
Open Problems in Choreographic Development of
Message-Passing Applications

Emilio Tuosto @ GSSI

ASYDE 2020 September 15, 2020

Research partly supported by the EU H2020 RISE programme under the Marie
Sk lodowska-Curie grant agreement No 778233.

Take-home message

This talk in 1 slide

Choreographic development of distributed (message-passing) systems

exploits global & local specifications

supports correctness-by-construction

facilitates SDLC

Nonetheless, choreographies

lack support for modularity/compositionality

to be complemented by testing

generalisations to (more abstract) coordination paradigm

...

Goal

Generate interest and/or criticisms & possibly collaborations

Take-home message

This talk in 1 slide

Choreographic development of distributed (message-passing) systems

exploits global & local specifications

supports correctness-by-construction

facilitates SDLC

Nonetheless, choreographies

lack support for modularity/compositionality

to be complemented by testing

generalisations to (more abstract) coordination paradigm

...

Goal

Generate interest and/or criticisms & possibly collaborations

Take-home message

This talk in 1 slide

Choreographic development of distributed (message-passing) systems

exploits global & local specifications

supports correctness-by-construction

facilitates SDLC

Nonetheless, choreographies

lack support for modularity/compositionality

to be complemented by testing

generalisations to (more abstract) coordination paradigm

...

Goal

Generate interest and/or criticisms & possibly collaborations

Take-home message

This talk in 1 slide

Choreographic development of distributed (message-passing) systems

exploits global & local specifications

supports correctness-by-construction

facilitates SDLC

Nonetheless, choreographies

lack support for modularity/compositionality

to be complemented by testing

generalisations to (more abstract) coordination paradigm

...

Goal

Generate interest and/or criticisms & possibly collaborations

– Prologue –

[Choreographies, informally]

What do I mean by “choreography”?

Choreography = Global spec + Local spec

Model-driven development...by nature

C
horeography

=
G

lobal
sp

ec
+

L
ocal

sp
ec

Quoting W3C:

“Using the Web Services Choreography specification, a contract containing a global
definition of the common ordering conditions and constraints under which messages
are exchanged, is produced that describes, from a global viewpoint [...] observable
behaviour of all the parties involved. Each party can then use the global definition
to build and test solutions that conform to it. The global specification is in turn
realised by combination of the resulting local systems [...]”

specs, not code
Choreography G
global viewpoint

M1

Local viewpoint1

Mi

Local viewpoint1

Mn

Local viewpointn

Model-driven development...by nature

C
horeography

=
G

lobal
sp

ec
+

L
ocal

sp
ec

Quoting W3C:

“Using the Web Services Choreography specification, a contract containing a global
definition of the common ordering conditions and constraints under which messages
are exchanged, is produced that describes, from a global viewpoint [...] observable
behaviour of all the parties involved. Each party can then use the global definition
to build and test solutions that conform to it. The global specification is in turn
realised by combination of the resulting local systems [...]”

specs, not code
Choreography G
global viewpoint

M1

Local viewpoint1

Mi

Local viewpoint1

Mn

Local viewpointn

Model-driven development...by nature

C
horeography

=
G

lobal
sp

ec
+

L
ocal

sp
ec

Quoting W3C:

“Using the Web Services Choreography specification, a contract containing a global
definition of the common ordering conditions and constraints under which messages
are exchanged, is produced that describes, from a global viewpoint [...] observable
behaviour of all the parties involved. Each party can then use the global definition
to build and test solutions that conform to it. The global specification is in turn
realised by combination of the resulting local systems [...]”

specs, not code
Choreography G
global viewpoint

M1

Local viewpoint1

Mi

Local viewpoint1

Mn

Local viewpointn

Synchrony

Asynchrony

Model-driven development...by nature

C
horeography

=
G

lobal
sp

ec
+

L
ocal

sp
ec

Quoting W3C:

“Using the Web Services Choreography specification, a contract containing a global
definition of the common ordering conditions and constraints under which messages
are exchanged, is produced that describes, from a global viewpoint [...] observable
behaviour of all the parties involved. Each party can then use the global definition
to build and test solutions that conform to it. The global specification is in turn
realised by combination of the resulting local systems [...]”

specs, not code
Choreography G
global viewpoint

M1

Local viewpoint1

Mi

Local viewpoint1

Mn

Local viewpointn

Synchrony

Asynchrony

Pro
jec

t

P
ro

je
ct

Project

Model-driven development...by nature

C
horeography

=
G

lobal
sp

ec
+

L
ocal

sp
ec

Quoting W3C:

“Using the Web Services Choreography specification, a contract containing a global
definition of the common ordering conditions and constraints under which messages
are exchanged, is produced that describes, from a global viewpoint [...] observable
behaviour of all the parties involved. Each party can then use the global definition
to build and test solutions that conform to it. The global specification is in turn
realised by combination of the resulting local systems [...]”

specs, not code
Choreography G
global viewpoint

M1

Local viewpoint1

Mi

Local viewpoint1

Mn

Local viewpointn

Synchrony

Asynchrony

Pro
jec

t

P
ro

je
ct

Project

Component1 Componenti Componentn

V
al

id
at

e

V
al

id
at

e V
alidate

Some advantages

A (possibly) useful equation

Distribution = Local computation + Communication

Separation of concerns

Global specs support program comprehension

“Distributed / DevOP-ish” development

Projections yield specs of local components
Developers can “test” each component against the local spec
if cond(global artefact) then behave(projection(global artefact))

No centralisation / full distribution / Scalability

...

Some advantages

A (possibly) useful equation

Distribution = Local computation + Communication

Separation of concerns

Global specs support program comprehension

“Distributed / DevOP-ish” development

Projections yield specs of local components
Developers can “test” each component against the local spec
if cond(global artefact) then behave(projection(global artefact))

No centralisation / full distribution / Scalability

...

Some advantages

A (possibly) useful equation

Distribution = Local computation + Communication

Separation of concerns

Global specs support program comprehension

“Distributed / DevOP-ish” development

Projections yield specs of local components
Developers can “test” each component against the local spec
if cond(global artefact) then behave(projection(global artefact))

No centralisation / full distribution / Scalability

...

Some advantages

A (possibly) useful equation

Distribution = Local computation + Communication

Separation of concerns

Global specs support program comprehension

“Distributed / DevOP-ish” development

Projections yield specs of local components
Developers can “test” each component against the local spec
if cond(global artefact) then behave(projection(global artefact))

No centralisation / full distribution / Scalability

...

Some advantages

A (possibly) useful equation

Distribution = Local computation + Communication

Separation of concerns

Global specs support program comprehension

“Distributed / DevOP-ish” development

Projections yield specs of local components
Developers can “test” each component against the local spec
if cond(global artefact) then behave(projection(global artefact))

No centralisation / full distribution / Scalability

...

Some drawbacks

A (possibly) painful equation

Distribution = Local computation + Communication

The “right” global spec could be difficult to be found

Message-passing: “unusual” paradigm & asynchrony =⇒ complexity

“coordination = communication” / distributed consensus / dependencies

local decisions (sometimes) need to be propagated
global state “scattered” across components
hence, components (must!) have a partial view of the global state

Expose behaviour

Code reuse maybe problematic

... (wait for the last part)

Some drawbacks

A (possibly) painful equation

Distribution = Local computation + Communication

The “right” global spec could be difficult to be found

Message-passing: “unusual” paradigm & asynchrony =⇒ complexity

“coordination = communication” / distributed consensus / dependencies

local decisions (sometimes) need to be propagated
global state “scattered” across components
hence, components (must!) have a partial view of the global state

Expose behaviour

Code reuse maybe problematic

... (wait for the last part)

Some drawbacks

A (possibly) painful equation

Distribution = Local computation + Communication

The “right” global spec could be difficult to be found

Message-passing: “unusual” paradigm & asynchrony =⇒ complexity

“coordination = communication” / distributed consensus / dependencies

local decisions (sometimes) need to be propagated
global state “scattered” across components
hence, components (must!) have a partial view of the global state

Expose behaviour

Code reuse maybe problematic

... (wait for the last part)

Some drawbacks

A (possibly) painful equation

Distribution = Local computation + Communication

The “right” global spec could be difficult to be found

Message-passing: “unusual” paradigm & asynchrony =⇒ complexity

“coordination = communication” / distributed consensus / dependencies

local decisions (sometimes) need to be propagated
global state “scattered” across components
hence, components (must!) have a partial view of the global state

Expose behaviour

Code reuse maybe problematic

... (wait for the last part)

Some drawbacks

A (possibly) painful equation

Distribution = Local computation + Communication

The “right” global spec could be difficult to be found

Message-passing: “unusual” paradigm & asynchrony =⇒ complexity

“coordination = communication” / distributed consensus / dependencies

local decisions (sometimes) need to be propagated
global state “scattered” across components
hence, components (must!) have a partial view of the global state

Expose behaviour

Code reuse maybe problematic

... (wait for the last part)

Some drawbacks

A (possibly) painful equation

Distribution = Local computation + Communication

The “right” global spec could be difficult to be found

Message-passing: “unusual” paradigm & asynchrony =⇒ complexity

“coordination = communication” / distributed consensus / dependencies

local decisions (sometimes) need to be propagated
global state “scattered” across components
hence, components (must!) have a partial view of the global state

Expose behaviour

Code reuse maybe problematic

... (wait for the last part)

Some drawbacks

A (possibly) painful equation

Distribution = Local computation + Communication

The “right” global spec could be difficult to be found

Message-passing: “unusual” paradigm & asynchrony =⇒ complexity

“coordination = communication” / distributed consensus / dependencies

local decisions (sometimes) need to be propagated
global state “scattered” across components
hence, components (must!) have a partial view of the global state

Expose behaviour

Code reuse maybe problematic

... (wait for the last part)

Some drawbacks

A (possibly) painful equation

Distribution = Local computation + Communication

The “right” global spec could be difficult to be found

Message-passing: “unusual” paradigm & asynchrony =⇒ complexity

“coordination = communication” / distributed consensus / dependencies

local decisions (sometimes) need to be propagated
global state “scattered” across components
hence, components (must!) have a partial view of the global state

Expose behaviour

Code reuse maybe problematic

... (wait for the last part)

– Act I –

[A bird-eye view of choregraphic design]

Global specs & Local specs

There’re many1 (“formal”) models...

Conversation protocols [Bultan et al.] Global Types [Honda et al.] MSC [Alur et al.]

...

Reminder

I’m not advertising: my goal is to generate interest, criticisms & possibly collaborations

1No systematic comparative study yet

Choosing a model of global specs

G ::= (o) empty∣∣ A−→B: m interaction∣∣ G; G sequential∣∣ G | G parallel∣∣ sel {G + · · · + G} branch

source node

sink node

A−→B: m

G

G′

G G′

|

|

fork gate

join gate

G G′

+

+

branch gate

merge gate

Choosing a model of global specs

G ::= (o) empty∣∣ A−→B: m interaction∣∣ G; G sequential∣∣ G | G parallel∣∣ sel {G + · · · + G} branch

source node

sink node

A−→B: m

G

G′

G G′

|

|

fork gate

join gate

G G′

+

+

branch gate

merge gate

Some examples

A−→B: x

B−→C: z

A−→C: y

C−→B: w

+

+

A−→B: x C−→B: x

+

+

A−→B: z

A−→B: y

C−→B: y

A−→B: z

|

|

A−→B: x; B−→C: z
+

A−→C: y; C−→B: w

A−→B: y; C−→B: y; A−→B: z
|

A−→B: x + C−→B: x; A−→B: z

Setting-up a communication model

We’re going to review some results about a specific communication model

channel-based
asynchronous (most often)
point-to-point

Communicating Finite-State Machines

A0

A1 A2

A3

A B!int
A B!bool

A B!int

A B!bool A B!str

.

H

H

.

N

B0

B1 B2

B3

A B?int
A B?bool

A B?str

A B?bool A B?str

B A!bool

A B

Global specs can be projected (i.e., compiled) on CFSMs

Setting-up a communication model

We’re going to review some results about a specific communication model

channel-based
asynchronous (most often)
point-to-point

Communicating Finite-State Machines

A0

A1 A2

A3

A B!int
A B!bool

A B!int

A B!bool A B!str

.

H

H

.

N

B0

B1 B2

B3

A B?int
A B?bool

A B?str

A B?bool A B?str

B A!bool

A B

int

Global specs can be projected (i.e., compiled) on CFSMs

Setting-up a communication model

We’re going to review some results about a specific communication model

channel-based
asynchronous (most often)
point-to-point

Communicating Finite-State Machines

A0

A1 A2

A3

A B!int
A B!bool

A B!int

A B!bool A B!str

.

H

H

.

N

B0

B1 B2

B3

A B?int
A B?bool

A B?str

A B?bool A B?str

B A!bool

A B

intbool

Global specs can be projected (i.e., compiled) on CFSMs

Setting-up a communication model

We’re going to review some results about a specific communication model

channel-based
asynchronous (most often)
point-to-point

Communicating Finite-State Machines

A0

A1 A2

A3

A B!int
A B!bool

A B!int

A B!bool A B!str

.

H

H

.

N

B0

B1 B2

B3

A B?int
A B?bool

A B?str

A B?bool A B?str

B A!bool

A B

intbool

Global specs can be projected (i.e., compiled) on CFSMs

Setting-up a communication model

We’re going to review some results about a specific communication model

channel-based
asynchronous (most often)
point-to-point

Communicating Finite-State Machines

A0

A1 A2

A3

A B!int
A B!bool

A B!int

A B!bool A B!str

.

H

H

.

N

B0

B1 B2

B3

A B?int
A B?bool

A B?str

A B?bool A B?str

B A!bool

A B

bool

Global specs can be projected (i.e., compiled) on CFSMs

Setting-up a communication model

We’re going to review some results about a specific communication model

channel-based
asynchronous (most often)
point-to-point

Communicating Finite-State Machines

A0

A1 A2

A3

A B!int
A B!bool

A B!int

A B!bool A B!str

.

H

H

.

N

B0

B1 B2

B3

A B?int
A B?bool

A B?str

A B?bool A B?str

B A!bool

A B

bool

Global specs can be projected (i.e., compiled) on CFSMs

Setting-up a communication model

We’re going to review some results about a specific communication model

channel-based
asynchronous (most often)
point-to-point

Communicating Finite-State Machines

A0

A1 A2

A3

A B!int
A B!bool

A B!int

A B!bool A B!str

.

H

H

.

N

B0

B1 B2

B3

A B?int
A B?bool

A B?str

A B?bool A B?str

B A!bool

A B

bool bool

Global specs can be projected (i.e., compiled) on CFSMs

Setting-up a communication model

We’re going to review some results about a specific communication model

channel-based
asynchronous (most often)
point-to-point

Communicating Finite-State Machines

A0

A1 A2

A3

A B!int
A B!bool

A B!int

A B!bool A B!str

.

H

H

.

N

B0

B1 B2

B3

A B?int
A B?bool

A B?str

A B?bool A B?str

B A!bool

A B

bool bool bool

Global specs can be projected (i.e., compiled) on CFSMs

An obvious (fundamental) question

Given a global specification, is it
realisable distributively?

Examples

Not all specs can be “faithfully” executed distributively...

Trivial non-realisability

A B?m B C?n

Communicating systems “start”
with outputs!

Non-trivial non-realisability

[Alur et al. 2003]

Examples

Not all specs can be “faithfully” executed distributively...

Trivial non-realisability

A B?m B C?n

Communicating systems “start”
with outputs!

Non-trivial non-realisability

[Alur et al. 2003]

Examples

Not all specs can be “faithfully” executed distributively...

Trivial non-realisability

A B?m B C?n

Communicating systems “start”
with outputs!

Non-trivial non-realisability

[Alur et al. 2003]

Examples

Not all specs can be “faithfully” executed distributively...

Trivial non-realisability

A B?m B C?n

Communicating systems “start”
with outputs!

Non-trivial non-realisability

[Alur et al. 2003]

Realisability

Put simply...

A global spec G is realizable if there is a deadlock-freea communicating system whose
language “has some relation with” G.

aA system S is deadlock-free if none of its reachable configurations s is a deadlock, that is s 6−→
and either some buffers are not empty or some CFSMs have transitions from their state in s.

A recipe for theorems

1 Define projections and the semantics
of global and local specs

2 Show the global spec G is well-formed
(for some def of well-formedness)

3 Show that G and its projections have a
“suitable” relation

Some instances
G well-formed iff L(G) closed; then usual
projections yield a language included in L(G)
[GT19]

G whole-spectrum iff G cannot drop mandatory
beh.; then projections cover G [BMT20]

G well-asserted iff G temporal satisfiable & history
sensitive; then projections simulates G [BHTY10]

Realisability

Put simply...

A global spec G is realizable if there is a deadlock-freea communicating system whose
language “has some relation with” G.

aA system S is deadlock-free if none of its reachable configurations s is a deadlock, that is s 6−→
and either some buffers are not empty or some CFSMs have transitions from their state in s.

A recipe for theorems

1 Define projections and the semantics
of global and local specs

2 Show the global spec G is well-formed
(for some def of well-formedness)

3 Show that G and its projections have a
“suitable” relation

Some instances
G well-formed iff L(G) closed; then usual
projections yield a language included in L(G)
[GT19]

G whole-spectrum iff G cannot drop mandatory
beh.; then projections cover G [BMT20]

G well-asserted iff G temporal satisfiable & history
sensitive; then projections simulates G [BHTY10]

Realisability

Put simply...

A global spec G is realizable if there is a deadlock-freea communicating system whose
language “has some relation with” G.

aA system S is deadlock-free if none of its reachable configurations s is a deadlock, that is s 6−→
and either some buffers are not empty or some CFSMs have transitions from their state in s.

A recipe for theorems

1 Define projections and the semantics
of global and local specs

2 Show the global spec G is well-formed
(for some def of well-formedness)

3 Show that G and its projections have a
“suitable” relation

Some instances
G well-formed iff L(G) closed; then usual
projections yield a language included in L(G)
[GT19]

G whole-spectrum iff G cannot drop mandatory
beh.; then projections cover G [BMT20]

G well-asserted iff G temporal satisfiable & history
sensitive; then projections simulates G [BHTY10]

A (main) source of problems: Well-formedness (intuitively)

Distributed consensus
In a distributed choice G1 + G2 + · · ·

there should be one active participant

any non-active participant should be passive decides which branch to take in a choice

Def. A is active when it locally decides which branch to take in a choice

Def. B is passive when

either B behaves uniformly in each branch

or B “unambiguously understands” which branch A opted for through the information
received on each branch

Well-branchedness

When the above holds true for each choice, the choreography is well-branched. This
enables correctness-by-design.

A (main) source of problems: Well-formedness (intuitively)

Distributed consensus
In a distributed choice G1 + G2 + · · ·

there should be one active participant

any non-active participant should be passive decides which branch to take in a choice

Def. A is active when it locally decides which branch to take in a choice

Def. B is passive when

either B behaves uniformly in each branch

or B “unambiguously understands” which branch A opted for through the information
received on each branch

Well-branchedness

When the above holds true for each choice, the choreography is well-branched. This
enables correctness-by-design.

A (main) source of problems: Well-formedness (intuitively)

Distributed consensus
In a distributed choice G1 + G2 + · · ·

there should be one active participant

any non-active participant should be passive decides which branch to take in a choice

Def. A is active when it locally decides which branch to take in a choice

Def. B is passive when

either B behaves uniformly in each branch

or B “unambiguously understands” which branch A opted for through the information
received on each branch

Well-branchedness

When the above holds true for each choice, the choreography is well-branched. This
enables correctness-by-design.

Class test

Figure out the graphical structure2 of the following terms and for each of them say
which one is well-branched

G1 = A−→B: int + A−→B: str

G2 = A−→B: int + A−→C: str

G3 =

 A−→C: int; A−→B: bool
+

A−→C: str; A−→C: bool; A−→B: bool

; B−→D: str

2 ; has precedence over +

Class test

Figure out the graphical structure2 of the following terms and for each of them say
which one is well-branched

G1 = A−→B: int + A−→B: str

G2 = A−→B: int + A−→C: str

G3 =

 A−→C: int; A−→B: bool
+

A−→C: str; A−→C: bool; A−→B: bool

; B−→D: str

2 ; has precedence over +

Class test

Figure out the graphical structure2 of the following terms and for each of them say
which one is well-branched

G1 = A−→B: int + A−→B: str

G2 = A−→B: int + A−→C: str

G3 =

 A−→C: int; A−→B: bool
+

A−→C: str; A−→C: bool; A−→B: bool

; B−→D: str

2 ; has precedence over +

– Act II –

[Some open problems]

– Scene 1 –

[Beyond holistic global specs]

Modular development

Problem I(a): compositionality

How to compose global specs so to
preserve “good” properties?

Projections support modularity of local specs

Global specs are typically holistic

Compositionality of global spec is harder
It is not clear what is to be used as an interface

An attempt: Preserving (dead)lock-freedom [BDLT20,BLT20]

Idea: compatible interface + gateways

A simple example

Composing global specsa

A−→B: req

A−→B: adv B−→Sorry : a

+

+

B./C

C−→D: req

D−→C: adv

=

A−→B′ : req B′−→C′ : req C′−→D: req

D−→C′ : advC′−→B′ : advB′−→A: adv

where

Band C are the interfaces

proj(B) compatible with dual(proj(C)) ... once channels are forgotten

Band C are replaced by their gateways B’ and C’

aWe are also looking at similar results for local specs

Some initial results

(Dead)lock-freedom, compositionally

Typable systems are lock-free &
./ preserves lock-freedom
=⇒ the composition of typable systems is lock-free

Gateways may be “merged” (semi-direct composition) or even removed (direct
composition)!

Oddly, the synchronous case for local specs is more involved than the
asynchronous one

Refining global specs [dLMT20]

E. W. Dijkstra: Notes on Structured Programming

“The basic pattern of my approach will be to compose the program in minute steps,
deciding each time as little as possible. As the problem analysis proceeds, so does the
further refinement of my program”

Problem I(b): refinement

How to support setp-wise refinement of
choreographies?

A simple idea

Adding refinable (and multiple) interaction:

G ::= · · · | A
m1...mn
999999K B1. . .Bn where n > 0

to be replaced by a well-formed ground Ĝ such that

unique initiator: A executes any first communication in Ĝ

eventual reception: for all 1 ≤ i ≤ n, the last action of Bi in any branch of Ĝ is an
input of message mi

Examples

Which are legal refinements of the following?

C
md
999K S + C

req
999K S; S

done
9999K C

Sound refinements may be “wrong”:

C−→S: md + C−→S: req; (S−→C: stats; S−→C: done)

(C−→B: md; B−→S: md) + C−→S: req; (S−→C: stats; S−→C: done)

(C−→B: md; B−→S: md) + (C−→B: start; B−→S: req); (S−→C: stats; S−→C: done)

Examples

Which are legal refinements of the following?

C
md
999K S + C

req
999K S; S

done
9999K C

Sound refinements may be “wrong”:

C−→S: md + C−→S: req; (S−→C: stats; S−→C: done)

(C−→B: md; B−→S: md) + C−→S: req; (S−→C: stats; S−→C: done)

(C−→B: md; B−→S: md) + (C−→B: start; B−→S: req); (S−→C: stats; S−→C: done)

Examples

Which are legal refinements of the following?

C
md
999K S + C

req
999K S; S

done
9999K C

Sound refinements may be “wrong”:

C−→S: md + C−→S: req; (S−→C: stats; S−→C: done)

(C−→B: md; B−→S: md) + C−→S: req; (S−→C: stats; S−→C: done)

(C−→B: md; B−→S: md) + (C−→B: start; B−→S: req); (S−→C: stats; S−→C: done)

Checking refinements

Idea

Devise a typying discipline sound w.r.t. well-formedness

Typing judgement Π ` G : 〈φ,Λ〉

where

Π are the participants in G,

φ and Λ are the minimal and maximal actions in G

Preliminary results

Ground specs have unique type

Typable ground global specs are well-formed,

...but the vice versa does not hold

Type inference is decidable for ground specs,

...but this is open for refinable specs

– Scene 2 –

[Beyond top-down development]

“Top-down”

Choreography G
global viewpoint

M1

Local viewpoint1

Mi

Local viewpoint1

Mn

Local viewpointn

Synchrony

Asynchrony

Software

Correctness-by-Design makes a lot
of sense when going top-down

παντα ρει [Heraclitus 6th century
BC]

Choreographies may help also going
bottom-up [LTY15]

Problem II(a): harnessing round-trip engineering

Are there more usages of global specs
than for projecting local specs?

“Top-down”

Choreography G
global viewpoint

M1

Local viewpoint1

Mi

Local viewpoint1

Mn

Local viewpointn

Synchrony

Asynchrony

Pro
jec

t P
roject

Project

Software

Correctness-by-Design makes a lot
of sense when going top-down

παντα ρει [Heraclitus 6th century
BC]

Choreographies may help also going
bottom-up [LTY15]

Problem II(a): harnessing round-trip engineering

Are there more usages of global specs
than for projecting local specs?

“Top-down”

Choreography G
global viewpoint

M1

Local viewpoint1

Mi

Local viewpoint1

Mn

Local viewpointn

Synchrony

Asynchrony

Pro
jec

t P
roject

Project

Component1 Componenti Componentn

V
al

id
at

e V
alidate

V
alidate

Software

Correctness-by-Design makes a lot
of sense when going top-down

παντα ρει [Heraclitus 6th century
BC]

Choreographies may help also going
bottom-up [LTY15]

Problem II(a): harnessing round-trip engineering

Are there more usages of global specs
than for projecting local specs?

“Top-down”

Choreography G
global viewpoint

M1

Local viewpoint1

Mi

Local viewpoint1

Mn

Local viewpointn

Synchrony

Asynchrony

Pro
jec

t P
roject

Project

Component1 Componenti Componentn

V
al

id
at

e V
alidate

V
alidate

Component’1 Component’i Component’n
evolve/replace/compose

Software evolves

Correctness-by-Design makes a lot
of sense when going top-down

παντα ρει [Heraclitus 6th century
BC]

Choreographies may help also going
bottom-up [LTY15]

Problem II(a): harnessing round-trip engineering

Are there more usages of global specs
than for projecting local specs?

“Top-down” & “Bottom-up” approach

Choreography G
global viewpoint

M1

Local viewpoint1

Mi

Local viewpoint1

Mn

Local viewpointn

Synchrony

Asynchrony

Pro
jec

t P
roject

Project

Component1 Componenti Componentn

V
al

id
at

e V
alidate

V
alidate

Component’1 Component’i Component’n
evolve/replace/compose

New M ′1
Local viewpoint1

New M ′i
Local viewpointi

New M ′n
Local viewpointn

E
xt

ra
ct

E
xt

ra
ct

E
xt

ra
ct

Software evolves

Correctness-by-Design makes a lot
of sense when going top-down

παντα ρει [Heraclitus 6th century
BC]

Choreographies may help also going
bottom-up [LTY15]

Problem II(a): harnessing round-trip engineering

Are there more usages of global specs
than for projecting local specs?

“Top-down” & “Bottom-up” approach

Choreography G
global viewpoint

M1

Local viewpoint1

Mi

Local viewpoint1

Mn

Local viewpointn

Synchrony

Asynchrony

Pro
jec

t P
roject

Project

Component1 Componenti Componentn

V
al

id
at

e V
alidate

V
alidate

Component’1 Component’i Component’n
evolve/replace/compose

New M ′1
Local viewpoint1

New M ′i
Local viewpointi

New M ′n
Local viewpointn

E
xt

ra
ct

E
xt

ra
ct

E
xt

ra
ct

???
Software evolves

Correctness-by-Design makes a lot
of sense when going top-down

παντα ρει [Heraclitus 6th century
BC]

Choreographies may help also going
bottom-up [LTY15]

Problem II(a): harnessing round-trip engineering

Are there more usages of global specs
than for projecting local specs?

“Top-down” & “Bottom-up” approach

Choreography G
global viewpoint

M1

Local viewpoint1

Mi

Local viewpoint1

Mn

Local viewpointn

Synchrony

Asynchrony

Pro
jec

t P
roject

Project

Component1 Componenti Componentn

V
al

id
at

e V
alidate

V
alidate

Component’1 Component’i Component’n
evolve/replace/compose

New M ′1
Local viewpoint1

New M ′i
Local viewpointi

New M ′n
Local viewpointn

E
xt

ra
ct

E
xt

ra
ct

E
xt

ra
ct

New choreography G′

global viewpoint

Synthesise

Software evolves

Correctness-by-Design makes a lot
of sense when going top-down

παντα ρει [Heraclitus 6th century
BC]

Choreographies may help also going
bottom-up [LTY15]

Problem II(a): harnessing round-trip engineering

Are there more usages of global specs
than for projecting local specs?

“Top-down” & “Bottom-up” approach

Choreography G
global viewpoint

M1

Local viewpoint1

Mi

Local viewpoint1

Mn

Local viewpointn

Synchrony

Asynchrony

Pro
jec

t P
roject

Project

Component1 Componenti Componentn

V
al

id
at

e V
alidate

V
alidate

Component’1 Component’i Component’n
evolve/replace/compose

New M ′1
Local viewpoint1

New M ′i
Local viewpointi

New M ′n
Local viewpointn

E
xt

ra
ct

E
xt

ra
ct

E
xt

ra
ct

New choreography G′

global viewpoint

Synthesise

Software evolves

Correctness-by-Design makes a lot
of sense when going top-down

παντα ρει [Heraclitus 6th century
BC]

Choreographies may help also going
bottom-up [LTY15]

Problem II(a): harnessing round-trip engineering

Are there more usages of global specs
than for projecting local specs?

“Top-down” & “Bottom-up” approach

Choreography G
global viewpoint

M1

Local viewpoint1

Mi

Local viewpoint1

Mn

Local viewpointn

Synchrony

Asynchrony

Pro
jec

t P
roject

Project

Component1 Componenti Componentn

V
al

id
at

e V
alidate

V
alidate

Component’1 Component’i Component’n
evolve/replace/compose

New M ′1
Local viewpoint1

New M ′i
Local viewpointi

New M ′n
Local viewpointn

E
xt

ra
ct

E
xt

ra
ct

E
xt

ra
ct

New choreography G′

global viewpoint

Synthesise

Software evolves

Correctness-by-Design makes a lot
of sense when going top-down

παντα ρει [Heraclitus 6th century
BC]

Choreographies may help also going
bottom-up [LTY15]

Problem II(a): harnessing round-trip engineering

Are there more usages of global specs
than for projecting local specs?

“Top-down” & “Bottom-up” approach

Choreography G
global viewpoint

M1

Local viewpoint1

Mi

Local viewpoint1

Mn

Local viewpointn

Synchrony

Asynchrony

Pro
jec

t P
roject

Project

Component1 Componenti Componentn

V
al

id
at

e V
alidate

V
alidate

Component’1 Component’i Component’n
evolve/replace/compose

New M ′1
Local viewpoint1

New M ′i
Local viewpointi

New M ′n
Local viewpointn

E
xt

ra
ct

E
xt

ra
ct

E
xt

ra
ct

New choreography G′

global viewpoint

Synthesise

Software evolves

Correctness-by-Design makes a lot
of sense when going top-down

παντα ρει [Heraclitus 6th century
BC]

Choreographies may help also going
bottom-up [LTY15]

Problem II(a): harnessing round-trip engineering

Are there more usages of global specs
than for projecting local specs?

“Top-down” & “Bottom-up” approach

Choreography G
global viewpoint

M1

Local viewpoint1

Mi

Local viewpoint1

Mn

Local viewpointn

Synchrony

Asynchrony

Pro
jec

t P
roject

Project

Component1 Componenti Componentn

V
al

id
at

e V
alidate

V
alidate

Component’1 Component’i Component’n
evolve/replace/compose

New M ′1
Local viewpoint1

New M ′i
Local viewpointi

New M ′n
Local viewpointn

E
xt

ra
ct

E
xt

ra
ct

E
xt

ra
ct

New choreography G′

global viewpoint

Synthesise

Software evolves

Correctness-by-Design makes a lot
of sense when going top-down

παντα ρει [Heraclitus 6th century
BC]

Choreographies may help also going
bottom-up [LTY15]

Problem II(a): harnessing round-trip engineering

Are there more usages of global specs
than for projecting local specs?

Quite some work for binary ST

Mezzina. How to Infer Finite Session Types in a Calculus of Services and Sessions.
Coordination 2008.

Collingbourne, Kelly. Inference of Session Types From Control Flow. ENTCS 238
(2010)

Imai, Yuen. Session Type Inference in Haskell. PLACES 2010.

Graversen, Harbo, Hüttel, Bjerregaard, Poulsen, Wahl. Type Inference for Session
Types in the π-calculus. WS-FM 2016.

Spaccasassi, Koutavas. Type-based Analysis for Session Inference. FORTE 2016.

Lindley, Morris. Lightweight Functional Session Types. In Behavioural Types:
from Theory to Tools. 2018.

Padovani. Context-Free Session Type Inference. TOPLAS, 41. 2019

...

Does retrieving global specs matter?

Some good reasons

Analysis

Program comprehension

Systematic way of documenting software

Reuse of software

Problems

Type inference is not all: it requires source code

Process mining / model learning

Analysis / Comparison of protocols [TTWD16]

Adaptation: “incompatible” components can be adapted (e.g., with coordination
delegates [AIT18,ADGPT19])

– Scene 3 –

[Choreographic-driven testing]

Is correcteness-by-construction sufficient?

Local computations deal with data.

Example: Gfact = C−→S: Req int; S−→C: Res int

factorialServer(Req,Res) = Req?n.Res!fact(n) where

fact : int→ int fact(int n) = if 0 ≤ n ≤ 1 then 1 else n ∗ fact(n + 1)

Evolution of components may alter communication patterns

Openness enables changes to the execution context that may alter “compatibility”

Example: another server

factorialServer(Req,Res) = Req?n. if n < 0
then Res!”error”
else Res!fact(n)

Is correcteness-by-construction sufficient?

Local computations deal with data.

Example: Gfact = C−→S: Req int; S−→C: Res int

factorialServer(Req,Res) = Req?n.Res!fact(n) where

fact : int→ int fact(int n) = if 0 ≤ n ≤ 1 then 1 else n ∗ fact(n – 1)

Evolution of components may alter communication patterns

Openness enables changes to the execution context that may alter “compatibility”

Example: another server

factorialServer(Req,Res) = Req?n. if n < 0
then Res!”error”
else Res!fact(n)

Is correcteness-by-construction sufficient?

Local computations deal with data.

Example: Gfact = C−→S: Req int; S−→C: Res int

factorialServer(Req,Res) = Req?n.Res!fact(n) where

fact : int→ int fact(int n) = if 0 ≤ n ≤ 1 then 1 else n ∗ fact(n – 1)

...and this is still not right! [BMT20,BHTY10]

Evolution of components may alter communication patterns

Openness enables changes to the execution context that may alter “compatibility”

Example: another server

factorialServer(Req,Res) = Req?n. if n < 0
then Res!”error”
else Res!fact(n)

Is correcteness-by-construction sufficient?

Local computations deal with data.

Example: Gfact = C−→S: Req int; S−→C: Res int

factorialServer(Req,Res) = Req?n.Res!fact(n) where

fact : int→ int fact(int n) = if 0 ≤ n ≤ 1 then 1 else n ∗ fact(n – 1)

...and this is still not right! [BMT20,BHTY10]

Evolution of components may alter communication patterns

Openness enables changes to the execution context that may alter “compatibility”

Example: another server

factorialServer(Req,Res) = Req?n. if n < 0
then Res!”error”
else Res!fact(n)

Is correcteness-by-construction sufficient?

Local computations deal with data.

Example: Gfact = C−→S: Req int; S−→C: Res int

factorialServer(Req,Res) = Req?n.Res!fact(n) where

fact : int→ int fact(int n) = if 0 ≤ n ≤ 1 then 1 else n ∗ fact(n – 1)

...and this is still not right! [BMT20,BHTY10]

Evolution of components may alter communication patterns

Openness enables changes to the execution context that may alter “compatibility”

Example: another server

factorialServer(Req,Res) = Req?n. if n < 0
then Res!”error”
else Res!fact(n)

Why are choreographies good for testing

Problem II(b): harnessing round-trip engineering

Can global specs support software
testing?

Choreographic models can be used

as test case specifications

to automatically generate executable tests

to automatically generate mock components

to assess coverage of test cases

Why are choreographies good for testing

Problem II(b): harnessing round-trip engineering

Can global specs support software
testing?
Choreographic models can be used

as test case specifications

to automatically generate executable tests

to automatically generate mock components

to assess coverage of test cases

Preliminary results [CGT20]

An abstract framework for model-based testing:

Test cases: a composition of “some deterministic” CFSMs

Automatic test generation∏
(split(proj(global spec))

Test compliance: a criterion for test success (oracle problem)

Suitable tests (not all tests make sense!)

Theorem:

if the global spec is well-formed then generated tests are suitable

– Scene 4 –

[Beyond Channel-based communication]

Abstract communication paradigms

Channel based communication could be too “low level”
Often other mechanisms are more appropriate

Event-Notification

Publish-Subscribe

Generative communication

Distributed tuple spaces
Attribute-based

Problem III: Abstract coordination mechanisms

Develop new choreographic frameworks
for sophisticated communication
mechanism

Abstract communication paradigms

Channel based communication could be too “low level”
Often other mechanisms are more appropriate

Event-Notification

Publish-Subscribe

Generative communication

Distributed tuple spaces
Attribute-based

Problem III: Abstract coordination mechanisms

Develop new choreographic frameworks
for sophisticated communication
mechanism

A few (natural) questions

1 What safe assumptions on the (distributed) state after interactions?

2 What (behavioural) properties a given communication mechanism enforces?

3 How about statically guaranteeing such properties?

4 What are the relations between message-passing and more abstract
communications?

5 Can behavioural abstractions support or improve run-time execution?

6 Can behavioural specifications foster quantitative analysis of CAS?

Drifting away from control-flow...[BCGMMT19,FMMT20,ITT20]

The emphasis is no longer on (dead)lock-freedom: progress becomes data-driven

Generalised interactions

Apρ e e′−−−→ Bpρ′

any A satisfying ρ generates data e for any B satisfying ρ′ with e′ matching e.

Some benefits

Weaker (hence more general) notions of correctness

Choreographies for new domains (e.g., IoT, CPS, Autonomous Systems)

multi-roles: many instances may play many roles
correctness related to emergent behaviour
(limited) misbehaviour is tollerated

Some illustrative example

Market place

Robots: possibly playing two roles

charge > 0
∧

bl ≥ eT

Loffer,id,qtM Loffer,s,rM−−−−−−−−−−−−−−−−→
reqEn > 0
∧

id 6= s

bl < l

∧
supp 6= null

Lreq,id,sel(supp),eM Lreq,c,s,eM−−−−−−−−−−−−−−−−−−−−−→ S.id = s

S
Lcancel,cM Lcancel,cM−−−−−−−−−−−−−−−→ id = cS

Lconfirm,c,a(e,qt)M Lconfirm,id,oM−−−−−−−−−−−−−−−−−−−−−−→ id = c

+

+

|

|

	

	

ρ(e) =⇒ s ∈ supp

e < qt

φconfirm

Some illustrative example

Market place

Robots: possibly playing two roles

charge > 0
∧

bl ≥ eT

Loffer,id,qtM Loffer,s,rM−−−−−−−−−−−−−−−−→
reqEn > 0
∧

id 6= s

bl < l

∧
supp 6= null

Lreq,id,sel(supp),eM Lreq,c,s,eM−−−−−−−−−−−−−−−−−−−−−→ S.id = s

S
Lcancel,cM Lcancel,cM−−−−−−−−−−−−−−−→ id = cS

Lconfirm,c,a(e,qt)M Lconfirm,id,oM−−−−−−−−−−−−−−−−−−−−−−→ id = c

+

+

|

|

	

	

ρ(e) =⇒ s ∈ supp

e < qt

φconfirm

A positive side effect

“Data-driven” specs seem more faithful to actual implementations

going beyond simulations

from global specs to queuing networks

charge > 0
∧

bl ≥ eT

Loffer,id,qtM Loffer,s,rM−−−−−−−−−−−−−−−−→
reqEn > 0
∧

id 6= s

bl < l

∧
supp 6= null

Lreq,id,sel(supp),eM Lreq,c,s,eM−−−−−−−−−−−−−−−−−−−−−→ S.id = s

S
Lcancel,cM Lcancel,cM−−−−−−−−−−−−−−−→ id = cS

Lconfirm,c,a(e,qt)M Lconfirm,id,oM−−−−−−−−−−−−−−−−−−−−−−→ id = c

+

+

|

|

	

	

ρ(e) =⇒ s ∈ supp

e < qt

φconfirm

– Epilogue –

[...]

Summing up

A quick journey in choreographies in order to discuss

In order to focus on some open issues

Compositionality

Refinement

Choreographic-driven Testing

Generalisations

I resisted to talk about tool support (a crucial open problem in BehAPI)

References

I am immensely grateful to my collaborators
[BDLT20] Franco Barbanera, Mariangiola Dezani-Ciancaglini, Ivan Lanese, eM.
Composition and Decomposition of Multiparty Session. Submitted at JLAMP.

[BLT20] Franco Barbanera, Ivan Lanese, eM.
Composing Communicating Systems, Synchronously. ISoLA 2020

[BMT20] Laura Bocchi, Hernán C. Melgratti, eM.
Resolving Non-determinism in Choreographies. ESOP 2014. (Full version To appear on LMCS)

[CGT20] Alex Coto, Roberto Guanciale, eM.
An Abstract Framework for Choreographic Testing. ICE 2020 (To appear).

[dLMT20] Ugo de’Liguoro, Hernán C. Melgratti, eM.
Towards Refinable Choreographies. ICE 2020 (To appear).

[FMMT20] Leonardo Frittelli, Facundo Maldonado, Hernán C. Melgratti, eM.
A Choreography-Driven Approach to APIs: The OpenDXL Case Study. COORDINATION 2020

[ITT20] Omar Inverso, Catia Trubiani, eM.
Abstractions for Collective Adaptive Systems. (ISoLA 2020)

[BHTY10] Laura Bocchi, Kohei Honda, eM, Nobuko Yoshida.
A Theory of Design-by-Contract for Distributed Multiparty Interactions. CONCUR 2010

[BCGMMT19] Roberto Bruni, Andrea Corradini, Fabio Gadducci, Hernán C. Melgratti, Ugo Montanari, eM.
Data-Driven Choreographies à la Klaim. Models, Languages, and Tools for Concurrent and Distributed Programming 2019.

[GT19] Roberto Guanciale, eM.
Realisability of pomsets. J. Log. Algebraic Methods Program. 108 (2019)

[TTWD16] Ramsey Taylor, eM, Neil Walkinshaw, John Derrick.
Choreography-Based Analysis of Distributed Message Passing Programs. PDP 2016

[LTY15] Julien Lange, eM, Nobuko Yoshida
From Communicating Machines to Graphical Choreographies. POPL 2015

[Thank you!]

