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Choreographies, informally



The online-wallet protocol
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customer—wallet : login
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...some modelling problems

What about vendor?
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Top-down model-driven development

A Quoting W3C:

>

3 “[...] acontract [...] of the common ordering conditions and constraints under which
0_03 messages are exchanged [...] from a global viewpoint [...]

§_ Each party can then use the global definition to build and test solutions [...]
< global specification is in turn realised by combination of the resulting local systems”
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Choreography Automata



Our global & local specs

Choreography automata: Interaction, globally

w—v: loginOK v—C: request
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Our global & local specs

Intermediate automata: from interactions to communications
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Semantics of CFSMs

Internal step: S = S’
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Projections preserve semantics

Theorem. Choreography automata are bisimilar to their projections

— traces equivalence



Flexibility by example

Selective participation in OLW

w—v: loginOK v—C: request
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Flexibility by example

Selective participation in OLW
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@ at g» wallet and customer aware from the very beginning

e vendor involved on one branch only, but that's fine: wallet is aware

@ at ge wallet and customer aware from the very beginning
e vendor eventually informed by customer on each branch




Theorems

Correctness by construction

Theorem. Projections of well-formed choreography automata are deadlock-free

Theorem. Projections of well-formed choreography automata are lock-free




Asserted Choreography Automata



DbC vs. choreography automata

Asserting (an excerpt of) OLW
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DbC vs. choreography automata

Asserting (an excerpt of ) OLW
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Consistency

. . . A . .
@ history senesitiveness: in ¢ — q’, A predicates on known variables
A

@ temporal satisfiability: the conjunction of the predicates on a path is satisfiable

@ well-formedness of the underlying choreography automaton




Theorems

Projections are a bit more complicated than for choreography automata |

On consistent asserted choreography automata

Theorem. Asserted choreography automata are weakly bisimilar to their projections

—> trace equivalence

Theorem. Projections of well-formed asserted choreography automata are
deadlock-free
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Architecture of CAScr

User input
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Architecture of CAScr

global protocol OnlineWallet(role wallet, role customer, role vendor) {
rec AuthLoop {
login(account: int) from customer to wallet;
pin(pin: int) from customer to wallet;

! User input choice at wallet {
K3 login_ok() from wallet to customer;
Scribble Participant declaration: X .
protocol vy end e R - or login_denied(msg: string) from wallet to customer;
1

or login_retry(msg: string) from wallet to customer;
U P R STScript continue AuthLoop;
mapping ! }

v i code generation }
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! Generated APls
1 for TypeScript

| web development
1

CA
WF checks

projection




Architecture of CAScr

Ueaple
sable

global protocol OnlineWallet(role wallet, role customer, role vendor) {
rec AuthLoop {
login(account: int) from customer to wallet;
pin(pin: int) from customer to wallet;

1 User input choice at wallet {
¥ login_ok() from wallet to customer;
( Scribble] (Participant declaration:} _____ _ Yotk J( ting) f Isa N
\ or login_denied(msg: string) from wallet to customer;
protocol server and others |
or login_retry(msg: string) from wallet to customer;
B STScript continue AuthLoop;
mapping !
! }
v 1 code generation }
i Y
cA . ¥
1
. Canamizd] A4P|5 17 const onlinewalletServerlogic = (sessionID: string) = {
WF checks ! for TypeScript 18 DB.initSession(sessionID);
| web development 19 const handleRequest = Session.Initial({
. 20 login: (Next, accountPayload) =>
1 21 Next ({
. Node.js 22 pin: (Next, pinPayload) => {
(server) 23 if (accountPayload.account 100000 && pinPayload.pin === 1000)
N 24 console.log('Login details correct!');
projection > CFSMs 2 return Nex% | §
2€ (property) login_denied: { x
27 .
(payload: Message.52_login_den. 1
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Multiparty global types
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From global types to choreography automata
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From global types to choreography automata

CAScr
@ computes the mapping above
o checks well-formedness of the resulting choreography automaton

@ generates the TypeScript API of each participant
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Summing up

Choreography Automata (with assertions)
A theory of choreographies

@ with increased expressiveness

@ supporting DbC

@ providing a basis for (enhanced) tool support for TypeScript web programming

Plans
@ Consider asynchronous communications

@ Applications:

e inferring a (local) models from APIls and
e checking their conformance against projections of a global spec
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