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— Prelude —
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What is this talk about?
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What is this talk about?

Service Execution Architecture in a nutshell
A PoC platform for semantic-based service composition

Bisimilarity as a semantic notion of compliance

h f . ice wi
{ and comp distributed service with support for

and compose
multi-language programming

(language-independence via choreographic models)
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— The underlying theory of SEArch —

& it's architecture



Asynchronous Relational Networks [FL:TCS (503) 2013]

A theory of software architectures of SOAs featuring provide and required interfaces
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Asynchronous Relational Networks [FL:TCS (503) 2013]

A theory of software architectures of SOAs featuring provide and required interfaces
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Asynchronous Relational Networks [FL:TCS (503) 2013]

A theory of software architectures of SOAs featuring provide and required interfaces
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SEArch, conceptually

Broker
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SEArch, conceptually

Service providers register their contract and URI to a broker
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SEArch, conceptually

a client’s request specifies the (set) of contracts partners should fulfil
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SEArch, conceptually

The broker searches for compatible providers...

Middleware

Middleware

Broker

Repository ==

7/15



SEArch, conceptually

...collects the compatible providers...
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SEArch, conceptually

...and returns them to the client
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SEArch, conceptually

All components can now interact
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SEArch, conceptually

A provider may require other services; just ask the broker...
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— From theory to practice —
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PYTHON,

async def main(grpc_channel):

stub = search.PrivateMiddlewareServiceStub(grpc_channel)

registered = False

logger.info("Connected to middleware. Waiting for registration...")

async for r in stub.register_app(

search.RegisterAppRequest (
provider_contract=search.LocalContract(

format=search.LocalContractFormat.LOCAL_CONTRACT_FORMAT_FSA,
contract=PROVIDER_CONTRACT,

if registered and r.notification:
logger.info(f"Notification received: {r.notification}")
# Start a new session for this channel
asyncio.create_task(session(grpc_channel, r.notification))
elif not registered and r.app_id:
# This should only happen once, in the first iteration.
registered = True
logger.info(f"App registered with id {r.app_id}")
# Create temp file for Docker Compose healthcheck.
with open("/tmp/registered", "w") as f:
f.write("0K")
else:
logger.error (f"Unexpected response: {r}. Exiting.")
break

grpc_channel.close()
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PYTHON, GO

const ppsContract = ~

.outputs PPS

.state graph

q0 ClientApp ? CardDetailsWithTotalAmount ql
ql ClientApp ! PaymentNonce g2

q2 Srv ? RequestChargeWithNonce g3

q3 Srv ! ChargeOK q4

q3 Srv ! ChargeFail q5

.marking qO

.end

=)

// the CFSM in ChorGram syntaz
func main() {
flag.Parse()
var logger = log.New(os.Stderr, fmt.Sprintf("[PPS] - "), log.LstdFlags|log.Lmsgprefix|log.Lshortfile)
var opts [lgrpc.DialOption
opts = append(opts, grpc.WithTransportCredentials(insecure.NewCredentials()))
conn, err := grpc.Dial(*middlewareURL, opts...)
if err != nil {
logger.Fatalf ("Error connecting to middleware URL %s", *middlewareURL)
s
defer conn.Close()
stub := pb.NewPrivateMiddlewareServiceClient (conn)

// Register provider contract with registry.
req := pb.RegisterAppRequest{
ProviderContract: &pb.LocalContract{
Contract: [lbyte(ppsContract), // passed to the broker upon registration
Format:  pb.LocalContractFormat_LOCAL_CONTRACT_FORMAT_FSA,

},
}
streamCtx, streamCtxCancel := context.WithCancel(context.Background())
defer streamCtxCancel()
stream, err := stub.RegisterApp(streamCtx, &req)

if err !'= nil { 9/15



PYTHON, GO to JAVA!

public class Main {
public static void main(String[] args) {
...// get book selection and shipping address from the user
ByteString contractBytes = null; // Load file contract.fsa into a GlobalContract
try {
contractBytes = ByteString.readFrom(new FileInputStream("contract.fsa"));
} catch (IOException e) {
e.printStackTrace();
}
GlobalContract contract = GlobalContract.newBuilder().setContract(contractBytes).setFormat(
GlobalContractFormat.GLOBAL_CONTRACT _FORMAT_FSA
) .setInitiatorName("ClientApp").build();

}
}

where in contract.fsa we find:

.outputs ClientApp .outputs Srv .outputs PPS
.state graph .state graph .state graph
q0 Srv ! PurchaseRequest ql q0 ClientApp ? PurchaseRequest ql q0 ClientApp ? CardDetailsWithTotalAmount qil
ql Srv ? TotalAmount g2 ql ClientApp ! TotalAmount q2 ql ClientApp ! PaymentNonce g2
q2 PPS ! CardDetailsWithTotalAmount g3 q2 ClientApp ? PurchaseWithPaymentNonce g3 q2 Srv ? RequestChargeWithNonce g3
q3 PPS 7 PaymentNonce q4 q3 PPS ! RequestChargeWithNonce g4 q3 Srv ! ChargeOK q4
g4 Srv ! PurchaseWithPaymentNonce g5 q4 PPS 7 ChargeOK g5 q3 Srv ! ChargeFail g5
q5 Srv 7 PurchaseOK g6 q4 PPS 7 ChargeFail q6 .marking qO
q5 Srv ? PurchaseFail q7 q5 ClientApp ! PurchaseOK q7 .end
.marking q0 q6 ClientApp ! PurchaseFail g8
.end .marking q0
.end
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courtesy of Pablo Montepagano
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Bookkeeping

Broker
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Bookkeeping
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— Epilogue —
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Recap

SEArch combines
e SOAs
@ semantic models (ARNs + CFSMs)

@ and tools for choreographic development (D. Senarruzza's extension of ChorGram)

to enable dynamic and semantic-based discovery and composition of distributed services

There's space for improvement
data-aware CFSMs
decouple broker and service repository

— distributed bisimulation checks!
parameterise the compliance check

what about mistakes/attacks?
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