## Design-by-Contract for Flexible Multiparty Session Protocols

Lorenzo Gheri @ Imperial College Ivan Lanese @ Focus Team, University of Bologna/INRIA Neil Sayers @ Imperial College & Coveo Solutions Inc. Emilio Tuosto @ GSSI Nobuko Yoshida @ Imperial College





Research partly supported by the EU H2020 RISE programme under the Marie Skłodowska-Curie grant agreement No 778233



#### Choreography Automata

A model of choreographies of message-passing systems featuring

- selective participation
- deadlock and lock freedom by construction
- design-by-contract: constrain payloads of communications

#### Choreography Automata

A model of choreographies of message-passing systems featuring

- selective participation
- deadlock and lock freedom by construction
- design-by-contract: constrain payloads of communications

#### CAScr (https://github.com/Tooni/CAScript-Artifact)

A tool chain for

- top-down choreographic development
- validating protocols via choreography automata
- TypeScript web programming via API generation

#### Choreography Automata

A model of choreographies of message-passing systems featuring

- selective participation
- deadlock and lock freedom by construction
- design-by-contract: constrain payloads of communications

#### CAScr (https://github.com/Tooni/CAScript-Artifact)

A tool chain for

- top-down choreographic development
- validating protocols via choreography automata
- TypeScript web programming via API generation

Check out our paper or get in touch for details...



# [ Choreographies, informally ]

## The online-wallet protocol



## The online-wallet protocol

## ...some modelling problems



## The online-wallet protocol

## ...some modelling problems



Choreography Ш Global spec +Local spec

#### Quoting W3C:

"[...] a contract [...] of the common ordering conditions and constraints under which messages are exchanged [...] from a global viewpoint [...] Each party can then use the global definition to build and test solutions [...] global specification is in turn realised by combination of the resulting local systems"



Choreography Ш Global spec +Local spec

#### Quoting W3C:

"[...] a contract [...] of the common ordering conditions and constraints under which messages are exchanged [...] from a global viewpoint [...] Each party can then use the global definition to build and test solutions [...] global specification is in turn realised by combination of the resulting local systems"



Choreography Ш Global spec +Local spec

#### Quoting W3C:

"[...] a contract [...] of the common ordering conditions and constraints under which messages are exchanged [...] from a global viewpoint [...] Each party can then use the global definition to build and test solutions [...] global specification is in turn realised by combination of the resulting local systems"





# [ Choreography Automata ]

## Our global & local specs

Choreography automata: Interaction, globally



## Our global & local specs

Intermediate automata: from interactions to communications



Communicating finite-state machines: Communication, locally  $proj(M, vendor) = \longrightarrow Q_4 \xrightarrow{w v?loginOK} Q_5 \xrightarrow{v c!request} Q_6 \xrightarrow{c v?pay} Q_3$   $c v?reject \xrightarrow{c v?reject} Q_3$ 



















#### Theorem. Choreography automata are bisimilar to their projections

 $\implies$  traces equivalence

Selective participation in OLW



Selective participation in OLW



• at  $q_2$  wallet and customer aware from the very beginning

Selective participation in OLW



• at  $q_2$  wallet and customer aware from the very beginning

• vendor involved on one branch only, but that's fine: wallet is aware

Selective participation in OLW



• at  $q_2$  wallet and customer aware from the very beginning

- vendor involved on one branch only, but that's fine: wallet is aware
- at  $q_6$  wallet and customer aware from the very beginning

Selective participation in OLW



• at  $q_2$  wallet and customer aware from the very beginning

- vendor involved on one branch only, but that's fine: wallet is aware
- at  $q_6$  wallet and customer aware from the very beginning
  - vendor eventually informed by customer on each branch

Correctness by construction

Theorem. Projections of well-formed choreography automata are deadlock-free

Theorem. Projections of well-formed choreography automata are lock-free

## – Act II –

# [Asserted Choreography Automata]

## DbC vs. choreography automata

Asserting (an excerpt of) OLW



## DbC vs. choreography automata

Asserting (an excerpt of) OLW



#### Consistency

- history senesitiveness: in  $q \xrightarrow{\lambda} q'$ , A predicates on known variables
- temporal satisfiability: the conjunction of the predicates on a path is satisfiable
- well-formedness of the underlying choreography automaton

#### Theorems

Projections are a bit more complicated than for choreography automata

On consistent asserted choreography automata

Theorem. Asserted choreography automata are weakly bisimilar to their projections

 $\implies$  trace equivalence

**Theorem.** Projections of well-formed asserted choreography automata are deadlock-free

## – Act III –

[ CAScr ]

## Architecture of CAScr





## Architecture of CAScr





login(account: int) from customer to wallet; pin(pin: int) from customer to wallet: login\_ok() from wallet to customer;

or login\_denied(msg: string) from wallet to customer;

or login\_retry(msg: string) from wallet to customer;

## Architecture of CAScr





## Multiparty global types

i∈I

# Syntax G ::= $\sum_{i \in I} p ightarrow q_i$ : $m_i$ ; $G_i$ | $\mu$ r. G | r | end Semantics $\frac{G[\mu \mathbf{r}.G/\mathbf{r}] \xrightarrow{\alpha} G'}{\mu \mathbf{r}.G \xrightarrow{\alpha} G'}$ $\sum_{i=1}^{p \to q_i: m_i; G_i \xrightarrow{p \to q_j: m_j}} G_j \ (j \in I)$













#### CAScr

- computes the mapping above
- checks well-formedness of the resulting choreography automaton
- generates the TypeScript API of each participant





## Summing up

#### Choreography Automata (with assertions)

- A theory of choreographies
  - with increased expressiveness
  - supporting DbC
  - providing a basis for (enhanced) tool support for TypeScript web programming

#### Plans

- Consider asynchronous communications
- Applications:
  - inferring a (local) models from APIs and
  - checking their conformance against projections of a global spec

[Thank you!]