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Take-away message

Our CAS equation

emergent behaviour := partial knowledge + interaction + local decision

Emergent behaviour “by-design”

We want abstractions

to specify CAS (ie to design emergent behaviour as easily as possible)

to verify CAS

Behavioural types for CAS

shortcomings of existing behavioural types

desiderata for suitable frameworks

an immediate by-product: quantitative analysis of CAS
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– Prelude –

[ Ruminating on CAS ]



A simple scenario

Robots “pair up” to recharge batteries

def B(prefs, myID):

# prefs is a finite list

for charger in prefs:

send("charging", myID) @ charger

recv("stop")

def C(aID, aPID):

while true:

recv("charging", idNew)

if choose(aID, idNew) == idNew:

send("stop") @ aID

else: send("stop") to idNew

Explicit addressing requires proper configuration (e.g., IDs should be unique, immutable, ...)

Reconfiguration is expensive (e.g., new charge stations =⇒ update prefs...for all bots!)

Tedious with point-to-point communication

identify partners
information spreads with explicit communications
update local knowledge of agents

Q: Is the code above correct? (Assuming we agree about what ’correct’ means)

A: Well...it depends on whether (most?) bots pair up eventually
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– Act I –

[ Why Behavioural Types? ]



Behavioural types & distributed applications

Natural support for choreographic design

Choreography G
global viewpoint

M1

Local viewpoint1

Mi

Local viewpoint1

Mn

Local viewpointn

Synchrony

Asynchrony

B−→C: charging

C−→O: stop C−→B: stop
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Behavioural types & CAS

A shifty protocol

B−→C: charging

C−→O: stop C−→B: stop

+

+

	

	

Not fit for purpose

Point-to-point communication is still fine, but...

arbitrary replication not supported

well-branchedness is violated

deadlock IS the goal!

reasoning about interactions is not enough:
“correctness” depends on preference lists

each instance plays a unique role

no quantitative analysis
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AbC inspired behavioural types

New behavioural types

A new form of interaction

Apρ e f−−−→ Bpσ

interpreted as

any A satisfying ρ

generates an expression e

which any B satisfying σ “can
receive”

provided that f matches e

Charging protocol revisiteda

B
Lcharging,B.idM Lcharging,xM−−−−−−−−−−−−−−−−−−−→ Cpid = hd(B.prefs)

C
LstopM LstopM−−−−−−−−−−→ id = x C

LstopM LstopM−−−−−−−−−−→ id = C.partner

+

+

	

	

aTautologies omitted
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On correctness

Assertions: Pre- and Post-conditions
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Assertions: Pre- and Post-conditions

B
Lcharging,B.idM Lcharging,xM−−−−−−−−−−−−−−−−−−−→ Cpid = hd(B.prefs)

B.prefs 6= ∅ ∧ ∀i ∈ B.prefs∃X : X.id = i

C.id 6∈ B.prefs′

C
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– Act II –

[ Some immediate consequences ]



Another battery-recharging scenario

charge > 0
∧

bl ≥ eT

Loffer,id,qtM Loffer,s,rM−−−−−−−−−−−−−−−−→
reqEn > 0
∧

id 6= s

bl < l

∧
supp 6= null

Lreq,id,sel(supp),eM Lreq,c,s,eM−−−−−−−−−−−−−−−−−−−−−→ id = s

id = s
Lcancel,cM Lcancel,cM−−−−−−−−−−−−−−−→ id = cid = s

Lconfirm,c,a(e,qt)M Lconfirm,id,oM−−−−−−−−−−−−−−−−−−−−−−→ id = c
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From behavioural types to QN
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A QN model is a rate-regulated service centres (ie set of resources) shared by jobs

Requests arrive at a think-time dependent rate or at a job arrival rate

Apρ e e′−−−→ Bpρ′ 7→ service centre

| 7→ fork/join node

+ 7→ router node
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Quantitative analysis

Parameter Value
robots wp=30

advertisement λ = 10
interest λ = 10

offer λ = 10
cancel λ = 10

availability π = 0.5



– Epilogue –

[ What’s next? ]



Some thoughts

Back to our equation

emergent behaviour := partial knowledge + interaction + local decision

what do we actually mean by “emergent behaviour”?

... whatever one can observe of a system is “emergent”

our view: “emergent behaviour” doesn’t mean “unexpected/not designed”

Some questions

How can we formally characterise general properties of CAS?
eg, stabilising, oscillating, diverging, ...

Can models be systematically used for “quantitative” analysis?
Quantitative analysis seems anyway crucial

To what extend this can be done statically?

Can emergent behaviour be inferred?
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Outlook

Identify typing disciplines

global types
local types
projection

(it is not clear how much we can reuse from the literature)

More precise relations with related work
(expand sec. 7 of the paper)

Can static specifications help to make attribute-based interaction (more) efficient?



Thank you!


