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– Prelude –
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Take-away message

To trade consistency for availability in systems of asymmetric replicated peers

you can use local-first’s principles to (re-)gain consistency ... eventually

And get some support by our behavioural typing discipline!

swarm protocols: systems from a global viewpoint
machines: peers
enforce good behaviour via behavioural typing

See our recent ECOOP 2023 paper
(to appear; extended version available at
https://arxiv.org/abs/2305.04848)
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Distributed coordination

consistency

availability partitioning

An “old” problem
Distributed agreement
Distributed sharing
Security
Computer-assisted collaborative work
...

With some “solutions”
Centralisation points
Distributed consensus
Commutative replicated data types
...

4 / 62



Distributed coordination

consistency

availability partitioning

An “old” problem
Distributed agreement
Distributed sharing
Security
Computer-assisted collaborative work
...

With some “solutions”
Centralisation points
Distributed consensus
Commutative replicated data types
...

4 / 62



Local-first...first

Autonomy
Thou shall be autonomous
Thou shall collaborate
Thou shall recognise and embrace conflicts
Thou shall resolve conflicts
Thou shall be consistent

Some implications
peers are not malicious
peers can progress at all times...even under partial knowledge
purity: inconsistencies resolved by “replaying” executions (invertible or
compensatable actions)
reliable communications
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Local-First at work

Alice and Bob decided to have spaghetti carbonara and tiramisù.
They use a mobile app to agree on a grocery list and decide who buys what.

Alice’s mobile Bob’s mobile
mascarpone cheese

smoked guanciale
eggs eggs
sugar pecorino romano cheese
ground moka coffee spaghetti
savoiardi biscuits

Eventually the
lists can be merged
somehow...But
who’s going to buy
the eggs?
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Plan of the talk

A motivating case study

Our formalisation

Our typing discipline

Tool support

Open issues
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– Motivations –
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People + Real-time controllers + IT systems and networks:

work divided among autonomous production cells

efficiency is determined by designing and controlling
the flow of resource and information

if disconnected, keep calm, and move on
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People + Real-time controllers + IT systems and networks:

work divided among autonomous production cells

efficiency is determined by designing and controlling
the flow of resource and information

if disconnected, keep calm, and move on

Execution model

local twin for each device/operator

twins are replicated where needed

events have unique IDs and
record facts (e.g., from sensors) or
decisions (e.g., from an operator)
spread information asynchronously

logs are local to twins

a log determines the computational state of its twin

replicated logs are merged
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A motto

execute

+

propagate

+

merge
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Other application domains / motivations

More applications
Robots (e.g., rescue missions or space applications)

Collaborative applications (https://automerge.org/)

Home automation
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Other application domains / motivations

IoT...really?
Why your fridge and mobile should go in the cloud to talk to each other?
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Other application domains / motivations

“Anytime, anywhere...” really?
like the AWS’s outage on 25/11/2020
or almost all Google services down on 14/12/2020

DSL typical availability of 97% (& some SLA have no lower bound)
checkout https:
//www.internetsociety.org/blog/2022/03/what-is-the-digital-divide/
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Other application domains / motivations

Also, taking decisions locally
can reduce downtime

shifts data ownership

gets rid of any centralization point...for real
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Challenges

Specify application-level protocols where decisions
don’t require consensus

are based on stale local states
yet, collaboration has to be successful
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Plan of the talk

A motivating case study

Our formalisation

Our typing discipline

Tool support

Open issues
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– A formal model –
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Ingredients (I): events & logs

Events

⊢

e

: t

src(e)

Logs

⊢

e1 · e2 . . .

: t1 · t2 . . .
order induced by ℓ = e1 · · · en e i <ℓ e j ⇐⇒ i < j
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Ingredients (II): log shipping
Machine Alice emits logs upon execution of commands (we’ll see how in a moment)

Such events are appended to the logs of machines in two phases:

Phase I: emitted events are appended to the local log of the emitting machine
Alice e1 e2 e3

Phase II: newly emitted events are shipped to other machines
Alice e1 e2 e3

Bob e3

propagating b
−−−−−−−−−→

Alice e1 e2 e3

Bob e2 e3 a b
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Machines

Fix a set of commands ranged over by c

Let κ range over finite maps from commands to non-empty log types

A machine is a regular term of this co-inductive grammar

M
co
::= κ·[t1? M1 & · · ·& tn? Mn]

for i ∈ {1 . . . , n}, the guard of the i-th branch is ti

An infinite tree is
regular when it has
finitely-many subtrees
The subtrees of M =
κ·[t1? M1 & · · ·& tn? Mn]
are M plus the subtrees
of each Mi
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An example

Passenger P launches an auction for a taxi T

InitialP = Request 7→ Requested· [Requested? AuctionP ]

AuctionP = Select 7→ Selected ·PassengerId· [
Bid?BidderId? AuctionP
&
Selected?PassengerId? RideP

]

RideP = · · ·

Notation

write t1? M1 & · · ·& tn? Mn when κ is the empty function

if n = 0, κ · 0 abbreviates κ·[t1? M1 & · · ·& tn? Mn]

write &1≤i≤n l i? Mi in place of t1? M1 & · · ·& tn? Mn

Treat κ as its graph and e.g. write
c / l ∈ κ for κ(c) = l or write κ as
{c1 / l1, . . . , ch / lh} when κ : ci 7→ li
for i ∈ {1, . . . h}
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Machines as automata

A machine M = κ·[t1? M1 & · · ·& tn? Mn] is an FSA where:
κ yields command-enabling transitions

a branch ti? Mi yields a transition M
ti?−−→ Mi when an event of type ti is consumed

From machines to FSAs
the states of the automaton are the subtrees of M
the initial state is M and

there is a self-loop transition to M labelled c / l for each c / l ∈ κ
there is a transition labelled ti? to state Mi for each i ∈ {1 . . . , n}
and likewise for Mi

This construction yields a finite-state automaton by the regularity of M
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An example

Let’s build the FSA of the machine InitialP on slide 18.

InitialP

InitialP =

Request 7→ Requested·

[Requested? AuctionP ]

AuctionP = Select 7→ Selected ·PassengerId· [
Bid?BidderId? AuctionP
&
Selected?PassengerId? RideP

]

RideP = · · ·
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An example

Let’s build the FSA of the machine InitialP on slide 18.

InitialP AuctionP 2 RideP

1

Request /Requested

Requested?

Select /Selected ·PassengerID

Bi
d?

Bi
dd

er
ID
?

Selected? PassengerID?

InitialP = Request 7→ Requested· [Requested? AuctionP ]

AuctionP = Select 7→ Selected ·PassengerId· [
Bid?BidderId? AuctionP
&
Selected?PassengerId? RideP

]

RideP = · · ·
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Machines’ semantics

So, think of M = κ·[t1? M1 & · · ·& tn? Mn] as an FSA where transitions are
either self-loops (determined by the κ part)
or event consuptions (determined by the guards of the branches ti )

We restrict to deterministic machines and treat them as emitters/consumers of events
with a semantics given in terms of state transition function :

δ(M, ϵ) = M

δ(M, e · ℓ) =

{
δ(M′, ℓ) if ⊢ e : t , M t?−−→ M′

δ(M, ℓ) otherwise

That is
M with local log ℓ is in the im-
plicit state δ(M, ℓ) reached after
processing each event in ℓ

δ(M, ℓ)
c / l−−−→ δ(M, ℓ) ℓ′ fresh ⊢ ℓ′ : l
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An example

Take the machine InitialP (slide 20) with a local log ℓ = ignoreMe · ignoreMeToo
where ̸⊢ ignoreMe :Requested and ̸⊢ ignoreMeToo :Requested

InitialP AuctionP 2 RideP

1

Request /Requested

Requested?

Select / Selected ·PassengerID

Bi
d?

Bi
dd

er
ID
?

Selected? PassengerID?

By definition of δ
δ(InitialP, ℓ) = InitialP

hence

δ(InitialP, ℓ)
Request /Requested−−−−−−−−−−−−→ δ(InitialP, ℓ)

(InitialP, ℓ)
Request /Requested−−−−−−−−−−−−→ (InitialP, ℓ ·Requested )

hence

with
⊢ Requested :Request and src(Requested ) = P is possible

Exercise
Calculate δ(InitialP, ℓ ·Requested )
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Some considerations

The commands are enabled only from the state reached after processing all the events
in the local log of the machine

Deterministic machines may have non-deterministic behaviour!
Recall: commands are triggered by the environment

We have formalised the emission of events and their consumption
We now focus on the formalisation of log shipping
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Swarms

A swarm (of size n) is a pair (S, ℓ) where
S maps each index 1 ≤ i ≤ n to a pair (Mi , ℓi )
ℓ is the (global) log

Notation
M1 ℓ1 | . . . | Mn ℓn | ℓ

Disclaimer
Seemingly, we’ve a contradiction: isn’t the global log a centralisation point?

Well...no, it isn’t: the global log is just a theoretical ploy!

it abstracts away from low-level technical details for events’ dispatching
it elegantly (IOHO) models asynchrony
it is not used in our algorithms and tools

Log shipping middlewares rely on timestamp
mechanisms (Actyx uses Lamport’s timestamps) and
guarantee that events are in the same order in all the
local logs
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Coherence

A swarm M1 ℓ1 | . . . | Mn ℓn | ℓ is coherent if ℓ =
⋃

1≤i≤n ℓi and ℓi ⊑ ℓ for 1 ≤ i ≤ n

where ℓ1 ⊑ ℓ2 is the sublog relation defined as

ℓ1 ⊆ ℓ2 and <ℓ1 ⊆<ℓ2 and
That is

all events of ℓ1 appear in the
same order in ℓ2

e <ℓ2 e ′, src(e) = src(e ′) and e ′ ∈ ℓ1 =⇒ e ∈ ℓ1

That is
the per-source partitions of
ℓ1 are prefixes of the corre-
sponding partitions of ℓ2

Hereafter, we assume coherence

25 / 62



Coherence

A swarm M1 ℓ1 | . . . | Mn ℓn | ℓ is coherent if ℓ =
⋃

1≤i≤n ℓi and ℓi ⊑ ℓ for 1 ≤ i ≤ n

where ℓ1 ⊑ ℓ2 is the sublog relation defined as

ℓ1 ⊆ ℓ2 and <ℓ1 ⊆<ℓ2 and
That is

all events of ℓ1 appear in the
same order in ℓ2

e <ℓ2 e ′, src(e) = src(e ′) and e ′ ∈ ℓ1 =⇒ e ∈ ℓ1

That is
the per-source partitions of
ℓ1 are prefixes of the corre-
sponding partitions of ℓ2

Hereafter, we assume coherence

25 / 62



Coherence

A swarm M1 ℓ1 | . . . | Mn ℓn | ℓ is coherent if ℓ =
⋃

1≤i≤n ℓi and ℓi ⊑ ℓ for 1 ≤ i ≤ n

where ℓ1 ⊑ ℓ2 is the sublog relation defined as

ℓ1 ⊆ ℓ2 and <ℓ1 ⊆<ℓ2 and
That is

all events of ℓ1 appear in the
same order in ℓ2

e <ℓ2 e ′, src(e) = src(e ′) and e ′ ∈ ℓ1 =⇒ e ∈ ℓ1

That is
the per-source partitions of
ℓ1 are prefixes of the corre-
sponding partitions of ℓ2

Hereafter, we assume coherence

25 / 62



Merging logs

Exercise
Recall slide 16 and consider a swarm

Alice e1 e2 e3 a b c· · · | | · · · | ℓ (1)

If ℓ = e1 · e2 · e3 · e , under which condition is (1) coherent?

The propagation of newly generated events happens by merging logs:
Log merging: ℓ1 ▷◁ ℓ2 = {ℓ

∣∣ ℓ ⊆ ℓ1 ∪ ℓ2 and ℓ1 ⊑ ℓ and ℓ2 ⊑ ℓ}
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Semantics of swarms

By rule [Local] below, a command’s execution updates both local and global logs

S(i) = M ℓi M ℓi
c / l−−−→ M ℓ′i src(ℓ′i \ ℓi ) = {i} ℓ′ ∈ ℓ ▷◁ ℓ′i

(S, ℓ)
c / l−−−→ (S[i 7→ M ℓ′i ], ℓ

′)
[Local]

S(i) = M ℓi ℓi ⊑ ℓ′⊑ ℓ ℓi ⊂ ℓ′

(S, ℓ) τ−−→ (S[i 7→ M ℓ′ ], ℓ)
[Prop]

By rule [Prop] above, the propagation of events happens
by shipping a non-deterministically chosen subset of events in the global log
to a non-deterministically chosen machine
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Semantics at work (I)

If B b
c / l−−−→ B b · d · e with ⊢ d · e : l

then, by [Local] A a | B b | C c | a · b · c c / l−−−→ A a | B b · d · e | C c | ℓ

for all ℓ ∈ (a · b · c ) ▷◁ (b · d · e)

Exercise
Compute (a · b · c ) ▷◁ (b · d · e)
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Semantics at work (II)

Take from slide 28

A a | B b | C c | b · a · c c / l−−−→ A a | B b · d · e | C c |
=ℓ︷ ︸︸ ︷

b · a · d · e · c
and let’s propagate some events

Exercise
Can we propagate just event e?

By rule [Prop] we can propagate a non-deterministically chosen sublog of b · d · e

Let’s propagate d · e A a | B b · d · e | C c | ℓ
A b · a · d · e | B b · d · e | C c | ℓ

A a | B b · d · e | C b · d · e · c | ℓ

τ

τ

Excercise
In both cases b must be shipped too. Why?
And why is event a not shipped to C together with the events from B?

29 / 62



Semantics at work (II)

Take from slide 28

A a | B b | C c | b · a · c c / l−−−→ A a | B b · d · e | C c |
=ℓ︷ ︸︸ ︷

b · a · d · e · c
and let’s propagate some events

Exercise
Can we propagate just event e?

By rule [Prop] we can propagate a non-deterministically chosen sublog of b · d · e

Let’s propagate d · e A a | B b · d · e | C c | ℓ
A b · a · d · e | B b · d · e | C c | ℓ

A a | B b · d · e | C b · d · e · c | ℓ

τ

τ

Excercise
In both cases b must be shipped too. Why?
And why is event a not shipped to C together with the events from B?

29 / 62



Semantics at work (II)

Take from slide 28

A a | B b | C c | b · a · c c / l−−−→ A a | B b · d · e | C c |
=ℓ︷ ︸︸ ︷

b · a · d · e · c
and let’s propagate some events

Exercise
Can we propagate just event e?

By rule [Prop] we can propagate a non-deterministically chosen sublog of b · d · e

Let’s propagate d · e A a | B b · d · e | C c | ℓ
A b · a · d · e | B b · d · e | C c | ℓ

A a | B b · d · e | C b · d · e · c | ℓ

τ

τ

Excercise
In both cases b must be shipped too. Why?
And why is event a not shipped to C together with the events from B?

29 / 62



Semantics at work (II)

Take from slide 28

A a | B b | C c | b · a · c c / l−−−→ A a | B b · d · e | C c |
=ℓ︷ ︸︸ ︷

b · a · d · e · c
and let’s propagate some events

Exercise
Can we propagate just event e?

By rule [Prop] we can propagate a non-deterministically chosen sublog of b · d · e

Let’s propagate d · e A a | B b · d · e | C c | ℓ
A b · a · d · e | B b · d · e | C c | ℓ

A a | B b · d · e | C b · d · e · c | ℓ

τ

τ

Excercise
In both cases b must be shipped too. Why?
And why is event a not shipped to C together with the events from B?

29 / 62



Semantics at work (II)

Take from slide 28

A a | B b | C c | b · a · c c / l−−−→ A a | B b · d · e | C c |
=ℓ︷ ︸︸ ︷

b · a · d · e · c
and let’s propagate some events

Exercise
Can we propagate just event e?

By rule [Prop] we can propagate a non-deterministically chosen sublog of b · d · e

Let’s propagate d · e A a | B b · d · e | C c | ℓ
A b · a · d · e | B b · d · e | C c | ℓ

A a | B b · d · e | C b · d · e · c | ℓ

τ

τ

Excercise
In both cases b must be shipped too. Why?
And why is event a not shipped to C together with the events from B?

29 / 62



Plan of the talk

A motivating case study

Our formalisation

Our typing discipline

Tool support

Open issues
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– Behavioural types for swarms –
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A taxi service

An intuitive auction protocol for a passenger P to get a taxi T:

1 2 3 4 5 6 7
Request@P

Offer@T

Select@P

Arrive@T Start@P

Record@T

Finish@P

Cancel@P

Receipt@O

We assume
one passenger and one office (for simplicity)
but an arbitrary number of taxis
a receipt is issued by the office O at the end of the ride (if any)
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Choreographies

Quoting W3C:
“[...] a contract [...] of the common ordering conditions and constraints under which messages are
exchanged [...] from a global viewpoint [...]
Each party can then use the global definition to build and test solutions [...]
global specification is in turn realised by combination of the resulting local systems”

Choreography G
global viewpoint

M1
Local viewpoint1

Mi

Local viewpointi
Mn

Local viewpointn
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Swarm protocols: global type for local-first applications

An idealised specification relying on synchronous communication

Fix a set of roles ranged over by R (e.g., P, T, and O on slide 32)

The syntax of swarm protocols is again given co-inductively:

G
co
::=

∑
i∈I

ci@Ri ⟨li ⟩ .Gi

∣∣ 0 where I is a finite set (of indexes)
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An example
A swarm protocol for the taxi scenario on slide 32:

G = Request@P⟨Requested⟩ .Gauction

Gauction = Offer@T⟨Bid ·BidderID⟩ .Gauction

+ Select@P⟨Selected ·PassengerID⟩ .Gchoose

Gchoose = Arrive@T⟨Arrived⟩ . Start@P⟨Started⟩ .Gride

+ Cancel@P⟨Cancelled⟩ .Receipt@O⟨Receipt⟩ . 0

Gride = Record@T⟨Path⟩ .Gride

+ Finish@P⟨Finished ·Rating⟩ .Receipt@O⟨Receipt⟩ . 0

Note the log types
in each prefixes
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Swarm protocols as FSA

Like for machines, a swarm protocols G =
∑

i∈I ci@Ri ⟨li ⟩ .Gi has an associated FSA:

the set of states consists of G plus the states in Gi for each i ∈ {1 . . . , n}

G is the initial state

for each i ∈ I , G has a transition to state Gi labelled with ci@Ri ⟨li ⟩, written

G
ci / li−−−→ Gi
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An example

1 2 3 4 5 6 7
Request@P⟨Requested⟩

Offer@T⟨Bid ·BidderID⟩

Select@P⟨Selected ·PassengerID⟩

Arrive@T⟨Arrived⟩ Start@P⟨Started⟩

Record@T⟨Path⟩

Finish@P⟨Finished ·Rating⟩

Cancel@P⟨Cancelled⟩

Receipt@O⟨Receipt⟩

There is a race in state 3!
the selected taxi may invoke Arrive
while P loses patience and invokes Cancel

This protocol violates
well-formedness conditions
typically imposed on
behavioural types due to the
race in state 3 (because it has
two selectors, which is also
true of states 2 and 5)

Removing log types yields
exactly the FSA of the swarm
protocol on slide 32
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Semantics of swarm protocols
One rule only!

δ(G, ℓ)
c / l−−−→ G′ ⊢ ℓ′ : l ℓ′ log of fresh events

(G, ℓ)
c / l−−−→ (G, ℓ

· ℓ′

)
[G-Cmd]

where

δ(G, ℓ) =


G if ℓ = ϵ

δ(G′, ℓ′′) if G
c / l−−−→ G′ and ⊢ ℓ′ : l and ℓ = ℓ′ · ℓ′′

⊥ otherwise

Logs to be consumed “atomically”,
hence δ(G, ℓ) may be undefined

We restrict ourselves to deterministic swarm protocols that is, on different transitions
from a same state

log types start differently log determinism
pairs (command,role) differ command determinism
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From swarm protocols to machines

Transitions of a swarm protocol G are labelled with a role that may invoke the command

Each machine plays one role

Obtain machines by projecting G on each role

First attempt (∑
i∈I

ci@Ri ⟨li ⟩ .Gi

)
↓R= κ · [&i∈I li?Gi ↓R ]

where κ = {(ci / li )
∣∣ Ri = R and i ∈ I}

simple, but
projected machines are large in all but the most trivial cases
processing all events is undesirable: security and efficiency

39 / 62



From swarm protocols to machines

Transitions of a swarm protocol G are labelled with a role that may invoke the command

Each machine plays one role

Obtain machines by projecting G on each role

First attempt (∑
i∈I

ci@Ri ⟨li ⟩ .Gi

)
↓R= κ · [&i∈I li?Gi ↓R ]

where κ = {(ci / li )
∣∣ Ri = R and i ∈ I}

simple, but
projected machines are large in all but the most trivial cases
processing all events is undesirable: security and efficiency

39 / 62



From swarm protocols to machines

Transitions of a swarm protocol G are labelled with a role that may invoke the command

Each machine plays one role

Obtain machines by projecting G on each role

First attempt (∑
i∈I

ci@Ri ⟨li ⟩ .Gi

)
↓R= κ · [&i∈I li?Gi ↓R ]

where κ = {(ci / li )
∣∣ Ri = R and i ∈ I}

simple, but
projected machines are large in all but the most trivial cases
processing all events is undesirable: security and efficiency

39 / 62



From swarm protocols to machines

Transitions of a swarm protocol G are labelled with a role that may invoke the command

Each machine plays one role

Obtain machines by projecting G on each role

First attempt (∑
i∈I

ci@Ri ⟨li ⟩ .Gi

)
↓R= κ · [&i∈I li?Gi ↓R ]

where κ = {(ci / li )
∣∣ Ri = R and i ∈ I}

simple, but
projected machines are large in all but the most trivial cases
processing all events is undesirable: security and efficiency

39 / 62



From swarm protocols to machines

Transitions of a swarm protocol G are labelled with a role that may invoke the command

Each machine plays one role

Obtain machines by projecting G on each role

First attempt (∑
i∈I

ci@Ri ⟨li ⟩ .Gi

)
↓R= κ · [&i∈I li?Gi ↓R ]

where κ = {(ci / li )
∣∣ Ri = R and i ∈ I}

simple, but
projected machines are large in all but the most trivial cases
processing all events is undesirable: security and efficiency

39 / 62



Another attempt

Let’s subscribe to subscriptions : maps from roles to sets of event types

In pub-sub,
processes subscribe
to “topics”

Given G =
∑

i∈I ci@Ri ⟨li ⟩ .Gi , the
projection of G on a role R with respect to subscription σ is

G ↓σR= κ· [&j∈J filter(lj, σ(R))?Gj ↓σR ] where

κ = {ci / li
∣∣ Ri = R and i ∈ I}

J = {i ∈ I
∣∣ filter(li , σ(R)) ̸= ϵ}

filter(l,E ) =


ϵ, if t = ϵ

t · filter(l′,E ) if t ∈ E and l = t · l′

filter(l,E ) otherwise
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An example
A reasonable subscription for P is the total one since the passenger should be aware of
all events: σ(P) contains all event types

Exercise
The taxi driver does not need to bother with the receipt: the subscription for σ(T)
consists of all messages but Receipt; give the projection of the taxi protocol on such
subscription for T.

P

Request /Requested

Requested?

Select / Selected ·PassengerID

Bid?BidderId?

Selected? PassengerID?

Cancel /Cancelled

Cancelled?

Arrived?

Started?

Start / Started Finish /Finished

Path?

Finished? Receipt?

Exercise (hard)
Is this a good idea?
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Well-formedness: sufficient conditions for well-behaviour

Transitory deviations are tolerated provided that consistency is eventually recovered

Example
T may bid after P has made their selection if
the selection event T has not yet been received.

This inconsistency is temporary: when the
selection event reaches T this inconsistency is
recognised and resolved

Convention
Let’s write R ∈σ G =

∑
i∈I c i@R i ⟨li ⟩ .Gi when

there is i ∈ I such that

R = Ri or σ(R) ∩ li ̸= ∅ or R ∈σ Gi

and set roles(G, σ) = {R
∣∣ R ∈σ G} and
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Well-formedness

= Causality + Determinacy - Confusion

Trading consistency for availability has implications:

Propagation of events is non-atomic (cf. rule [Prop])

Causality

& Determinacy & Confusion freeness

Fix a subscription σ. For each branch i ∈ I of G =
∑

i∈I ci@Ri ⟨li ⟩ .Gi

Explicit re-enabling σ(Ri ) ∩ li ̸= ∅

Command causality if R executes a command in Gi

then σ(R) ∩ li ̸= ∅ and σ(R) ∩ li ⊇
⋃

R′∈σGi
σ(R′) ∩ li

Determinacy R ∈σ Gi =⇒ li [0] ∈ σ(R)

Confusion freeness there is a unique subtree G′ of G emitting t
for each t starting a log emitted by a command in G

If R should have c enabled after c′ then σ(R)
contains some event type emitted by c′
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Some considerations

Further consequences:
Unspecified receptions are just ignored according to the δ transition function of
machines
It is fine to violate session fidelity, provided that consistency is eventually attained

Care is therefore necessary
for the definition of correctness
and for the correct realisation of swarm protocols

Of course we appeal to projections

44 / 62



Some considerations

Further consequences:
Unspecified receptions are just ignored according to the δ transition function of
machines
It is fine to violate session fidelity, provided that consistency is eventually attained

Care is therefore necessary
for the definition of correctness
and for the correct realisation of swarm protocols

Of course we appeal to projections

44 / 62



On correctness

(S, ℓ) faithfully implements G if it produces only logs possibly generated by G

Exercise
Take the swarm S = P | T | O | T implementing

1 2 3 4 5 6 7
Request@P⟨Requested⟩

Offer@T⟨Bid ·BidderID⟩

Select@P⟨Selected ·PassengerID⟩

Arrive@T⟨Arrived⟩ Start@P⟨Started⟩

Record@T⟨Path⟩

Finish@P⟨Finished ·Rating⟩

Cancel@P⟨Cancelled⟩

Receipt@O⟨Receipt⟩

(i.e., the swarm protocol G on slide 37). Check that S generates the log

ℓauc = requested · bid · bidderID · selected · bid · bidderID · passengerID

Too strong a requirement!
Let’s consider only “good enough” logs, i.e., those typeable with G’s log types
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Effective types

Let active(
∑

i∈I ci@Ri ⟨li ⟩ .Gi ) =
⋃

i∈I{Ri}

ℓ has effective type l wrt G and σ if G, ϵ ⊢σ ℓ ▷ l is provable; where

⊢ e : t ∈ σ(roles(G, σ)) G
c / t · l′

−−−−−→ G′ G′, filter(l′, σ(active(G′))) ⊢σ ℓ ▷ l

G, ϵ ⊢σ e · ℓ ▷ t · l

⊢ e : t G, l ⊢σ ℓ ▷ l′

G, t · l ⊢σ e · ℓ ▷ t · l′ G, l ⊢σ ϵ ▷ ϵ

G, l ⊢σ ℓ ▷ l′ none of the other rules applies

G, l ⊢σ e · ℓ ▷ l′

Exercise
For the swarm protocol G on slide 37, find a condition on σ so that

G, ϵ ⊢σ ℓauc ▷ Requested .Bid .BidderID . Selected .PassengerID

46 / 62



Effective types

Let active(
∑

i∈I ci@Ri ⟨li ⟩ .Gi ) =
⋃

i∈I{Ri}

ℓ has effective type l wrt G and σ if G, ϵ ⊢σ ℓ ▷ l is provable; where

⊢ e : t

∈ σ(roles(G, σ)) G
c / t · l′

−−−−−→ G′ G′, filter(l′, σ(active(G′))) ⊢σ ℓ ▷ l
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G, t · l ⊢σ e · ℓ ▷ t · l′ G, l ⊢σ ϵ ▷ ϵ

G, l ⊢σ ℓ ▷ l′ none of the other rules applies

G, l ⊢σ e · ℓ ▷ l′

Exercise
For the swarm protocol G on slide 37, find a condition on σ so that

G, ϵ ⊢σ ℓauc ▷ Requested .Bid .BidderID . Selected .PassengerID

46 / 62



Effective types

Let active(
∑

i∈I ci@Ri ⟨li ⟩ .Gi ) =
⋃

i∈I{Ri}

ℓ has effective type l wrt G and σ if G, ϵ ⊢σ ℓ ▷ l is provable; where

⊢ e : t ∈ σ(roles(G, σ)) G
c / t · l′

−−−−−→ G′

G′, filter(l′, σ(active(G′))) ⊢σ ℓ ▷ l

G, ϵ ⊢σ e · ℓ ▷ t · l

⊢ e : t G, l ⊢σ ℓ ▷ l′

G, t · l ⊢σ e · ℓ ▷ t · l′ G, l ⊢σ ϵ ▷ ϵ

G, l ⊢σ ℓ ▷ l′ none of the other rules applies

G, l ⊢σ e · ℓ ▷ l′

Exercise
For the swarm protocol G on slide 37, find a condition on σ so that

G, ϵ ⊢σ ℓauc ▷ Requested .Bid .BidderID . Selected .PassengerID

46 / 62



Effective types

Let active(
∑

i∈I ci@Ri ⟨li ⟩ .Gi ) =
⋃

i∈I{Ri}

ℓ has effective type l wrt G and σ if G, ϵ ⊢σ ℓ ▷ l is provable; where

⊢ e : t ∈ σ(roles(G, σ)) G
c / t · l′

−−−−−→ G′ G′, filter(l′, σ(active(G′))) ⊢σ ℓ ▷ l

G, ϵ ⊢σ e · ℓ ▷ t · l

⊢ e : t G, l ⊢σ ℓ ▷ l′

G, t · l ⊢σ e · ℓ ▷ t · l′ G, l ⊢σ ϵ ▷ ϵ

G, l ⊢σ ℓ ▷ l′ none of the other rules applies

G, l ⊢σ e · ℓ ▷ l′

Exercise
For the swarm protocol G on slide 37, find a condition on σ so that

G, ϵ ⊢σ ℓauc ▷ Requested .Bid .BidderID . Selected .PassengerID

46 / 62



Effective types

Let active(
∑

i∈I ci@Ri ⟨li ⟩ .Gi ) =
⋃

i∈I{Ri}

ℓ has effective type l wrt G and σ if G, ϵ ⊢σ ℓ ▷ l is provable; where

⊢ e : t ∈ σ(roles(G, σ)) G
c / t · l′

−−−−−→ G′ G′, filter(l′, σ(active(G′))) ⊢σ ℓ ▷ l

G, ϵ ⊢σ e · ℓ ▷ t · l
⊢ e : t G, l ⊢σ ℓ ▷ l′

G, t · l ⊢σ e · ℓ ▷ t · l′

G, l ⊢σ ϵ ▷ ϵ

G, l ⊢σ ℓ ▷ l′ none of the other rules applies

G, l ⊢σ e · ℓ ▷ l′

Exercise
For the swarm protocol G on slide 37, find a condition on σ so that

G, ϵ ⊢σ ℓauc ▷ Requested .Bid .BidderID . Selected .PassengerID

46 / 62



Effective types

Let active(
∑

i∈I ci@Ri ⟨li ⟩ .Gi ) =
⋃

i∈I{Ri}

ℓ has effective type l wrt G and σ if G, ϵ ⊢σ ℓ ▷ l is provable; where

⊢ e : t ∈ σ(roles(G, σ)) G
c / t · l′

−−−−−→ G′ G′, filter(l′, σ(active(G′))) ⊢σ ℓ ▷ l

G, ϵ ⊢σ e · ℓ ▷ t · l
⊢ e : t G, l ⊢σ ℓ ▷ l′

G, t · l ⊢σ e · ℓ ▷ t · l′ G, l ⊢σ ϵ ▷ ϵ

G, l ⊢σ ℓ ▷ l′ none of the other rules applies

G, l ⊢σ e · ℓ ▷ l′

Exercise
For the swarm protocol G on slide 37, find a condition on σ so that

G, ϵ ⊢σ ℓauc ▷ Requested .Bid .BidderID . Selected .PassengerID

46 / 62



Effective types

Let active(
∑

i∈I ci@Ri ⟨li ⟩ .Gi ) =
⋃

i∈I{Ri}

ℓ has effective type l wrt G and σ if G, ϵ ⊢σ ℓ ▷ l is provable; where

⊢ e : t ∈ σ(roles(G, σ)) G
c / t · l′

−−−−−→ G′ G′, filter(l′, σ(active(G′))) ⊢σ ℓ ▷ l

G, ϵ ⊢σ e · ℓ ▷ t · l
⊢ e : t G, l ⊢σ ℓ ▷ l′

G, t · l ⊢σ e · ℓ ▷ t · l′ G, l ⊢σ ϵ ▷ ϵ

G, l ⊢σ ℓ ▷ l′ none of the other rules applies

G, l ⊢σ e · ℓ ▷ l′

Exercise
For the swarm protocol G on slide 37, find a condition on σ so that

G, ϵ ⊢σ ℓauc ▷ Requested .Bid .BidderID . Selected .PassengerID

46 / 62



Effective types

Let active(
∑

i∈I ci@Ri ⟨li ⟩ .Gi ) =
⋃

i∈I{Ri}

ℓ has effective type l wrt G and σ if G, ϵ ⊢σ ℓ ▷ l is provable; where

⊢ e : t ∈ σ(roles(G, σ)) G
c / t · l′

−−−−−→ G′ G′, filter(l′, σ(active(G′))) ⊢σ ℓ ▷ l

G, ϵ ⊢σ e · ℓ ▷ t · l
⊢ e : t G, l ⊢σ ℓ ▷ l′

G, t · l ⊢σ e · ℓ ▷ t · l′ G, l ⊢σ ϵ ▷ ϵ

G, l ⊢σ ℓ ▷ l′ none of the other rules applies

G, l ⊢σ e · ℓ ▷ l′

Exercise
For the swarm protocol G on slide 37, find a condition on σ so that

G, ϵ ⊢σ ℓauc ▷ Requested .Bid .BidderID . Selected .PassengerID
46 / 62



Implementations

& projections

Write ℓ ≡G,σ ℓ′ when ℓ and ℓ′ have the same effective type wrt G and σ.

A swarm (S, ϵ) is eventually faithful to G and σ if (S, ϵ) ==⇒ (S, ℓ) then there is
(G, ϵ) ==⇒ (G, ℓ′) with ℓ ≡G,σ ℓ′

A (σ,G)-realisation is a swarm (S, ϵ) of size n such that, for each 1 ≤ i ≤ n, there
exists a role R ∈ roles(G, σ) such that S(i) = G ↓σR

Lemma (Projections of well-formed protocols are eventually faithful)

If G is a σ-WF protocol and
(
δ(G ↓σR , ℓ)

)
↓c / l then there exists ℓ′ ≡G,σ ℓ such that

(G, ϵ) ==⇒ (G, ℓ′) and δ(G, ℓ′)
c / l−−−→ G′
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On correct realisations

(S, ϵ)

(S, ℓ1)

(S, ℓ2)

consistent if there is ℓ s.t. (S, ϵ) (S, ℓ)

(S, ℓ′1)

(S, ℓ′2)

with ℓ1 = ℓ · ℓ′1 and ℓ2 = ℓ · ℓ′2 and ℓ′1 ∩ ℓ′2 = ∅

A set of runs is consistent
when its elements are
pair-wise consistent

Notation

For (G, ϵ)
c1 / l1−−−−→ (G, ℓ1)

c2 / l2−−−−→ · · · cn / ln−−−−→ (G,

=ℓ︷ ︸︸ ︷
ℓ1 · ℓ2 · · · · ℓn)

let ℓ(j) = ℓj · · · · · ℓ1

Admissibility
A log ℓ is admissible for a σ-WF protocol G if there are consistent runs
{(G, ϵ) ==⇒ (G, ℓi )}1≤i≤k and a log ℓ′ ∈ (▷◁1≤i≤k ℓi ) such that ℓ =

⋃
1≤i≤k ℓi and

ℓ′ ≡G,σ ℓ and ℓ
(j)
i ⊑ ℓ for all 1 ≤ i ≤ k

Hereafter, G denotes a σ-WF protocol
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Results

Lemma (Well-formedness generates any admissible log)
If ℓ is admissible for G then there is a log ℓ′ such that (G, ϵ) ==⇒ (G, ℓ′) and ℓ ≡G,σ ℓ′

Lemma (Admissibility is preserved)

Let ℓ1 and ℓ2 ⊆ ℓ1 be admissible logs for G. If (G, ℓ2)
c / l−−−→ (G, ℓ2 · ℓ3) and

ℓ ∈ ℓ1 ▷◁(ℓ2 · ℓ3) then ℓ is admissible for G

Theorem (Well-formed protocols generate only admissible logs)
If (S, ϵ) ==⇒ (S′, ℓ) for (S, ϵ) realisation of G then ℓ is admissible for G

Corollary
Every realisation of G is eventually faithful wrt G and σ
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On complete realisations

Complete realisations
A (σ,G)-realisation (S, ϵ) of size n is complete if for all R ∈ roles(G, σ) there exists
1 ≤ i ≤ n such that S(i) = G ↓σR

Lemma (Projections reflect swarm protocols)
If (G, ϵ) ==⇒ (G, ℓ) then δ(G ↓σR , ℓ) = δ(G, ℓ) ↓σR for all R ∈ roles(G, σ)

Theorem (Complete realisations reflect the protocol)
Let (S, ϵ) be a complete realisation of G. If (G, ϵ) ==⇒ (G, ℓ) then there is a swarm S′

such that (S, ϵ) ==⇒ (S′, ℓ)
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Plan of the talk

A motivating case study

Our formalisation

Our typing discipline

Tool support

Open issues
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– Tooling –
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InitialP

AuctionP

RideP

1

2

Request /Requested

Requested?

Select / Selected ·PassengerID

Bid?
BidderID?

Selected?

PassengerID?

// analogous for other events; "type" property matches type name (checked by tool)
type Requested = { type: 'Requested'; pickup: string; dest: string }
type Events = Requested | Bid | BidderID | Selected | ...

/** Initial state for role P */
@proto('taxiRide') // decorator injects inferred protocol into runtime
export class InitialP extends State<Events> {

constructor(public id: string) { super() }
execRequest(pickup: string, dest: string) {

return this.events({ type: 'Requested', pickup, dest })
}
onRequested(ev: Requested) {

return new AuctionP(this.id, ev.pickup, ev.dest, [])
}

}
@proto('taxiRide')
export class AuctionP extends State<Events> {

constructor(public id: string, public pickup: string, public dest: string,
public bids: BidData[]) { super() }

onBid(ev1: Bid, ev2: BidderID) {
const [ price, time ] = ev1
this.bids.push({ price, time, bidderID: ev2.id })
return this

}
execSelect(taxiId: string) {

return this.events({ type: 'Selected', taxiID },
{ type: 'PassengerID', id: this.id })

}
onSelected(ev: Selected, id: PassengerID) {

return new RideP(this.id, ev.taxiID)
}

}
@proto('taxiRide')
export class RideP extends State<Events> { ... }
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Architecture

· · · language support

· · · our tool

· · · TypeScript code

· · · data type
inputs

machine-runner

machine-check

simulator

TypeChecking

Well-Formedness

Projection

Equivalence test

TypeChecking implements the functionalities of our typing discipline
simulator simulates the semantics of swarm realisations
machine-check and machine-runner integrate our framework in the Actyx
platform
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If you want to play with our prototype?

Have a look at

our ECOOP artifact paper (not online yet; extended version at
https://arxiv.org/abs/2305.04848)

code at https://doi.org/10.5281/zenodo.7737188

An ISSTA tool paper from Actyx (https://arxiv.org/abs/2306.09068)
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A motivating case study
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– Epilogue –
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To be continued....

There are a number of future directions to explore:

Identify weaker conditions for well-formedness

“Efficiency”

Subscriptions are hard to determine

Relax some of our assumptions

Compensations

Unreliable propagation

Adversarial contexts

...............
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Summary

An interesting paradigm grounded on principles for local-first software

We defined an operational semantics that captures the platform of Actyx AG

We introduced behavioural types to specify and verify eventual consistency

The key idea is to trade consistency for availability: temporary inconsistency are
tolerated provided that they can be resolved at some point
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Thank you!
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– Solutions –
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Solutions to exercises

Slide 22: δ(InitialP, ℓ ·Requested ) = AuctionP

Slide 26: src(e) ̸= Alice

Slide 28: (a · b · c ) ▷◁ (b · d · e) = {a · b · c · d · e , a · b · d · c · e , a · b · d · e · c}
Slide 29: Because [prop] won’t apply since e is not a sublog of the local log of B
Slide 41: The solution of the first exercise is in our ECOOP paper. For the second
exercise, the idea is not bad because with such subscription the protocol is not
well-formed (work out why)
Slide 45: Apply the operational semantics of swarms
Slide 46: σ(P) ∋ Requested ,BidderID,Selected ,PassengerID
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