SEArch: an execution infrastructure
for
service-based software systems

- -

Carlos G. Lopez Pombo Pablo Montepagano &

Coordination 2024
Tool track
June 19, 2024

1/15

— Prelude —

2/15

What is this talk about?

3/15

What is this talk about?

Service Execution Architecture in a nutshell
A PoC platform for semantic-based service composition

Bisimilarity as a semantic notion of compliance

h f . ice wi
{ and comp distributed service with support for

and compose
multi-language programming

(language-independence via choreographic models)

3/15

Plan of the talk

An bird-eye watch of SEArch's choreographic model

4/15

Plan of the talk

An bird-eye watch of SEArch's choreographic model

An overview of SEArch and it's design

4/15

Plan of the talk

An bird-eye watch of SEArch's choreographic model

An overview of SEArch and it's design

A “meta-demo”

4/15

Plan of the talk

An bird-eye watch of SEArch's choreographic model

An overview of SEArch and it's design

A “meta-demo”

Conclusions

4/15

— The underlying theory of SEArch —

& it's architecture

Asynchronous Relational Networks [FL:TCS (503) 2013]

A theory of software architectures of SOAs featuring provide and required interfaces
-
' search and
Apg:ilcegttmn binding hinge
on contracts
Payment
Service

6/15

Asynchronous Relational Networks [FL:TCS (503) 2013]

A theory of software architectures of SOAs featuring provide and required interfaces

srv
Client s
Application R e
——— (PPS

CS!Purchase S C?Price
o

CP!CardDetails

P C?Nonce

CS!Nonce
O

Server

'

Payment
Service

S C?0Okay

Rclient: —o

'

S C7Fail
Contracts as CF-

010K SC’Okay SMs [BZ:JACM
S P!Nonce .
<>o 1983] according
S~ o—garel to [PVT:PLACES

. CS?Pu.chase S C!Price CS?Nonce
RSrv- —>0—
P S!Fail
C P?CardDetaijls P C!Nonce S P?Nonce
Rpps —0
P S!Okay

2015,Vis:PhD 2018]

6/15

Asynchronous Relational Networks [FL:TCS (503) 2013]

A theory of software architectures of SOAs featuring provide and required interfaces

2
Srv . / Server
I:QSI’V ~ PSI’V
Client s
Application R e

'

2
/7l 00 : / Payment
(pps RPpS ~ PPpS Service
S C?0Okay

CS!Purchase ° S C?Price ° CP!CardDetails P C?Nonce ° CS!Nonce

Rclient: —o

'

S C7Fail
Contracts as CF-

CS?Pu.ch S C!Pri CS?N SPIN PS?OKAY SC,Okay shils [BZJACM
RSrv: %071& ase rice ° once once < o 1983] accordlng
PS>~ o—garal to [PVT:PLACES

2015,Vis:PhD 2018]

P S!Fail

C P?CardDetaijls P C!Nonce S P?Nonce
Rpps —>0 o o

P SIOkay

6/15

SEArch, conceptually

Broker

7/15

SEArch, conceptually

Service providers register their contract and URI to a broker

Middleware
LUR® -t
Broker PE"L ————
«"
Repository == (}‘:_
.4
o .-
N
Qe -7
-
.-
- - .
.-
> -
Middleware -

7/15

SEArch, conceptually

a client’s request specifies the (set) of contracts partners should fulfil

Middleware Middleware
SN .
< 9
S, T Broker
Se N
4 RN A
: # SO Repository == {r.
* N /% *
~
- X
ss ,?0
s\ D
s ey
~ /@
\~ ’)1()
~
.
.
.
Y
Middleware -
ﬂ_ff
¥

7/15

SEArch, conceptually

The broker searches for compatible providers...

Middleware

Middleware

Broker

Repository ==

7/15

SEArch, conceptually

...collects the compatible providers...

Middleware
Broker
{}g Repository ==
S
' v &
] (W4
' s
URIs@ 1 12
1 lﬂ‘:”
A 1
A} 1
K T
T
Middleware ,_'

Middleware

7/15

SEArch, conceptually

...and returns them to the client

Middleware Middleware
‘\
‘s\ Broker
\Q
. ~~ -
ﬂ-g \\ Repository == ﬂ-;
0 ~
s
6“ ~~
~
~
~
~
-~
-~
-~
~
~
~\
Middl "
iddleware L
%

7/15

SEArch, conceptually

All components can now interact

Middleware) N Middleware
(o]

% %

3

Middleware

%

7/15

SEArch, conceptually

A provider may require other services; just ask the broker...

Middleware =

0)
j) o
ICIient Broker Srv
& &

Middleware

(L req (... = ..., .2)

7/15

— From theory to practice —

8/15

PYTHON,

async def main(grpc_channel):

stub = search.PrivateMiddlewareServiceStub(grpc_channel)

registered = False

logger.info("Connected to middleware. Waiting for registration...")

async for r in stub.register_app(

search.RegisterAppRequest (
provider_contract=search.LocalContract(

format=search.LocalContractFormat.LOCAL_CONTRACT_FORMAT_FSA,
contract=PROVIDER_CONTRACT,

if registered and r.notification:
logger.info(f"Notification received: {r.notification}")
Start a new session for this channel
asyncio.create_task(session(grpc_channel, r.notification))
elif not registered and r.app_id:
This should only happen once, in the first iteration.
registered = True
logger.info(f"App registered with id {r.app_id}")
Create temp file for Docker Compose healthcheck.
with open("/tmp/registered", "w") as f:
f.write("0K")
else:
logger.error (f"Unexpected response: {r}. Exiting.")
break

grpc_channel.close()

9/15

PYTHON, GO

const ppsContract = ~

.outputs PPS

.state graph

q0 ClientApp ? CardDetailsWithTotalAmount ql
ql ClientApp ! PaymentNonce g2

q2 Srv ? RequestChargeWithNonce g3

q3 Srv ! ChargeOK q4

q3 Srv ! ChargeFail q5

.marking qO

.end

=)

// the CFSM in ChorGram syntaz
func main() {
flag.Parse()
var logger = log.New(os.Stderr, fmt.Sprintf("[PPS] - "), log.LstdFlags|log.Lmsgprefix|log.Lshortfile)
var opts [lgrpc.DialOption
opts = append(opts, grpc.WithTransportCredentials(insecure.NewCredentials()))
conn, err := grpc.Dial(*middlewareURL, opts...)
if err != nil {
logger.Fatalf ("Error connecting to middleware URL %s", *middlewareURL)
s
defer conn.Close()
stub := pb.NewPrivateMiddlewareServiceClient (conn)

// Register provider contract with registry.
req := pb.RegisterAppRequest{
ProviderContract: &pb.LocalContract{
Contract: [lbyte(ppsContract), // passed to the broker upon registration
Format: pb.LocalContractFormat_LOCAL_CONTRACT_FORMAT_FSA,

},
}
streamCtx, streamCtxCancel := context.WithCancel(context.Background())
defer streamCtxCancel()
stream, err := stub.RegisterApp(streamCtx, &req)

if err !'= nil { 9/15

PYTHON, GO to JAVA!

public class Main {
public static void main(String[] args) {
...// get book selection and shipping address from the user
ByteString contractBytes = null; // Load file contract.fsa into a GlobalContract
try {
contractBytes = ByteString.readFrom(new FileInputStream("contract.fsa"));
} catch (IOException e) {
e.printStackTrace();
}
GlobalContract contract = GlobalContract.newBuilder().setContract(contractBytes).setFormat(
GlobalContractFormat.GLOBAL_CONTRACT _FORMAT_FSA
) .setInitiatorName("ClientApp").build();

}
}

where in contract.fsa we find:

.outputs ClientApp .outputs Srv .outputs PPS
.state graph .state graph .state graph
q0 Srv ! PurchaseRequest ql q0 ClientApp ? PurchaseRequest ql q0 ClientApp ? CardDetailsWithTotalAmount qil
ql Srv ? TotalAmount g2 ql ClientApp ! TotalAmount q2 ql ClientApp ! PaymentNonce g2
q2 PPS ! CardDetailsWithTotalAmount g3 q2 ClientApp ? PurchaseWithPaymentNonce g3 q2 Srv ? RequestChargeWithNonce g3
q3 PPS 7 PaymentNonce q4 q3 PPS ! RequestChargeWithNonce g4 q3 Srv ! ChargeOK q4
g4 Srv ! PurchaseWithPaymentNonce g5 q4 PPS 7 ChargeOK g5 q3 Srv ! ChargeFail g5
q5 Srv 7 PurchaseOK g6 q4 PPS 7 ChargeFail q6 .marking qO
q5 Srv ? PurchaseFail q7 q5 ClientApp ! PurchaseOK q7 .end
.marking q0 q6 ClientApp ! PurchaseFail g8
.end .marking q0
.end

9/15

courtesy of Pablo Montepagano

10/15

Bookkeeping

Broker

11/15

Bookkeeping

Broker

11/15

Bookkeeping

Broker

11/15

Bookkeeping

Broker

11/15

Bookkeeping

Broker

11/15

Bookkeeping

11/15

Bookkeeping

Middleware O]

i
o

S

Middleware

%

Check out the paper for

the details about the
protocols that generate

these logs in the imple-
mentation of SEArch

o

9 Middleware

%

11/15

— Epilogue —

12/15

Recap

SEArch combines
e SOAs
@ semantic models (ARNs + CFSMs)

@ and tools for choreographic development (D. Senarruzza's extension of ChorGram)

to enable dynamic and semantic-based discovery and composition of distributed services

There's space for improvement
data-aware CFSMs
decouple broker and service repository

— distributed bisimulation checks!
parameterise the compliance check

what about mistakes/attacks?

13/15

Thanks to

Carlos @ is the main driver behind the design SEArch

14 /15

Thanks to

Carlos Nl is the main driver behind the design SEArch

Pablo . @ realised SEArch

14 /15

Thanks to

Carlos Nl is the main driver behind the design SEArch

Pablo . @ realised SEArch

O
- BEHARL

“ Research partly supported by the EU H2020 RISE programme under the
Marie Sktodowska-Curie grant agreement No 778233

Dipartimento di Eccellenza

14 /15

Many thanks to the reviewers and
to llaria & Francesco for helping us
addressing a reviewer's concerns

15/15

