local viewpoint; Local viewpoint, S liepat ccallviewpointy ocal viewpoint,
8 < o gl 5!
o e & o &
ikl 15 i 2 =3
s 2 dy fin] | wr
R4 R4 1 1 1
evolve/replace/compose
C 1 Component; Component, msassnnssnssnnssssPComponent's Component’; Component’,

Outlook

o Identify typing disciplines
o global types
e local types
@ projection

(it is not clear how much we can reuse from the literature)

@ More precise relations with related work
(expand sec. 7 of the paper)

e Can static specifications help to make attribute-based interaction (more) efficient?

Thank you!

