
Design-by-Contract for Flexible Multiparty Session Protocols

Lorenzo Gheri @ Imperial College
Ivan Lanese @ Focus Team, University of Bologna/INRIA

Neil Sayers @ Imperial College & Coveo Solutions Inc.
Emilio Tuosto @ GSSI

Nobuko Yoshida @ Imperial College

Research partly supported by the EU H2020 RISE programme under the
Marie Sk lodowska-Curie grant agreement No 778233



Take-home message

Choreography Automata

A model of choreographies of message-passing systems featuring

selective participation

deadlock and lock freedom by construction

design-by-contract: constrain payloads of communications

CAScr (https://github.com/Tooni/CAScript-Artifact)

A tool chain for

top-down choreographic development

validating protocols via choreography automata

TypeScript web programming via API generation

Check out our paper or get in touch for details...

https://github.com/Tooni/CAScript-Artifact


Take-home message

Choreography Automata

A model of choreographies of message-passing systems featuring

selective participation

deadlock and lock freedom by construction

design-by-contract: constrain payloads of communications

CAScr (https://github.com/Tooni/CAScript-Artifact)

A tool chain for

top-down choreographic development

validating protocols via choreography automata

TypeScript web programming via API generation

Check out our paper or get in touch for details...

https://github.com/Tooni/CAScript-Artifact


Take-home message

Choreography Automata

A model of choreographies of message-passing systems featuring

selective participation

deadlock and lock freedom by construction

design-by-contract: constrain payloads of communications

CAScr (https://github.com/Tooni/CAScript-Artifact)

A tool chain for

top-down choreographic development

validating protocols via choreography automata

TypeScript web programming via API generation

Check out our paper or get in touch for details...

https://github.com/Tooni/CAScript-Artifact


Take-home message

Choreography Automata

A model of choreographies of message-passing systems featuring

selective participation

deadlock and lock freedom by construction

design-by-contract: constrain payloads of communications

CAScr (https://github.com/Tooni/CAScript-Artifact)

A tool chain for

top-down choreographic development

validating protocols via choreography automata

TypeScript web programming via API generation

Check out our paper or get in touch for details...

https://github.com/Tooni/CAScript-Artifact


– Prologue –

[ Choreographies, informally ]



The online-wallet protocol

customer−→wallet : login

customer−→wallet : pin

+

+wallet−→customer : retry

wallet−→customer : loginOK

wallet−→vendor : loginOK

vendor−→customer : request

customer−→wallet : authorise customer−→wallet : reject

wallet−→customer : loginDenied

customer−→vendor : pay customer−→vendor : reject

+

+

+



The online-wallet protocol ...some modelling problems

What about vendor?

customer−→wallet : login

customer−→wallet : pin

+

+wallet−→customer : retry

wallet−→customer : loginOK

wallet−→vendor : loginOK

vendor−→customer : request

customer−→wallet : authorise customer−→wallet : reject

wallet−→customer : loginDenied

customer−→vendor : pay customer−→vendor : reject

+

+

+



The online-wallet protocol ...some modelling problems

What about vendor?

What about payloads?

customer−→wallet : login

customer−→wallet : pin

+

+wallet−→customer : retry

wallet−→customer : loginOK

wallet−→vendor : loginOK

vendor−→customer : request

customer−→wallet : authorise customer−→wallet : reject

wallet−→customer : loginDenied

customer−→vendor : pay customer−→vendor : reject

+

+

+



Top-down model-driven development

C
horeography

=
G
lobal

sp
ec

+
L
ocal

sp
ec

Quoting W3C:
“[...] a contract [...] of the common ordering conditions and constraints under which
messages are exchanged [...] from a global viewpoint [...]
Each party can then use the global definition to build and test solutions [...]
global specification is in turn realised by combination of the resulting local systems”

OLW diagram

customer
Local viewpoint

wallet
Local viewpoint

vendor
Local viewpoint

well-formedness

specs,not code



Top-down model-driven development

C
horeography

=
G
lobal

sp
ec

+
L
ocal

sp
ec

Quoting W3C:
“[...] a contract [...] of the common ordering conditions and constraints under which
messages are exchanged [...] from a global viewpoint [...]
Each party can then use the global definition to build and test solutions [...]
global specification is in turn realised by combination of the resulting local systems”

OLW diagram

customer
Local viewpoint

wallet
Local viewpoint

vendor
Local viewpoint

well-formedness

specs,not code



Top-down model-driven development

C
horeography

=
G
lobal

sp
ec

+
L
ocal

sp
ec

Quoting W3C:
“[...] a contract [...] of the common ordering conditions and constraints under which
messages are exchanged [...] from a global viewpoint [...]
Each party can then use the global definition to build and test solutions [...]
global specification is in turn realised by combination of the resulting local systems”

OLW diagram

customer
Local viewpoint

wallet
Local viewpoint

vendor
Local viewpoint

Project P
roject

Project

well-formedness

specs,not code



Top-down model-driven development

C
horeography

=
G
lobal

sp
ec

+
L
ocal

sp
ec

Quoting W3C:
“[...] a contract [...] of the common ordering conditions and constraints under which
messages are exchanged [...] from a global viewpoint [...]
Each party can then use the global definition to build and test solutions [...]
global specification is in turn realised by combination of the resulting local systems”

OLW diagram

customer
Local viewpoint

wallet
Local viewpoint

vendor
Local viewpoint

Project P
roject

Project

wallet
Implem.

customer
Implem.

vendor
Implem.

V
er

if
y

V
er

if
y V

erify

well-formedness

specs,not code



– Act I –

[ Choreography Automata ]



Our global & local specs

Choreography automata: Interaction, globally

q0M =

q1 q2 q3

q4 q5 q6

q7

q8

c−→
w

:
lo

g
in

c−→w : pin

w−→
c : retry

w−→c : loginDenied

w
−→

c
:

lo
g

in
O

K

w−→v : loginOK v−→c : request

c−→
w

:
a

u
th

orise

c−→w : reject

c−→v : pay

c−→
v

:
re

je
ct

Communicating finite-state machines: Communication, locally

Q4proj(M, vendor) = Q5 Q6 Q3

w v?loginOK v c!request c v?pay

c v?reject



Our global & local specs

Intermediate automata: from interactions to communications

q0M̂ =

q1 q2 q3

q4 q5 q6

q7

q8

ε

ε

ε

ε

ε

w v?loginOK v c!request

ε

ε

c v?pay

c
v?

re
je

ct

Communicating finite-state machines: Communication, locally

Q4proj(M, vendor) = Q5 Q6 Q3

w v?loginOK v c!request c v?pay

c v?reject



Semantics of CFSMs

Internal step: S
ε−→ S ′

•

p

· · · • ε−→ ◦

r

· · · •

q

Interaction: S
p−→q: m−−−−−→ S ′

· · · •

r

· · ·



Semantics of CFSMs

Internal step: S
ε−→ S ′

•

p

· · · ◦ ε−→ •

r

· · · •

q

Interaction: S
p−→q: m−−−−−→ S ′

· · · •

r

· · ·



Semantics of CFSMs

Internal step: S
ε−→ S ′

•

p

· · · ◦ ε−→ •

r

· · · •

q

Interaction: S
p−→q: m−−−−−→ S ′

• p q!m−−−→ ◦

p

· · · •

r

· · · • p q?m−−−→ ◦

q



Semantics of CFSMs

Internal step: S
ε−→ S ′

•

p

· · · ◦ ε−→ •

r

· · · •

q

Interaction: S
p−→q: m−−−−−→ S ′

◦ a b!m−−−→ •

p

· · · •

r

· · · ◦ p q?m−−−→ •

q



Projections preserve semantics

Theorem. Choreography automata are bisimilar to their projections

=⇒ traces equivalence



Flexibility by example

Selective participation in OLW

q0M=

q1 q2 q3

q4 q5 q6

q7

q8

c−→
w

:
lo

g
in

c−→w : pin

w−→
c : retry

w−→c : loginDeniedw
−→

c
:

lo
g

in
O

K

w−→v : loginOK v−→c : request

c−→
w

:
a

u
th

orise

c−→w : reject

c−→v : pay

c−→
v

:
re

je
ct

at q2 wallet and customer aware from the very beginning

vendor involved on one branch only, but that’s fine: wallet is aware

at q6 wallet and customer aware from the very beginning

vendor eventually informed by customer on each branch



Flexibility by example

Selective participation in OLW

q0M=

q1 q2 q3

q4 q5 q6

q7

q8

c−→
w

:
lo

g
in

c−→w : pin

w−→
c : retry

w−→c : loginDeniedw
−→

c
:

lo
g

in
O

K

w−→v : loginOK v−→c : request

c−→
w

:
a

u
th

orise

c−→w : reject

c−→v : pay

c−→
v

:
re

je
ct

at q2 wallet and customer aware from the very beginning

vendor involved on one branch only, but that’s fine: wallet is aware

at q6 wallet and customer aware from the very beginning

vendor eventually informed by customer on each branch



Flexibility by example

Selective participation in OLW

q0M=

q1 q2q2 q3

q4 q5 q6

q7

q8

c−→
w

:
lo

g
in

c−→w : pin

w−→
c : retry

w−→c : loginDeniedw
−→

c
:

lo
g

in
O

K

w−→v : loginOK v−→c : request

c−→
w

:
a

u
th

orise

c−→w : reject

c−→v : pay

c−→
v

:
re

je
ct

at q2 wallet and customer aware from the very beginning

vendor involved on one branch only, but that’s fine: wallet is aware

at q6 wallet and customer aware from the very beginning

vendor eventually informed by customer on each branch



Flexibility by example

Selective participation in OLW

q0M=

q1 q2 q3

q4 q5 q6

q7

q8

c−→
w

:
lo

g
in

c−→w : pin

w−→
c : retry

w−→c : loginDeniedw
−→

c
:

lo
g

in
O

K

w−→v : loginOK v−→c : request

c−→
w

:
a

u
th

orise

c−→w : reject

c−→v : pay

c−→
v

:
re

je
ct

at q2 wallet and customer aware from the very beginning

vendor involved on one branch only, but that’s fine: wallet is aware

at q6 wallet and customer aware from the very beginning

vendor eventually informed by customer on each branch



Flexibility by example

Selective participation in OLW

q0M=

q1 q2 q3

q4 q5 q6

q7

q8

c−→
w

:
lo

g
in

c−→w : pin

w−→
c : retry

w−→c : loginDeniedw
−→

c
:

lo
g

in
O

K

w−→v : loginOK v−→c : request

c−→
w

:
a

u
th

orise

c−→w : reject

c−→v : pay

c−→
v

:
re

je
ct

at q2 wallet and customer aware from the very beginning

vendor involved on one branch only, but that’s fine: wallet is aware

at q6 wallet and customer aware from the very beginning

vendor eventually informed by customer on each branch



Theorems

Correctness by construction

Theorem. Projections of well-formed choreography automata are deadlock-free

Theorem. Projections of well-formed choreography automata are lock-free



– Act II –

[ Asserted Choreography Automata ]



DbC vs. choreography automata

Asserting (an excerpt of) OLW

q′0 q0

q1 q2 q3

q′2 q4

r · try 7→ 0

0 ≤ try ≤ 3

c−→
w

:
lo

g
in〈a

cco
u

n
t
i
n
t〉

>

c−→w : pin〈pin int〉

>

r · try 7→ try + 1

0 ≤ try ≤ 3

w−→c : loginDenied〈msg string〉

try ≥ 3 ∧msg = ”5 min.”

w
−→

c
:

re
tr

y〈
m

sg
s
t
r
i
n
g
〉

0 ≤ try < 3
∧

msg = ”fail”
w−→

c : loginOk〈〉

0 ≤
try
≤ 3

Consistency

history senesitiveness: in q
λ−−→
A

q′, A predicates on known variables

temporal satisfiability: the conjunction of the predicates on a path is satisfiable

well-formedness of the underlying choreography automaton



DbC vs. choreography automata

Asserting (an excerpt of) OLW

q′0 q0

q1 q2 q3

q′2 q4

r · try 7→ 0

0 ≤ try ≤ 3

c−→
w

:
lo

g
in〈a

cco
u

n
t
i
n
t〉

>

c−→w : pin〈pin int〉

>

r · try 7→ try + 1

0 ≤ try ≤ 3

w−→c : loginDenied〈msg string〉

try ≥ 3 ∧msg = ”5 min.”

w
−→

c
:

re
tr

y〈
m

sg
s
t
r
i
n
g
〉

0 ≤ try < 3
∧

msg = ”fail”
w−→

c : loginOk〈〉

0 ≤
try
≤ 3

Consistency

history senesitiveness: in q
λ−−→
A

q′, A predicates on known variables

temporal satisfiability: the conjunction of the predicates on a path is satisfiable

well-formedness of the underlying choreography automaton



Theorems

Projections are a bit more complicated than for choreography automata

On consistent asserted choreography automata

Theorem. Asserted choreography automata are weakly bisimilar to their projections

=⇒ trace equivalence

Theorem. Projections of well-formed asserted choreography automata are
deadlock-free



– Act III –

[ CAScr ]



Architecture of CAScr

User input

Scribble
protocol

Participant declaration:
server and others

CA

WF checks

CFSMs

STScript

Generated APIs
for TypeScript

web development

Node.js
(server)

React
(non-server)

mapping

projection

code generation



Architecture of CAScr

User input

Scribble
protocol

Participant declaration:
server and others

CA

WF checks

CFSMs

STScript

Generated APIs
for TypeScript

web development

Node.js
(server)

React
(non-server)

mapping

projection

code generation

global protocol OnlineWallet(role wallet, role customer, role vendor) {
rec AuthLoop {

login(account: int) from customer to wallet;
pin(pin: int) from customer to wallet;
choice at wallet {

login ok() from wallet to customer;
...

or login denied(msg: string) from wallet to customer;
...

or login retry(msg: string) from wallet to customer;
continue AuthLoop;
}

}
}



Architecture of CAScr

User input

Scribble
protocol

Participant declaration:
server and others

CA

WF checks

CFSMs

STScript

Generated APIs
for TypeScript

web development

Node.js
(server)

React
(non-server)

mapping

projection

code generation

global protocol OnlineWallet(role wallet, role customer, role vendor) {
rec AuthLoop {

login(account: int) from customer to wallet;
pin(pin: int) from customer to wallet;
choice at wallet {

login ok() from wallet to customer;
...

or login denied(msg: string) from wallet to customer;
...

or login retry(msg: string) from wallet to customer;
continue AuthLoop;
}

}
}



Multiparty global types

Syntax

G ::=
∑
i∈I

p−→qi : mi;Gi

∣∣ µr.G
∣∣ r

∣∣ end

Semantics

∑
i∈I

p−→qi : mi;Gi
p−→qj : mj−−−−−−−→ Gj (j ∈ I )

G [µr.G/r]
α−−→ G ′

µr.G
α−−→ G ′



From global types to choreography automata

∑
i∈I

p−→qi : mi; Gi ...

G1

Gn

p−→q1 :
m1

p−→qn : m
n

µr.G G
ε

computes the mapping above

checks well-formedness of the resulting choreography automaton

generates the TypeScript API of each participant



From global types to choreography automata

∑
i∈I

p−→qi : mi; Gi ...

G1

Gn

p−→q1 :
m1

p−→qn : m
n

µr.G G
ε

computes the mapping above

checks well-formedness of the resulting choreography automaton

generates the TypeScript API of each participant



From global types to choreography automata

∑
i∈I

p−→qi : mi; Gi ...

G1

Gn

p−→q1 :
m1

p−→qn : m
n

µr.G G r
ε

ε

computes the mapping above

checks well-formedness of the resulting choreography automaton

generates the TypeScript API of each participant



From global types to choreography automata

∑
i∈I

p−→qi : mi; Gi ...

G1

Gn

p−→q1 :
m1

p−→qn : m
n

µr.G G r
ε

ε

CAScr

computes the mapping above

checks well-formedness of the resulting choreography automaton

generates the TypeScript API of each participant



– Epilogue –

[ ... ]



Summing up

Choreography Automata (with assertions)

A theory of choreographies

with increased expressiveness

supporting DbC

providing a basis for (enhanced) tool support for TypeScript web programming

Plans

Consider asynchronous communications

Applications:

inferring a (local) models from APIs and
checking their conformance against projections of a global spec



[ Thank you! ]


