Design-by-Contract for Flexible Multiparty Session Protocols

Lorenzo Gheri @ Imperial College
Ivan Lanese @ Focus Team, University of Bologna/INRIA
Neil Sayers © Imperial College & Coveo Solutions Inc.
Emilio Tuosto @ GSSI
Nobuko Yoshida @ Imperial College

€CCOP

Berlin 2022

Research partly supported by the EU H2020 RISE programme under the

®. BEHAPI
Marie Sktodowska-Curie grant agreement No 778233 e

Take-home message

https://github.com/Tooni/CAScript-Artifact

Take-home message

Choreography Automata

A model of choreographies of message-passing systems featuring
@ selective participation
@ deadlock and lock freedom by construction

@ design-by-contract: constrain payloads of communications

https://github.com/Tooni/CAScript-Artifact

Take-home message

Choreography Automata

A model of choreographies of message-passing systems featuring
@ selective participation
@ deadlock and lock freedom by construction

@ design-by-contract: constrain payloads of communications

CAScr (https://github.com/Tooni/CAScript-Artifact)
A tool chain for

@ top-down choreographic development

@ validating protocols via choreography automata

@ TypeScript web programming via API generation

https://github.com/Tooni/CAScript-Artifact

Take-home message

Choreography Automata

A model of choreographies of message-passing systems featuring
@ selective participation
@ deadlock and lock freedom by construction

@ design-by-contract: constrain payloads of communications

CAScr (https://github.com/Tooni/CAScript-Artifact)
A tool chain for
@ top-down choreographic development

@ validating protocols via choreography automata

@ TypeScript web programming via API generation

v

Check out our paper or get in touch for details...J

https://github.com/Tooni/CAScript-Artifact

Choreographies, informally

The online-wallet protocol

customer—wallet : login

customer—wallet: pin;

(wallet—customer: retr

wallet—customer: IoginOK
wallet—vendor: loginO

(vendor—-customer : request

(wallet—custom

er: loginDenied)

customer—wallet: authorise)

customer—vendor : pay)

The online-wallet protocol

1

customer—wallet : login
customer—wallet: pin]

...some modelling problems

What about vendor?

(wallet—customer: retr

(wallet—customer IoginOK
wallet—vendor: loginO

(vendor—customer : request)

f

(wallet— customer : loginDenied)

customer—wallet: authorise)

customer—vendor : pay)

customer—wallet : reject)

customer—vendor : reject

The online-wallet protocol

1

customer—wallet : login
customer—wallet: pin]

...some modelling problems

What about vendor?

(wallet—customer: retr

(wallet—customer IoginOK
(wallet—vendor: loginO

(vendor—customer : request)

f

(wallet— customer : loginDenied)

What about payloads?

customer—wallet: authorise)

customer—vendor : pay)

customer—wallet : reject)

customer—vendor : reject

Top-down model-driven development

A Quoting W3C:

>

3 “[...] acontract [...] of the common ordering conditions and constraints under which
0_03 messages are exchanged [...] from a global viewpoint [...]

§_ Each party can then use the global definition to build and test solutions [...]
< global specification is in turn realised by combination of the resulting local systems”
Il

()

o

o

=

w

=

[0}

(e}

+

—

(S

O

@,

w

o

[0}

(g}

Top-down model-driven development

a Quoting W3C:

>

3 “[...] acontract [...] of the common ordering conditions and constraints under which
03 messages are exchanged [...] from a global viewpoint [...]

§_ Each party can then use the global definition to build and test solutions [...]

< global specification is in turn realised by combination of the resulting local systems”
Il

()

2 well-formedness |
g

w

=

]

- [t) [e) (e | SPOCSMotcode
—

o

8

w

o

]

Top-down model-driven development

Quoting W3C:

a)
>

3 “[...] acontract [...] of the common ordering conditions and constraints under which
0_03 messages are exchanged [...] from a global viewpoint [...]

§_ Each party can then use the global definition to build and test solutions [...]

< global specification is in turn realised by combination of the resulting local systems”
Il

()

g . well-formedness |
=

w & - o,

g QS % e

o ¥

- J { - J [. L specs,not codeJ
Local viewpoint Local viewpoint Local viewpoint

+
)

23ds |e207

Top-down model-driven development

A Quoting W3C:
>
3 “[...] acontract [...] of the common ordering conditions and constraints under which
03 messages are exchanged [...] from a global viewpoint [...]
§_ Each party can then use the global definition to build and test solutions [...]
< global specification is in turn realised by combination of the resulting local systems”
Il
()
g . well-formedness |
.
w & By A,
g QS % e
(9] i
Vv

astomer — specs,not code
+ { Loca viewpoit J { s J [Local wempont l P ! J
O'_ =1 2zl 1<
o <1 <1 13
= v v
38 wallet customer vendor
g Implem. Implem. Implem.

Choreography Automata

Our global & local specs

Choreography automata: Interaction, globally

w—v: loginOK v—C: request

7
M = —(%) @ (@) %n
N {
4 oy () g
g L v
- : & =
®, 3 3
= 7 =,
© ®

c—w: pin w—c: loginDenied ~ c—v: pay

Our global & local specs

Intermediate automata: from interactions to communications
v clrequest

w v?loginOK
= —@ ® ®
@ €
g
™ W - ™
© g
S
o
@— @ - ® G
cv?pay
Communicating finite-state machines: Communication, locally
. 7pa
w v?loginOK v clrequest cvrpay
(25 (O ——
@ &
cv?reject

proj(M, vendor) = —>(@Q

Semantics of CFSMs

Internal step: S = S’

p

Semantics of CFSMs

Internal step: S = S’

p

Semantics of CFSMs

Internal step: S = S’

gf}u

. —q:
Interaction: § =47 &/

§U

s |\
g |85

Semantics of CFSMs

Internal step: S = S’

gf}u

. —q:
Interaction: § =47 &/

gu

s |\
id |5

Projections preserve semantics

Theorem. Choreography automata are bisimilar to their projections

— traces equivalence

Flexibility by example

Selective participation in OLW

w—v: loginOK v—C: request

— (o)

M= —(@) @ @)
X

o 4

4 2 U 5

: 5 $.

- = < E

® U < ES

5 T 7 =,

2 w—c: loginDenied &

o @) @) O)

c—V: pay

Flexibility by example

Selective participation in OLW

w—v: loginOK

v—c: request

<

!
®

uISo| : M«—>
w—c: loginOK

c—V: pay

@ at g» wallet and customer aware from the very beginning

Flexibility by example

Selective participation in OLW

w—v: loginOK —~ v—C: request

<

!
®

()

uISo| : M«—>
w—c: loginOK

c—V: pay

@ at g» wallet and customer aware from the very beginning
e vendor involved on one branch only, but that's fine: wallet is aware

Q
@aspoqme IM4—D

Flexibility by example

Selective participation in OLW

Q
@aspoqme IM4—D

w—v: loginOK v—C: request
M= —>(®) (@))
o X
i) 2 5
s ‘&0 .9
= o @
5 - b
0 e N
5 T 7
2 w—c: loginDenied
@ @ @)

c—V: pay

@ at g» wallet and customer aware from the very beginning
e vendor involved on one branch only, but that's fine: wallet is aware

@ at ge wallet and customer aware from the very beginning

Flexibility by example

Selective participation in OLW

<

l
®

uISo| : M«—>

w—v: loginOK

@

w—c: loginOK

w—c: loginDenied

Q
@as!Joq1ne IM4—D

&)

c—V: pay

@ at g» wallet and customer aware from the very beginning

e vendor involved on one branch only, but that's fine: wallet is aware

@ at ge wallet and customer aware from the very beginning
e vendor eventually informed by customer on each branch

Theorems

Correctness by construction

Theorem. Projections of well-formed choreography automata are deadlock-free

Theorem. Projections of well-formed choreography automata are lock-free

Asserted Choreography Automata

DbC vs. choreography automata

Asserting (an excerpt of) OLW

—®

r-try —0 retry —try+1
() a
0<try<3 ? 0<try<3 @ o
: A
= Y
- +
o 12}
@, &
=])
- £
g >
o 5
< e
=]
£ I,
[%
\:rr/ c—w: pin{(pin int) z w—c: loginDenied(msg string)

@

T

try > 3 A msg ="5 min."

@)

DbC vs. choreography automata

Asserting (an excerpt of) OLW

retry —try+1

r-try —0
—(® OF
0<try<3 1 0<try<3 TEB
2 o
= Y
- +
8 5
=])
N £
a 2
o 5
< e
=]
C U
E . vindin 1 T
G2 c—w: pin(pin int) z

w—c: loginDenied(msg string)
92 a3

2

T

try > 3 A msg ="5 min."

Consistency

. . . A . .
@ history senesitiveness: in ¢ — q’, A predicates on known variables
A

@ temporal satisfiability: the conjunction of the predicates on a path is satisfiable

@ well-formedness of the underlying choreography automaton

Theorems

Projections are a bit more complicated than for choreography automata |

On consistent asserted choreography automata

Theorem. Asserted choreography automata are weakly bisimilar to their projections

—> trace equivalence

Theorem. Projections of well-formed asserted choreography automata are
deadlock-free

— Act Il -

| CAScr |

Architecture of CAScr

User input

Scribble Participant declaration: | | = _
protocol server and others |

R P S _>{ STScript
mapping .

1

1

1 code generation
1 Y
1

1

1

1

Y
€ Generated APls
WF checks for TypeScript

web development

projection

Architecture of CAScr

global protocol OnlineWallet(role wallet, role customer, role vendor) {
rec AuthLoop {
login(account: int) from customer to wallet;
pin(pin: int) from customer to wallet;

! User input choice at wallet {
K3 login_ok() from wallet to customer;
Scribble Participant declaration: X .
protocol vy end e R - or login_denied(msg: string) from wallet to customer;
1

or login_retry(msg: string) from wallet to customer;
U P R STScript continue AuthLoop;
mapping ! }

v i code generation }
i \
! Generated APls
1 for TypeScript

| web development
1

CA
WF checks

projection

Architecture of CAScr

Ueaple
sable

global protocol OnlineWallet(role wallet, role customer, role vendor) {
rec AuthLoop {
login(account: int) from customer to wallet;
pin(pin: int) from customer to wallet;

1 User input choice at wallet {
¥ login_ok() from wallet to customer;
(Scribble] (Participant declaration:} _____ _ Yotk J(ting) f Isa N
\ or login_denied(msg: string) from wallet to customer;
protocol server and others |
or login_retry(msg: string) from wallet to customer;
B STScript continue AuthLoop;
mapping !
! }
v 1 code generation }
i Y
cA . ¥
1
. Canamizd] A4P|5 17 const onlinewalletServerlogic = (sessionID: string) = {
WF checks ! for TypeScript 18 DB.initSession(sessionID);
| web development 19 const handleRequest = Session.Initial({
. 20 login: (Next, accountPayload) =>
1 21 Next ({
. Node.js 22 pin: (Next, pinPayload) => {
(server) 23 if (accountPayload.account 100000 && pinPayload.pin === 1000)
N 24 console.log('Login details correct!');
projection > CFSMs 2 return Nex% | §
2€ (property) login_denied: { x
27 .
(payload: Message.52_login_den. 1
React 2 (payload: Message.S2_login_den.. © login_retry
(non-server) 22y
3C

Multiparty global types

G Zp—>q;: m;; G; ur.G
iel

—>qj: m;j
> pai mi; G; G (jel)
icl

end

Glur.G/r] == G’

ur.G = G’

From global types to choreography automata

From global types to choreography automata

From global types to choreography automata

From global types to choreography automata

CAScr
@ computes the mapping above
o checks well-formedness of the resulting choreography automaton

@ generates the TypeScript API of each participant

— Epilogue —

[]

Summing up

Choreography Automata (with assertions)
A theory of choreographies

@ with increased expressiveness

@ supporting DbC

@ providing a basis for (enhanced) tool support for TypeScript web programming

Plans
@ Consider asynchronous communications

@ Applications:

e inferring a (local) models from APIls and
e checking their conformance against projections of a global spec

Thank you!

