
SEArch: an execution infrastructure
for

service-based software systems

Carlos G. Lopez Pombo Pablo Montepagano Emilio Tuosto

Coordination 2024
Tool track

June 19, 2024

1 / 15

– Prelude –

2 / 15

What is this talk about?

Service Execution Architecture in a nutshell

A PoC platform for semantic-based service composition

Bisimilarity as a semantic notion of compliance

to

{
search for
and compose

distributed service with support for

multi-language programming

(language-independence via choreographic models)

3 / 15

What is this talk about?

Service Execution Architecture in a nutshell

A PoC platform for semantic-based service composition

Bisimilarity as a semantic notion of compliancecompliance

to

{
search for
and compose

distributed service with support for

multi-language programming

(language-independence via choreographic models)

compliance

3 / 15

Plan of the talk

An bird-eye watch of SEArch’s choreographic model

An overview of SEArch and it’s design

A “meta-demo”

Conclusions

4 / 15

Plan of the talk

An bird-eye watch of SEArch’s choreographic model

An overview of SEArch and it’s design

A “meta-demo”

Conclusions

4 / 15

Plan of the talk

An bird-eye watch of SEArch’s choreographic model

An overview of SEArch and it’s design

A “meta-demo”

Conclusions

4 / 15

Plan of the talk

An bird-eye watch of SEArch’s choreographic model

An overview of SEArch and it’s design

A “meta-demo”

Conclusions

4 / 15

– The underlying theory of SEArch –

[& it’s architecture]

5 / 15

Asynchronous Relational Networks [FL:TCS (503) 2013]

A theory of software architectures of SOAs featuring provide and required interfaces

ClientApp

Srv

PPS

Client
Application

Srv’ Server

PPS’ Payment
Service

ClientApp

Srv

PPS

Client
Application

Srv’ Server

PPS’ Payment
Service

ClientApp

Srv

PPS

Client
Application

Srv’ Server

PPS’ Payment
Service

search and
binding hinge
on contracts

6 / 15

Asynchronous Relational Networks [FL:TCS (503) 2013]

A theory of software architectures of SOAs featuring provide and required interfaces

ClientApp

Srv

PPS

Client
Application

Srv’ Server

PPS’ Payment
Service

ClientApp

Srv

PPS

Client
Application

Srv’ Server

PPS’ Payment
Service

ClientApp

Srv

PPS

Client
Application

Srv’ Server

PPS’ Payment
Service

RClient:RClient:

Contracts as CF-
SMs [BZ:JACM
1983] according
to [PVT:PLACES
2015,Vis:PhD 2018]

RSrv:RSrv:

RPps:RPps:

C S!Purchase S C?Price C P!CardDetails P C?Nonce C S!Nonce

S C?Okay

S C?Fail

C S?Purchase S C!Price C S?Nonce S P!Nonce P S?Okay

P S?Fail

S C!Okay

S C!Fail

C P?CardDetails P C!Nonce S P?Nonce

P S!Okay

P S!Fail

RClient:

RSrv:

RPps:

6 / 15

Asynchronous Relational Networks [FL:TCS (503) 2013]

A theory of software architectures of SOAs featuring provide and required interfaces

ClientApp

Srv

PPS

Client
Application

Srv’ Server

PPS’ Payment
Service

ClientApp

Srv

PPS

Client
Application

Srv’ Server

PPS’ Payment
Service

ClientApp

Srv

PPS

Client
Application

Srv’ Server

PPS’ Payment
Service

RSrv
?∼ P′

SrvP′
Srv

RPps
?∼ P′

PpsP′
Pps

RClient:RClient:

Contracts as CF-
SMs [BZ:JACM
1983] according
to [PVT:PLACES
2015,Vis:PhD 2018]

RSrv:RSrv:

RPps:RPps:

C S!Purchase S C?Price C P!CardDetails P C?Nonce C S!Nonce

S C?Okay

S C?Fail

C S?Purchase S C!Price C S?Nonce S P!Nonce P S?Okay

P S?Fail

S C!Okay

S C!Fail

C P?CardDetails P C!Nonce S P?Nonce

P S!Okay

P S!Fail

P′
Srv

P′
Pps

RClient:

RSrv:

RPps:

6 / 15

SEArch, conceptually

⊢

Repository

Broker

Middleware

Pps

Middleware

Srv

7 / 15

SEArch, conceptually

Service providers register their contract and URI to a broker

⊢

Repository

Broker

Middleware

Pps

Middleware

Srv
PSrv

+ URI

PPps
+

URI

7 / 15

SEArch, conceptually

a client’s request specifies the (set) of contracts partners should fulfil
Middleware

Client

⊢

Repository

Broker

Middleware

Pps

Middleware

Srv

req
(R

=
R

Client +
R

Srv +
R

Pps , client)

7 / 15

SEArch, conceptually

The broker searches for compatible providers...
Middleware

Client

⊢

Repository

????
⊢

R
S

rv
+

R
P

p
s

Broker

Middleware

Pps

Middleware

Srv

??

7 / 15

SEArch, conceptually

...collects the compatible providers...
Middleware

Client

⊢

Repository

????
⊢

R
S

rv
+

R
P

p
s

URIs

Broker

Middleware

Pps

Middleware

Srv

??

7 / 15

SEArch, conceptually

...and returns them to the client
Middleware

Client

⊢

Repository

Broker

Middleware

Pps

Middleware

Srv

URIs

7 / 15

SEArch, conceptually

All components can now interact
Middleware

Client

Middleware

Pps

Middleware

Srv

7 / 15

SEArch, conceptually

A provider may require other services; just ask the broker...
Middleware

Client

⊢

Repository

Broker

Middleware

Pps

Middleware

Srv

req (... = ... , ...)

7 / 15

– From theory to practice –

8 / 15

PYTHON,

async def main(grpc_channel):

stub = search.PrivateMiddlewareServiceStub(grpc_channel)

registered = False

logger.info("Connected to middleware. Waiting for registration...")

async for r in stub.register_app(

search.RegisterAppRequest(

provider_contract=search.LocalContract(

format=search.LocalContractFormat.LOCAL_CONTRACT_FORMAT_FSA,

contract=PROVIDER_CONTRACT,

)

)

):

if registered and r.notification:

logger.info(f"Notification received: {r.notification}")

Start a new session for this channel.

asyncio.create_task(session(grpc_channel, r.notification))

elif not registered and r.app_id:

This should only happen once, in the first iteration.

registered = True

logger.info(f"App registered with id {r.app_id}")

Create temp file for Docker Compose healthcheck.

with open("/tmp/registered", "w") as f:

f.write("OK")

else:

logger.error(f"Unexpected response: {r}. Exiting.")

break

grpc_channel.close()

9 / 15

PYTHON, GO

const ppsContract = `

.outputs PPS

.state graph

q0 ClientApp ? CardDetailsWithTotalAmount q1

q1 ClientApp ! PaymentNonce q2

q2 Srv ? RequestChargeWithNonce q3

q3 Srv ! ChargeOK q4

q3 Srv ! ChargeFail q5

.marking q0

.end

` // the CFSM in ChorGram syntax

func main() {

flag.Parse()

var logger = log.New(os.Stderr, fmt.Sprintf("[PPS] - "), log.LstdFlags|log.Lmsgprefix|log.Lshortfile)

var opts []grpc.DialOption

opts = append(opts, grpc.WithTransportCredentials(insecure.NewCredentials()))

conn, err := grpc.Dial(*middlewareURL, opts...)

if err != nil {

logger.Fatalf("Error connecting to middleware URL %s", *middlewareURL)

}

defer conn.Close()

stub := pb.NewPrivateMiddlewareServiceClient(conn)

// Register provider contract with registry.

req := pb.RegisterAppRequest{

ProviderContract: &pb.LocalContract{

Contract: []byte(ppsContract), // passed to the broker upon registration

Format: pb.LocalContractFormat_LOCAL_CONTRACT_FORMAT_FSA,

},

}

streamCtx, streamCtxCancel := context.WithCancel(context.Background())

defer streamCtxCancel()

stream, err := stub.RegisterApp(streamCtx, &req)

if err != nil {

logger.Fatal("Could not Register App")

}

9 / 15

PYTHON, GO to JAVA!

public class Main {

public static void main(String[] args) {

...// get book selection and shipping address from the user

ByteString contractBytes = null; // Load file contract.fsa into a GlobalContract

try {

contractBytes = ByteString.readFrom(new FileInputStream("contract.fsa"));

} catch (IOException e) {

e.printStackTrace();

}

GlobalContract contract = GlobalContract.newBuilder().setContract(contractBytes).setFormat(

GlobalContractFormat.GLOBAL_CONTRACT_FORMAT_FSA

).setInitiatorName("ClientApp").build();

...

}

}

where in contract.fsa we find:

.outputs ClientApp .outputs Srv .outputs PPS

.state graph .state graph .state graph

q0 Srv ! PurchaseRequest q1 q0 ClientApp ? PurchaseRequest q1 q0 ClientApp ? CardDetailsWithTotalAmount q1

q1 Srv ? TotalAmount q2 q1 ClientApp ! TotalAmount q2 q1 ClientApp ! PaymentNonce q2

q2 PPS ! CardDetailsWithTotalAmount q3 q2 ClientApp ? PurchaseWithPaymentNonce q3 q2 Srv ? RequestChargeWithNonce q3

q3 PPS ? PaymentNonce q4 q3 PPS ! RequestChargeWithNonce q4 q3 Srv ! ChargeOK q4

q4 Srv ! PurchaseWithPaymentNonce q5 q4 PPS ? ChargeOK q5 q3 Srv ! ChargeFail q5

q5 Srv ? PurchaseOK q6 q4 PPS ? ChargeFail q6 .marking q0

q5 Srv ? PurchaseFail q7 q5 ClientApp ! PurchaseOK q7 .end

.marking q0 q6 ClientApp ! PurchaseFail q8

.end .marking q0

.end

9 / 15

– A meta-demo –

[courtesy of Pablo Montepagano]

10 / 15

Bookkeeping

Middleware

Client

⊢

Repository

Broker

Middleware

Pps

Middleware

Srv

11 / 15

Bookkeeping

Middleware

Client

⊢

Repository

Broker

Middleware

Pps

Middleware

Srv

req
(R

=
R

Client +
R

Srv +
R

Pps , client)

11 / 15

Bookkeeping

Middleware

Client

⊢

Repository

????
⊢

R
S

rv
+

R
P

p
s

Broker

Middleware

Pps

Middleware

Srv

??

11 / 15

Bookkeeping

Middleware

Client

⊢

Repository

????
⊢

R
S

rv
+

R
P

p
s

URIs

Broker

Middleware

Pps

Middleware

Srv

??

11 / 15

Bookkeeping

Middleware

Client

⊢

Repository

Broker

Middleware

Pps

Middleware

Srv

URIs

11 / 15

Bookkeeping

Middleware

Client

Middleware

Pps

Middleware

Srv

11 / 15

Bookkeeping

Middleware

Client

Middleware

Pps

Middleware

Srv

Check out the paper for
the details about the
protocols that generate
these logs in the imple-
mentation of SEArch

11 / 15

– Epilogue –

12 / 15

Recap

SEArch combines

SOAs

semantic models (ARNs + CFSMs)

and tools for choreographic development (D. Senarruzza’s extension of ChorGram)

to enable dynamic and semantic-based discovery and composition of distributed services

There’s space for improvement

data-aware CFSMs

decouple broker and service repository

=⇒ distributed bisimulation checks!

parameterise the compliance check

what about mistakes/attacks?

13 / 15

Thanks to

Carlos is the main driver behind the design SEArch

Pablo realised SEArch

Research partly supported by the EU H2020 RISE programme under the
Marie Sk lodowska-Curie grant agreement No 778233

Dipartimento di Eccellenza

14 / 15

Thanks to

Carlos is the main driver behind the design SEArch

Pablo realised SEArch

Research partly supported by the EU H2020 RISE programme under the
Marie Sk lodowska-Curie grant agreement No 778233

Dipartimento di Eccellenza

14 / 15

Thanks to

Carlos is the main driver behind the design SEArch

Pablo realised SEArch

Research partly supported by the EU H2020 RISE programme under the
Marie Sk lodowska-Curie grant agreement No 778233

Dipartimento di Eccellenza

14 / 15

Many thanks to the reviewersreviewers and
to Ilaria & FrancescoIlaria & Francesco for helping us
addressing a reviewer’s concerns

reviewers
Ilaria & Francesco

15 / 15

