A model of Asymmetric Replicated State Machines

Roland Kuhn
Daniela Marottoli Hernan Melgratti
Emilio Tuosto

Dagstuhl seminar 21372
Behavioural Types: Bridging Theory and Practice

Research partly supported by the EU H2020 RISE programme under the Marie
Sktodowska-Curie grant agreement No 778233.

(-]
é-oBEHAPI

Take-away message

We define behavioural specs that

o feature
o pub-subscribe (instead point-to-point)
o (generalised) choices
o arbitrary (and variable) number of instances

e trade coordination for availability

o trade “old" properties (eg. session fidelity) for new ones
(eventual-consistency)

Types: Syntax

LoGal types Machines

G =) ¢i0Ri(17) .G M = [t ?My & - & t,7 M)
iel

Types: Syntax

LoGal types Machines

G =) ¢i0Ri(17) .G M = [t ?My & - & t,7 M)
iel

Ma = {publish / p}-[p?Ma']

Ma" = {select /s}-[b?7Ma" & s7{finish /f}-f70]
Mg = p?Mg’

select@A(s) . finish@A(f) .0 Mg’ = {bid /b}-[b?MBI & s?f? O]

G = publishea(p) .G’
G' = bideB(b) .G’
Jr

Types: Syntax

LoGal types Machines

G =) ¢i0Ri(17) .G M = [t ?My & - & t,7 M)
iel

Ma = {publish / p}-[p?Ma']

Ma" = {select /s}-[b?7Ma" & s7{finish /f}-f70]
Mg = p?Mg’

select@A(s) . finish@A(f) .0 Mg’ = {bid /b}-[b?Mg’ & s?f?0]

G = publishea(p) .G’
G' = bideB(b) .G’
+

Types: Syntax

LoGal types
G =) ¢i0Ri(17) .G

i€l

Machines

M= k[t My & oo & t,7M,)

G = publishea(p) .G’
G' = bideB(b) .G’
+

select@A(s) . finish@A(f) .0

bid@B(b)

publish@A(p)

—)@—)

finish©A (f)

O——O

Ma = {publish / p}-[p?Ma']

Ma" = {select /s}-[b?7Ma" & s7{finish /f}-f70]
Mg = p?Mg’

Mg’ = {bid /b}-[b?Mp" & s7f70]

finish /'f

Types: Semantics...intuitively

. Types “produce/consume” events

LoGal types: how/when roles produce events
Machines: how/when instances consume events “skipping”
those irrelevant events to them

. Deterministic types only

LoGal types: log types of branches have no common prefixes
Machines: event types of branches are pairwise distinct

- Non-deterministic events' propagation

Types: Semantics...formally

LoGal types Machines

— M ’ !, ’
5(G, 1) <L c/l L ! fresh oM, l)=M L /" fresh

/1 (M /) c/1

G, 1) <% (G,1- 1) —— 17

Types: Semantics...formally

LoGal types

(G, 1) C—/1> G] " fresh

c/1

(G, 1) <L (G, 1 1')

where
| is an (idealised) global/shared log

Zci@Ri<1i> NIENy iel
iel

0(G,e) =G

’ ’ . c/1 , .
5(G,/):{(j_(le'/) if G—L—=G,/#ekF/:1

otherwise

Machines
oM, 1) =M M e/ HIM:1 I" fresh

™, 1) <L, 1)

where

| is the local log accessible to M

M lc)1 <= c/1 enabled at M’

o(M,e) =M
(5(Mj,/) if Fe:t,

M, e-1)= M=rl.. & t7M; & ..]
o(M,/) otherwise

Systems

Systems: finitely many machines with local logs + global log

(S,1) =My, 1) | oo [(Mny 1n)]|/
(BTW: the global log is an optical illusion)

Events univocally associated to the machines generating them: /1 C /[, <= there is
an order-preserving and downward-total morphism from /1 into /2 on events of a same
machine

Well-formedness

A system (M1, /1)| ... | (Mn,/n)|/ is well-formed if

forall i, ;C/ and I = U/,-

i€n

Systems’ semantics...intuitively

. Events’ generation

The local log of a machine is extended with the fresh events
generated by the machine

. Events’ propagation
Emitted events propagate asynchronously &

non-deterministically

Systems' semantics: formally

[LocAL]

iedoms s()=m0)) Loy Vel

(8,1) <LL (s[i v (4, 1)),)

where
il ={l|1ChUlp A LTI A LTI}

[PrOP]
iedoms s(i)=W/1) LCrcl Ll

(s,1) = (s[irM,M],1)

Semantics at work (1)

If
(B,b1) <15 (B, brboby) with F bybs il

then, by [LOCAL],
(8,2) | (B, b1) | (C,c) | a-bi-c <L (8,2) | B, bu-ba-bs) | (C,)| /
for all

/' e (a-bl-c) D<](b1'b2'b3)
= {a'bl'C-bg'b3, a'bl'bg'C'bg,, a'bl'bg'b3'C}

Semantics at work (I1)
Consider the (well-formed) system
S =1(A,a)| (B, b1-bo-b3) |(C,c)|a-by-by-c-bs
Then, by rule [PrOP],
S 5 (A,a)| (B, by-by-b3) | (C,a-€) | a-by-by-c-bs
or
S —» (A,a)| (B, by-by-b3) | (C,cby) | a-by-by-c-b3
but
S~ (A,a)| (B, by-by-b3) | (C, cba) | a-by-by-c-bs

Properties of our semantics

Well-Formedness preservation
[LoCcAL] & [PROP] preserve well-formedness

Eventual Consistency

If
S =My, /1) ... [(Mp,/5)]|/ is well-formed

then X
S (M,)| [(My,)]

On realisation (1)

It is hard to get it right (even without multi-instances or choices!)

A trivial protocol

Take
G= C1@R1<t1> .C2@R2<t2> .0

Do
M = {cl/tl}-O and My, = t17 {C2 /tz}-o

realise G?

On realisation (1)

It is hard to get it right (even without multi-instances or choices!)

A trivial protocol

Take
G= C1@R1<t1> .C2@R2<t2> .0

Do
M = {cl/tl}-O and My, = t17 {C2 /tz}-o

(correctly) realise G?

On realisation (I1)

Well-formedness of loGal types

Each guard, say 1;, should be

e causal consistent
o each selector in (the continuation of) 1; reacts to 1;
e each role involved in the continuation of 1; cannot react to more events on 1; than
selectors on the branch
o determined
o each role in the continuation of 1; reacts to 1;[0]
o selectors in the continuation of 1; react to the same set of event types in 1;
e confusion-free

e guards of different branches start with distinct event types
@ an event type cannot occur in more than one guard

Conclusions

o reference documentation for Actyx's developers

o possibly useful to derive “minimal” subscriptions

e projectable global specs

e tools / develop typing

» compensations (hence causality tracking) / active monitoring?

e failures

Thank you!

