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What is this talk about?

Service Execution Architecture in a nutshell

A PoC platform for semantic-based service composition

Bisimilarity as a semantic notion of compliance

to

{
search for
and compose

distributed service with support for

multi-language programming

(language-independence via choreographic models)
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– The underlying theory of SEArch –

[ & it’s architecture ]
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Asynchronous Relational Networks [FL:TCS (503) 2013]

A theory of software architectures of SOAs featuring provide and required interfaces
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SEArch, conceptually
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SEArch, conceptually

a client’s request specifies the (set) of contracts partners should fulfil
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SEArch, conceptually
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SEArch, conceptually

...and returns them to the client
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SEArch, conceptually

All components can now interact
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SEArch, conceptually

A provider may require other services; just ask the broker...
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– From theory to practice –
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PYTHON,

async def main(grpc_channel):

stub = search.PrivateMiddlewareServiceStub(grpc_channel)

registered = False

logger.info("Connected to middleware. Waiting for registration...")

async for r in stub.register_app(

search.RegisterAppRequest(

provider_contract=search.LocalContract(

format=search.LocalContractFormat.LOCAL_CONTRACT_FORMAT_FSA,

contract=PROVIDER_CONTRACT,

)

)

):

if registered and r.notification:

logger.info(f"Notification received: {r.notification}")

# Start a new session for this channel.

asyncio.create_task(session(grpc_channel, r.notification))

elif not registered and r.app_id:

# This should only happen once, in the first iteration.

registered = True

logger.info(f"App registered with id {r.app_id}")

# Create temp file for Docker Compose healthcheck.

with open("/tmp/registered", "w") as f:

f.write("OK")

else:

logger.error(f"Unexpected response: {r}. Exiting.")

break

grpc_channel.close()
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PYTHON, GO

const ppsContract = `

.outputs PPS

.state graph

q0 ClientApp ? CardDetailsWithTotalAmount q1

q1 ClientApp ! PaymentNonce q2

q2 Srv ? RequestChargeWithNonce q3

q3 Srv ! ChargeOK q4

q3 Srv ! ChargeFail q5

.marking q0

.end

` // the CFSM in ChorGram syntax

func main() {

flag.Parse()

var logger = log.New(os.Stderr, fmt.Sprintf("[PPS] - "), log.LstdFlags|log.Lmsgprefix|log.Lshortfile)

var opts []grpc.DialOption

opts = append(opts, grpc.WithTransportCredentials(insecure.NewCredentials()))

conn, err := grpc.Dial(*middlewareURL, opts...)

if err != nil {

logger.Fatalf("Error connecting to middleware URL %s", *middlewareURL)

}

defer conn.Close()

stub := pb.NewPrivateMiddlewareServiceClient(conn)

// Register provider contract with registry.

req := pb.RegisterAppRequest{

ProviderContract: &pb.LocalContract{

Contract: []byte(ppsContract), // passed to the broker upon registration

Format: pb.LocalContractFormat_LOCAL_CONTRACT_FORMAT_FSA,

},

}

streamCtx, streamCtxCancel := context.WithCancel(context.Background())

defer streamCtxCancel()

stream, err := stub.RegisterApp(streamCtx, &req)

if err != nil {

logger.Fatal("Could not Register App")

}
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PYTHON, GO to JAVA!

public class Main {

public static void main(String[] args) {

...// get book selection and shipping address from the user

ByteString contractBytes = null; // Load file contract.fsa into a GlobalContract

try {

contractBytes = ByteString.readFrom(new FileInputStream("contract.fsa"));

} catch (IOException e) {

e.printStackTrace();

}

GlobalContract contract = GlobalContract.newBuilder().setContract(contractBytes).setFormat(

GlobalContractFormat.GLOBAL_CONTRACT_FORMAT_FSA

).setInitiatorName("ClientApp").build();

...

}

}

where in contract.fsa we find:

.outputs ClientApp .outputs Srv .outputs PPS

.state graph .state graph .state graph

q0 Srv ! PurchaseRequest q1 q0 ClientApp ? PurchaseRequest q1 q0 ClientApp ? CardDetailsWithTotalAmount q1

q1 Srv ? TotalAmount q2 q1 ClientApp ! TotalAmount q2 q1 ClientApp ! PaymentNonce q2

q2 PPS ! CardDetailsWithTotalAmount q3 q2 ClientApp ? PurchaseWithPaymentNonce q3 q2 Srv ? RequestChargeWithNonce q3

q3 PPS ? PaymentNonce q4 q3 PPS ! RequestChargeWithNonce q4 q3 Srv ! ChargeOK q4

q4 Srv ! PurchaseWithPaymentNonce q5 q4 PPS ? ChargeOK q5 q3 Srv ! ChargeFail q5

q5 Srv ? PurchaseOK q6 q4 PPS ? ChargeFail q6 .marking q0

q5 Srv ? PurchaseFail q7 q5 ClientApp ! PurchaseOK q7 .end

.marking q0 q6 ClientApp ! PurchaseFail q8

.end .marking q0

.end
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– A meta-demo –

[ courtesy of Pablo Montepagano ]
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– Epilogue –
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Recap

SEArch combines

SOAs

semantic models (ARNs + CFSMs)

and tools for choreographic development (D. Senarruzza’s extension of ChorGram)

to enable dynamic and semantic-based discovery and composition of distributed services

There’s space for improvement

data-aware CFSMs

decouple broker and service repository

=⇒ distributed bisimulation checks!

parameterise the compliance check

what about mistakes/attacks?
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