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We want abstractions
e to specify CAS (ie to design emergent behaviour as easily as possible)
o to verify CAS

Behavioural types for CAS

@ shortcomings of existing behavioural types
@ desiderata for suitable frameworks
e an immediate by-product: quantitative analysis of CAS




— Prelude —
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Robots “pair up” to recharge batteries

def B(prefs, myID): def C(aID, aPID):
# prefs is a finite list while true:
for charger in prefs: recv("charging", idNew)
send ("charging", myID) @ charger if choose(aID, idNew) == idNew:
recv("stop") send("stop") @ aID

else: send("stop") to idNew

@ Explicit addressing requires proper configuration (e.g., IDs should be unique, immutable, ...)
@ Reconfiguration is expensive (e.g., new charge stations = update prefs...for all bots!)
@ Tedious with point-to-point communication

o identify partners
@ information spreads with explicit communications
e update local knowledge of agents

Q: Is the code above correct? (Assuming we agree about what 'correct’ means)

A: Well...it depends on whether (most?) bots pair up eventually




Why Behavioural Types?
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Behavioural types & distributed applications

Natural support for choreographic design
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A shifty protocol
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which one is the next C?

Not fit for purpose

Point-to-point communication is still fine, but...

arbitrary replication not supported
well-branchedness is violated
deadlock IS the goal!

reasoning about interactions is not enough:
“correctness” depends on preference lists

each instance plays a unique role

no quantitative analysis
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A new form of interaction
e f
Ap —— Bio

interpreted as
@ any A satisfying p
@ generates an expression e

@ which any B satisfying ¢ “can
receive”

@ provided that f matches e

Charging protocol revisited?
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On correctness

Assertions: Pre- and Post-conditions
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Some immediate consequences



Another battery-recharging scenario
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From behavioural types to QN

in

@ A QN model is a rate-regulated service centres (ie set of resources) shared by jobs

@ Requests arrive at a think-time dependent rate or at a job arrival rate
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From behavioural types to QN
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Quantitative analysis

Parameter Value
robots wp=30
advertisement A=10
interest A=10
offer A=10
cancel A=10
availability m=0.5

system response time (seconds)

0.8

0.7 -

0.6 -

0.5

0.4

03

0.2

0.1

L
30

L
45

.
63
number of robots

L
81

L
99




— Epilogue —

| What's next? |
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Some thoughts
Back to our equation

emergent behaviour := partial knowledge + interaction + local decision

what do we actually mean by “emergent behaviour”?
. whatever one can observe of a system is “emergent”

our view: “emergent behaviour” doesn’'t mean “unexpected/not designed”

Some questions

@ How can we formally characterise general properties of CAS?
eg, stabilising, oscillating, diverging, ...

@ Can models be systematically used for “quantitative” analysis?
Quantitative analysis seems anyway crucial

@ To what extend this can be done statically?

@ Can emergent behaviour be inferred?
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Bhehavioural type inference for CAS?

Round-trip engineering
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Outlook

o Identify typing disciplines
o global types
e local types
@ projection

(it is not clear how much we can reuse from the literature)

@ More precise relations with related work
(expand sec. 7 of the paper)

e Can static specifications help to make attribute-based interaction (more) efficient?



Thank you!



