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From data processing to communication 



The Era of Data Processing 

For a long time (1950s – 1990s), most computing consisted of 
isolated computers doing data processing. 
 
The importance of structured data was realised very early. 
The first high-level programming languages supported data 
structures and data types.  



The Era of Data Processing 

----+----1----+----2----+----3----+----4----+----5----+----6----+----7—
      *---------------------------------------------------------------*
      *    DATA-NAME                        DATA-TYPE                 *
      *---------------------------------------------------------------*
       01  PRINCIPAL                        PIC 9999.                  
       01  NUMBER-OF-YEARS                  PIC 99.                    
       01  RATE-OF-INTEREST                 PIC 99.

Data structure declarations in Cobol: 

Grace Hopper 



The Era of Data Processing 

INTEGER   COLS,ROWS
PARAMETER(ROWS=12,COLS=10)
REAL      MATRIX(ROWS,COLS),VECTOR(ROWS)

Data structure declarations in Fortran 77: 

John Backus 



The Era of Data Processing 

(cons '(1 2) '(3 4)) 
;Output: ((1 2) 3 4)

Lisp uses (dynamically typed) lists as a universal data structure: 

John McCarthy 



The Era of Data Processing 

Blaise Pascal Niklaus Wirth 

Niklaus Wirth, inventor of the programming language Pascal, 
introduced the slogan “algorithms + data structures = programs”. 



Data Structures and Data Types 

Programming languages allow data structures to be codified as 
data types. Programming tools and environments use data types 
as the basis for analysis and verification: 
 
•   at compile time, in languages such as Java, C#, Scala, Haskell 

•   at run time, in languages such as Python 

Example, when programming in Java with Eclipse: 
 
•   a red X if you apply an operation to the wrong data type 

•   a menu suggesting appropriate operations for a data type 



The Era of Communication 

Computing has changed. We now depend on systems of 
communicating programs: 
 
•   web applications and web services 
•   mobile apps and their connections to servers 
•   cloud computing 
•   data centres 

Even within a single computer, further speed increases will 
depend on communicating many-core programs.  



The Era of Communication 

A new slogan for the era of communication: 
 

 programs + communication structures = systems 
 
Communication structures are essential for the design of systems.  
 
Kohei Honda suggested codifying communication structures 
as session types, so that they are available to programming 
languages and tools. 
 
[Honda 1993;   Takeuchi, Honda & Kubo 1994; 
Honda, Vasconcelos & Kubo 1998]. 

Kohei Honda 



Structured communication via session types 



Session Types: The Original Concept 

Type-theoretic specification of communication protocols, 
so that protocol implementations can be verified by static 
type-checking. 

Maths server protocol (server side) 

T = &{ plus: ?int . ?int . !int . T, 
           neg: ?int . !int . T, 
           quit: end } 

Maths server protocol (client side) 

S = ⊕{ plus: !int . !int . ?int . S, 
           neg: !int . ?int . S, 
           quit: end } 

S = dual(T) 



Session Types: Assumptions 

Assume that we are working in a concurrent or distributed system, 
with point-to-point communication channels (like pi-calculus). 
 
Channels are bi-directional (in practice they may be implemented 
by pairs of uni-directional channels). 
 
Communication may be synchronous (i.e. sender and receiver 
both block), or asynchronous with message queues (only receiver 
blocks). 



Session Types in Detail: Maths Server 

T = &{ plus: ?int . ?int . !int . T, 
           neg: ?int . !int . T, 
           quit: end } 

external choice 

three options 

receive send 

recursion 



Session Types in Detail: Maths Client 

S = ⊕{ plus: !int . !int . ?int . S, 
           neg: !int . ?int . S, 
           quit: end } 

internal choice 

three options 

send receive 

recursion 



Imperative Pseudocode: Maths Client 

S = ⊕{ plus: !int.!int.?int.S, 
           neg: !int.?int.S, 
           quit: end } 

request connection c : S from maths.org:75 
select plus on c 
send 2 on c 
send 3 on c 
receive x from c 
select quit on c 
compute with x 



Static Typechecking: Maths Client 

S = ⊕{ plus: !int.!int.?int.S, 
           neg: !int.?int.S, 
           quit: end } 

request connection c : S from maths.org:75 
select plus on c 
send 2 on c 
send 3 on c 
receive x from c 
select quit on c 
compute with x 

assume a trusted registry 
of typed services 

only select is allowed  

must be plus, neg or quit  
only send is allowed  

must be int  
only receive is allowed  

x must be used as int  

after this point, c 
cannot be used  



Static Typechecking: Maths Client 

S = ⊕{ plus: !int . !int . ?int . S, 
           neg: !int . ?int . S, 
           quit: end } 

request connection c : S from maths.org:75 
select plus on c 
send 2 on c 
send 3 on c 
receive x from c 
select quit on c 
compute with x 

c : S  

c : !int.!int.?int.S  

c : !int.?int.S  

c : ?int.S  

c : S  

c : end  



Imperative Pseudocode: Maths Server 

T = &{ plus: ?int . ?int . !int . T, 
           neg: ?int . !int . T, 
           quit: end } 

accept connection c : T on port 75 
label start: 

 offer on c { 
  plus:  receive x from c 
   receive y from c 
   send x+y on c 
   goto start 
  neg:  receive z from c 
   send –z on c 
   goto start 
  quit:  break 
 } 



Static Typechecking: Maths Server 

T = &{ plus: ?int.?int.!int.T, 
           neg: ?int.!int.T, 
           quit: end } 

accept connection c : T on port 75 
label start: 

 offer on c { 
  plus:  receive x from c 
   receive y from c 
   send x+y on c 
   goto start 
  neg:  receive z from c 
   send –z on c 
   goto start 
  quit:  break 
 } 

only offer is allowed  

all options must be present 

looping is only allowed when the type  
of c has returned to its initial state 
 
“goto statement considered typeful” 
 
or use a recursive function 



Unique Ownership of Channel Endpoints 

It is essential that each endpoint of a channel is used by only 
one component of a system. 

Server 

Client1 

Client2 

select plus 

select neg 

one select would go first, then the other would be incorrect: 
race condition 



Linear Typing 

To guarantee unique ownership of channel endpoints, session 
type systems use standard techniques of linearity [Girard 1987]. 
 
Specific techniques for linear type systems may be based on e.g. 
[Kobayashi, Pierce & Turner 1996] for pi-calculus, or 
[Mackie 1994] for functional languages. 
 
Unique ownership is also guaranteed in the presence of 
delegation, i.e. sending a session-typed channel in a message. 
 
A line of work following [Caires & Pfenning 2010] develops the  
connection between session types and linear logic, following the 
Curry-Howard / propositions as types paradigm. 



Session Typing Guarantees… 

No race conditions: 
 never two sends in parallel on one channel endpoint, etc 

 
No communication mismatch: 

 if there is a send then there is a receive in parallel, and 
 the message types match 

 
Session fidelity: 

 the sequence and types of messages on a channel match 
 the type of the channel 

 
But deadlock-freedom is not guaranteed in general. 
 
Proofs are based on subject reduction and considering the 
evolution of types at each reduction step. 



The POP3 Protocol (RFC 1939) 

+OK string
AUTHORIZATION

AUTHORIZATION
USER string +OK string PASS string

−ERR string QUIT

END

+OK string

−ERR string

TRANSACTION
STAT

+OK int x int

QUIT

END

+OK string

QUIT

END

+OK string

RETR int

−ERR string

+OK string string

START

server message

client message

TRANSACTION

+OK string



The POP3 Protocol as a Session Type 

S = START, A = AUTHORIZATION, T = TRANSACTION 
 
S = ⊕{ok : !Str . A} 
 
A = &{quit : ⊕{ok : !Str . end},  
          user : ?Str . ⊕{error : !Str . A, 
                                 ok : !Str . &{quit : ⊕{ok : !Str . end},  
                                                    pass : ?Str . ⊕{error : !Str . A,  
                                                                            ok : !Str . T}}}} 
 
T = &{stat: ⊕{ok: !(Int×Int).T},  
          retr: ?Int.⊕{ok: !Str.!Str.T, 
                            error: !Str.T},  
          quit : ⊕{ok : !Str . end}} 



The Growth of Session Types as a Field 

Research on session types has developed in many directions. 
 
•  Incorporation in various programming language paradigms. 

•  Curry-Howard correspondence. 

•  Runtime monitoring as a complement to static checking. 

•  Generalisation from two-party to multi-party protocols. 

•  Gradual typing and blame. 

•  Connections with automata theory, time, and model-checking. 

•  Language implementation and tool development. 



Multi-party session types 



Multi-Party Session Types 

Honda, Yoshida and Carbone [2008] developed a theory of 
multi-party session types, generalising from the original 
two-party (binary) theory. 
 
Multi-party session types provide a methodology for the design of 
communication-based systems, and there is an increasing 
amount of tool support. 

Marco Carbone Nobuko Yoshida 



Example from HYC 2008 

Figure 1 Syntax

P ::= a[2..n] (s̃).P multicast session request
| a[p] (s̃).P session acceptance
| s!⟨ẽ⟩; P value sending
| s?(x̃); P value reception
| s!⟨⟨s̃⟩⟩; P session delegation
| s?((s̃)); P session reception
| s✁ l; P label selection
| s✄ {li : Pi}i∈I label branching
| if e then P else Q conditional branch
| P | Q parallel composition
| 0 inaction
| (νn)P hiding

| def D in P recursion

| X⟨ẽs̃⟩ process call

| s : h̃ message queue

e ::= v | e and e′ | not e ... expressions

v ::= a | true | false values

h ::= l | ṽ | s̃ messages-in-transit

D ::= {Xi(x̃i s̃i) = Pi}i∈I declaration for recursion

s : h̃ only appear at runtime. We often omit trailing 0 and write s!
and s?.P, omitting the arguments if unnecessary.

Binders are s̃ in a[2..n] (s̃).P, a[p] (s̃).P and s?((s̃)); P, x̃ in s?(x̃); P,
x̃s̃ in X(x̃s̃) = P, n in (νn)P and process variables in def D in P. The
notions of bound and free identifiers, channels, alpha equivalence
≡ α and substitution are standard. fpv(P) and fn(P), respectively
denote the sets of free process variables and free identifiers in P.
dpv({Xi(x̃i s̃i) = Pi}i∈I) denotes the set of process variables {Xi}i∈I
introduced in {Xi(x̃i s̃i) = Pi}i∈I . A sequence of parallel composition
is written ΠiPi.

2.2 Operational Semantics

Structural congruence is the smallest congruence relation on pro-
cesses that includes the equations in Figure 2. The operational se-
mantics is given by the reduction relation, denoted P→ Q, which
is the smallest relation on processes generated by the rules in Fig-
ure 3. In the figure, e ↓ v says that expression e evaluates to values v.

[LINK] describes a session initiation among n-parties through
synchronisation, generating m fresh session channels and the asso-
ciated m empty queues (∅ denotes the empty string). As a result n
participants now share the newly generated m channels, hence their
queues. Note the number of threads (n) can be different from that
of session channels (m), giving flexibility in channel usage.

[SEND], [DELEG] and [LABEL] respectively enqueue values, chan-
nels and a label at the tail of the queue for s. [RECV], [SREC]1 and
[BRANCH] dequeue, at the head of the queue, values, channels and
a label. [BRANCH] further selects the corresponding branch. Since
[LINK] provides a queue for each channel, these rules say that a
sending action is never blocked (asynchrony) and that two mes-
sages from the same sender to the same channel arrive in the send-
ing order (order preservation). Other rules are standard.

1 This delegation rule (which is from (Honda et al. 1998)) is chosen over the
more liberal one in (Gay and Vasconcelos 2007; Yoshida and Vasconcelos
2007) (which uses substitution as in [RECV]) for simpler presentation. The
technical development does not depend on this choice, see §6.2.

Figure 2 Structural congruence.

P | 0 ≡ P P | Q ≡ Q | P (P | Q) | R ≡ P | (Q | R)

(νn)P | Q ≡ (νn)(P | Q) if n ! fn(Q) (νnn′)P ≡ (νn′n)P

(νn)0 ≡ 0 def D in 0 ≡ 0 (ν s1..sn)Πi si :∅ ≡ 0

def D in (νn)P ≡ (νn)def D in P if n ! fn(D)
(def D in P) | Q ≡ def D in (P | Q) if dpv(D)∩ fpv(Q) = ∅
def D in (def D′ in P) ≡ def D and D′ in P if dpv(D)∩dpv(D′) = ∅

2.3 Examples

Two Buyer Protocol We describe the two-buyers-protocol from
the Introduction first by a sequence diagram, then by processes.

!"#$%& '$(($% !"#$%)

!"#$%& !"#$%&

!"!#$

%&'!$%&'!$

%&'!$()"*(+

!"

#$%&

,))-$..

),!$ !!"#$%&

First Buyer1 sends a book title to Seller, then Seller sends back a
quote to Buyer1/2; Buyer1 now tells Buyer2 how much she can
contribute, and Buyer2 notifies Seller if it accepts the quote or not.
We now describe the behaviour of Buyer1 as a process:

Buyer1 def
= a[2,3] (b1,b2,b

′
2, s). s!⟨“War and Peace”⟩;

b1?(quote); b′2!⟨quote div 2⟩; P1

Channel b1 is for Buyer1 to receive messages: b2 and b′2 for Buyer2
and s for Seller (we discuss soon why Buyer2 needs two receiving
channels). Buyer1 above is willing to contribute to half of the quote.
In P1, Buyer1 may perform the remaining transactions with Seller
and Buyer2. The remaining participants follow.

Buyer2 def
= a[2] (b1,b2,b′2, s). b2?(quote); b′2?(contrib);

if (quote−contrib ≤ 99)
then s✁ok; s! ⟨address⟩;b2?(x); P2

else s✁quit;0

Seller def
= a[3] (b1,b2,b′2, s). s?(title); b1,b2!⟨quote⟩;

s✄ {ok : s?(x);b2! ⟨date⟩; Q , quit : 0}
Above s1..sm!⟨v⟩; P stands for s1!⟨v⟩; ..sm!⟨v⟩; P, assuming s1..sm
are pairwise distinct.2 We can now explain why Buyer2 needs to
use two input channels, b2 and b′2. The first input (for quote) is from
Seller, while the second one (for contrib) is from Buyer1. Hence
there is no guarantee that they arrive in a fixed order, as can be
easily seen by analysing reduction paths (this is Lamport’s principle
(Lamport 1978)). Thus if we were to use b2 for both actions, the
two messages can be confused, losing linear usage of a channel.
Later we shall show our type discipline can detect such an error.

2 Due to asynchrony there is in effect no order among the sending actions at
s1..sm.

275

Figure 5 Causality Analysis

(II) Good (II) Bad (IO) Good (IO) Bad (OO, II) Good (OI) Bad
A→ B : s
C→ B : t
s! | s?; t? | t!

A→ B : s
C→ B : s
s! | s?; s? | s!

A→ B : s
B→ C : t
s! | s?; t! | t?

A→ B : s
B→ C : s
s! | s?; s! | s?

A→ B : s
A→ B : s
s!; s! | s?; s?

A→ B : s
C→ A : s
s!; s? | s? | s!

we write n1 ≺n2 ∈ G when n1 directly or indirectly prefixes n2 in
G. Formally≺is the least partial order including:

n1≺n2 ∈ p→ p′ : k ⟨U⟩.G′ if n1 = p→ p′ : k,n2 ∈G′
n1≺n2 ∈ p→ p′ : k {l j : G j} j∈J if n1 = p→ p′ : k, ∃i∈ J.n2 ∈Gi

as well set setting n1 ≺n2 ∈ G if n1 ≺n2 ∈ G′ and G′ occurs in G
but not in its carried types.

The prefix ordering allows us to express intended sequencing in
global types. To clarify its meaning is essential for its proper usage.
Consider a global type:

A→ B : s ⟨U⟩. A→ C : t ⟨U′⟩. end (2)

The two prefixes are ordered by ≺. In a “synchronous” interpre-
tation, this ordering would mean: “only after the first sending and
receiving take place, the second sending and receiving take place”.
This is a suitable reading when sending and receiving constitute a
single atomic action, as in synchronous calculi, but not with asyn-
chronous communication, where it is hard to impose this ordering
on (2), since messages to distinct channels may not arrive in order.

Thus the present theory takes the more liberal interpretation of
≺, imposing sequencing only on the actions of the same participant
in ordered prefixes. For example, in (2), A’s two sending actions are
ordered, but B’s and C’s receiving actions are not. The remaining
causal ordering comes from communication à la Lamport (Lamport
1978). Let us further illustrate this idea with examples.

3.2 Examples of Global Types

The following is a global type of the two-buyer-protocol in §2.3.
We write principals and channels with legible symbols though they
are actually numbers: Bi = i, S = 3, b 1= 1, b 2= 2, b ′2= 3 and s = 4.

1 B1→ S : s⟨string⟩.
2 S→ B1 : b 1⟨int⟩.
3 S→ B2 : b 2⟨int⟩.
4 B1→ B2 : b ′2⟨int⟩.
5 B2→ S : s{ok : B2→ S : s ⟨string⟩.S→ B2 : b 2 ⟨date⟩.end,

quit : end}
The type gives a vantage view of the whole conversation scenario.
We show several salient points in the interpretation of this type.

• Consider Lines 3 and 4. Since they have different senders,
the sending actions are unordered in spite of their ≺-ordering.
Hence if b 2 = b ′2 two messages can have a conflict at s. Note
this analysis echoes our operational argument in §2.3.
• Next we consider the following causal chain of actions from

Line 1 to Line 3 to Line 5:

B1 → S ≺S → B2 ≺B2→ S
Above→ denotes the ordering given by message delivery, while
≺is the prefix ordering. Note in particular two sending actions
by B1 (Line 1) and by B2 (Line 5), both done at s, are causally
ordered. By focussing on ≺ from the first S (of Line 1) to
the last S (of Line 5), the receiving actions in Lines 1 and 5
are also ordered. Since both sending and receiving take place
in strict temporal order, no conflict occurs between these two
communications in spite of their use of a common channel s.

Next we present the global type of the simple streaming protocol
in §2.3. Below we unfold its recursion once, and set: d = 1, k = 2,
c = 3, K = 1, DP = 2, C = 3 and KP = 4.

1 µt. DP→ K : d ⟨bool⟩.
2 KP→ K : k ⟨bool⟩.
3 K→ C : c ⟨bool⟩.

4 DP→ K : d ⟨bool⟩.
5 KP→ K : k ⟨bool⟩.
6 K→ C : c ⟨bool⟩.t

The following arguments hold for any n-fold unfoldings.

• Lines 1 and 2 are temporally unordered in sending: but this does
not cause conflict since channels d and k are distinct.
• Line 1 and its unfolding, Line 4, share d. But the two use the

same sender and the same receiver, so each pair of actions are
≺-ordered, hence safe. Similarly for other unfolded actions.

3.3 Safety Principle for Global Types

For a conversation in a session to proceed properly, it is desirable
that there is no conflict (racing) at session channels. To ensure this,
when a common channel is used in two communications, their send-
ing actions and their receiving actions should respectively be or-
dered temporally, so that no confusion arises at neither sending nor
receiving. If a global type satisfies this principle, then it specifies
a safe protocol, and can be used as a basis of guaranteeing safe
process behaviours through type checking.

Causality is induced in several ways in the present asynchronous
model. We summarise all essential cases in Figure 5, with concrete
process instances for illustration. IO denotes the causal ordering by
≺is from input (receiving) to output (sending), similarly for II, OO
and OI. In (II)-Bad, we demand A ! C. We observe:

• The “good” and “bad” cases for II shows that II alone is safe
only when two channels differ. Similarly for IO.
• In OO,II (the fifth case), two outputs have the same sender and

the same channel, so (by message order-preservation) outputs
are ordered. Inputs are also ordered by≺hence they are safe.
• There is no ordering from output to input (due to asynchrony),

so OI gives us no dependency.

These observations lead to the following “effective” causal rela-
tions on global types.

DEFINITION 3.4. (dependency relations) Fix G. The relation≺φ, with
φ ∈ {II, IO,OO}, over its prefixes is generated from:

n1≺II n2 if n1≺n2 and ni = pi→ p : ki (i = 1,2)
n1≺IO n2 if n1≺n2, n1 = p1→ p : k1 and n2 = p→ p2 : k2.
n1≺OO n2 if n1≺n2, ni = p→ pi : k (i = 1,2)

An input dependency from n1 to n2 is a chain of the form n1 ≺φ1

· · ·≺φn n2 (n ≥ 0) such that φi ∈ {II, IO} for 1 ≤ i ≤ n− 1 and φn = II.
An output dependency from n1 to n2 is a chain n1 ≺φ1 · · ·≺φn n2
(n ≥ 1) such that φi ∈ {OO, IO}.
In the input dependency, the last II-ordering is needed since if it
ends with an IO-edge an input at n2 may not be suppressed.

DEFINITION 3.5. (linearity) G is linear if, whenever ni = pi→ p′i : k
(i = 1,2) are in G for some k and do not occur in different branches
of a branching, then both input and output dependencies exist from
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informal design 

global type 



Example from HYC 2008 

Figure 5 Causality Analysis

(II) Good (II) Bad (IO) Good (IO) Bad (OO, II) Good (OI) Bad
A→ B : s
C→ B : t
s! | s?; t? | t!

A→ B : s
C→ B : s
s! | s?; s? | s!

A→ B : s
B→ C : t
s! | s?; t! | t?

A→ B : s
B→ C : s
s! | s?; s! | s?

A→ B : s
A→ B : s
s!; s! | s?; s?

A→ B : s
C→ A : s
s!; s? | s? | s!

we write n1 ≺n2 ∈ G when n1 directly or indirectly prefixes n2 in
G. Formally≺is the least partial order including:

n1≺n2 ∈ p→ p′ : k ⟨U⟩.G′ if n1 = p→ p′ : k,n2 ∈G′
n1≺n2 ∈ p→ p′ : k {l j : G j} j∈J if n1 = p→ p′ : k, ∃i∈ J.n2 ∈Gi

as well set setting n1 ≺n2 ∈ G if n1 ≺n2 ∈ G′ and G′ occurs in G
but not in its carried types.

The prefix ordering allows us to express intended sequencing in
global types. To clarify its meaning is essential for its proper usage.
Consider a global type:

A→ B : s ⟨U⟩. A→ C : t ⟨U′⟩. end (2)

The two prefixes are ordered by ≺. In a “synchronous” interpre-
tation, this ordering would mean: “only after the first sending and
receiving take place, the second sending and receiving take place”.
This is a suitable reading when sending and receiving constitute a
single atomic action, as in synchronous calculi, but not with asyn-
chronous communication, where it is hard to impose this ordering
on (2), since messages to distinct channels may not arrive in order.

Thus the present theory takes the more liberal interpretation of
≺, imposing sequencing only on the actions of the same participant
in ordered prefixes. For example, in (2), A’s two sending actions are
ordered, but B’s and C’s receiving actions are not. The remaining
causal ordering comes from communication à la Lamport (Lamport
1978). Let us further illustrate this idea with examples.

3.2 Examples of Global Types

The following is a global type of the two-buyer-protocol in §2.3.
We write principals and channels with legible symbols though they
are actually numbers: Bi = i, S = 3, b 1= 1, b 2= 2, b ′2= 3 and s = 4.

1 B1→ S : s⟨string⟩.
2 S→ B1 : b 1⟨int⟩.
3 S→ B2 : b 2⟨int⟩.
4 B1→ B2 : b ′2⟨int⟩.
5 B2→ S : s{ok : B2→ S : s ⟨string⟩.S→ B2 : b 2 ⟨date⟩.end,

quit : end}
The type gives a vantage view of the whole conversation scenario.
We show several salient points in the interpretation of this type.

• Consider Lines 3 and 4. Since they have different senders,
the sending actions are unordered in spite of their ≺-ordering.
Hence if b 2 = b ′2 two messages can have a conflict at s. Note
this analysis echoes our operational argument in §2.3.
• Next we consider the following causal chain of actions from

Line 1 to Line 3 to Line 5:

B1 → S ≺S → B2 ≺B2→ S
Above→ denotes the ordering given by message delivery, while
≺is the prefix ordering. Note in particular two sending actions
by B1 (Line 1) and by B2 (Line 5), both done at s, are causally
ordered. By focussing on ≺ from the first S (of Line 1) to
the last S (of Line 5), the receiving actions in Lines 1 and 5
are also ordered. Since both sending and receiving take place
in strict temporal order, no conflict occurs between these two
communications in spite of their use of a common channel s.

Next we present the global type of the simple streaming protocol
in §2.3. Below we unfold its recursion once, and set: d = 1, k = 2,
c = 3, K = 1, DP = 2, C = 3 and KP = 4.

1 µt. DP→ K : d ⟨bool⟩.
2 KP→ K : k ⟨bool⟩.
3 K→ C : c ⟨bool⟩.

4 DP→ K : d ⟨bool⟩.
5 KP→ K : k ⟨bool⟩.
6 K→ C : c ⟨bool⟩.t

The following arguments hold for any n-fold unfoldings.

• Lines 1 and 2 are temporally unordered in sending: but this does
not cause conflict since channels d and k are distinct.
• Line 1 and its unfolding, Line 4, share d. But the two use the

same sender and the same receiver, so each pair of actions are
≺-ordered, hence safe. Similarly for other unfolded actions.

3.3 Safety Principle for Global Types

For a conversation in a session to proceed properly, it is desirable
that there is no conflict (racing) at session channels. To ensure this,
when a common channel is used in two communications, their send-
ing actions and their receiving actions should respectively be or-
dered temporally, so that no confusion arises at neither sending nor
receiving. If a global type satisfies this principle, then it specifies
a safe protocol, and can be used as a basis of guaranteeing safe
process behaviours through type checking.

Causality is induced in several ways in the present asynchronous
model. We summarise all essential cases in Figure 5, with concrete
process instances for illustration. IO denotes the causal ordering by
≺is from input (receiving) to output (sending), similarly for II, OO
and OI. In (II)-Bad, we demand A ! C. We observe:

• The “good” and “bad” cases for II shows that II alone is safe
only when two channels differ. Similarly for IO.
• In OO,II (the fifth case), two outputs have the same sender and

the same channel, so (by message order-preservation) outputs
are ordered. Inputs are also ordered by≺hence they are safe.
• There is no ordering from output to input (due to asynchrony),

so OI gives us no dependency.

These observations lead to the following “effective” causal rela-
tions on global types.

DEFINITION 3.4. (dependency relations) Fix G. The relation≺φ, with
φ ∈ {II, IO,OO}, over its prefixes is generated from:

n1≺II n2 if n1≺n2 and ni = pi→ p : ki (i = 1,2)
n1≺IO n2 if n1≺n2, n1 = p1→ p : k1 and n2 = p→ p2 : k2.
n1≺OO n2 if n1≺n2, ni = p→ pi : k (i = 1,2)

An input dependency from n1 to n2 is a chain of the form n1 ≺φ1

· · ·≺φn n2 (n ≥ 0) such that φi ∈ {II, IO} for 1 ≤ i ≤ n− 1 and φn = II.
An output dependency from n1 to n2 is a chain n1 ≺φ1 · · ·≺φn n2
(n ≥ 1) such that φi ∈ {OO, IO}.
In the input dependency, the last II-ordering is needed since if it
ends with an IO-edge an input at n2 may not be suppressed.

DEFINITION 3.5. (linearity) G is linear if, whenever ni = pi→ p′i : k
(i = 1,2) are in G for some k and do not occur in different branches
of a branching, then both input and output dependencies exist from
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global type 

endpoint projection, subject to  
consistency conditions 

Buyer 1:    S!<string> ; S?<int> ; B2!<int> 
 
Buyer 2:    S?<int> ; B1?<int> ; S⊕{ ok : S!<string> ; S?<date> ; end,   quit : end } 
 
Seller :      B1?<string> ; B1!<int> ; B2!<int> ; B2&{ ok : B2?<string> ; B2!<date> ; end , 
                                                                                 quit : end } 

local types 



Example from HYC 2008 

Global types are expressed in Scribble [Honda et al. 2007 – 2016] 
and there is a toolset for consistency checking, projection etc. 
 
Local types are used for typechecking in an endpoint language, 
using further tools to translate between Scribble and each language. 
 
E.g. the Mungo / StMungo tools for Java [Gay et al. 2016-2021] 



But… 

What about failure? Fault-tolerance? Reliability? 



What about failure? What about reliability? 

Most of the literature on session types ignores failure. 
 
Even if a whole closed system is being designed with types, 
it’s unrealistic to ignore hardware and communication failure. 
 
Even more realistically, systems are open and components must 
interact with external non-designed agents. 
 
The Stardust project (2020-2024) aims to combine the structuring 
mechanism of session types and the reliability mechanism of the  
actor paradigm. 



The Stardust Project 

Session Types for Reliable Distributed Systems 
 
Funded by UK EPSRC 2020-2024. 
 
University of Glasgow (SG, Phil Trinder) 
University of Kent (Simon Thompson, Laura Bocchi) 
Imperial College London (Nobuko Yoshida) 
 
Actyx 
Erlang Solutions Ltd 
Lightbend 
Quviq 
Tata Consultancy Services 



Actor Languages 

Originate from the work of Carl Hewitt and Gul Agha. 
 
Actors have private state, communicate by message-passing, 
respond to incoming messages to determine actions. 

Gul Agha Carl Hewitt 



Erlang 

The best-known actor language is Erlang. 
 
Originally designed for scalable and reliable (99.9999% availability) 
telecommunications software. 
 
Reliability is achieved by timeouts and  
supervision. 
 
Supervision means detecting failure and  
taking action, e.g. restarting an actor. 
 
Usually failure is detected by timeouts. 

Joe Armstrong 



Session Types and Erlang 

One of our aims is to develop a session type system for Erlang. 
 
•  Language extension or external tool? 

•  How do we adapt session types from channels to mailboxes? 

•  How do we combine static and dynamic typing? 

•  How can type information guide the design of supervision trees? 

•  What properties can we prove about well-typed systems? 



Preliminary work on session types and actors 
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Abstract15

Human fallibility, unpredictable operational environments, and the heterogeneity (and corres-16

ponding resource constraints) of hardware devices are driving in the need for software to be able17

to adapt as seen in the Internet of Things or national telecommunication networks. Unfortunately,18

mainstream programming languages do not readily allow a software component to sense and respond19

to its operating environment, by discovering, replacing, and communicating with other software20

components that are not part of the original system design, while maintaining static correctness21

guarantees. In particular, if a new component is discovered at runtime, there is no guarantee that22

its communication behaviour is compatible with existing components.23

We address this problem by using multiparty session types with explicit connection actions, a24

type formalism used to model distributed communication protocols. By associating session types25

with software components, the discovery process can check protocol compatibility and, when required,26

correctly replace components. Moreover, the use of session types throughout the software system27

design guarantees the correctness of all communication, whether or not it is adaptive.28

We present the design and implementation of EnsembleS, the first actor-based language with29

adaptive features and a static session type system. We apply it to a case study based on an adaptive30

DNS server. Finally, we formalise the type system of EnsembleS and prove the safety of well-typed31

programs, making essential use of recent advances in non-classical multiparty session types.32

1 Introduction33

The era of single monolithic stand-alone computers has long been replaced by a landscape34

of heterogeneous and distributed computers and software applications. Embracing the35

current landscape, technologies such as the IoT [57], self-driving cars [56], or autonomous36

networks [7] bring the new challenge of needing to successfully operate in face of ever-changing37

environments, technologies, devices, and human errors, necessitating the need to adapt.38

Here, we define dynamic self-adaptation—hereafter referred to as adaptation—as the ability39

of a software component to sense and respond to its operating environment, by discovering,40

replacing, and communicating with other software components at runtime that are not part41

of the original system design [6, 53]. There are many examples of adaptive systems, as well42

as the mechanisms of adaptation they leverage, such as discovery [37], modularisation [26],43

1 Equal contribution.



Overview 

•  Adaptive software is increasingly important for pervasive  
computing. 
 

•  Adaptation includes discovering, replacing and communicating  
with software components that are not part of the original system.  
 

•  Ensemble is an actor-based language with support for adaptation. 

•  We designed and implemented EnsembleS by adding  
session types to Ensemble.  

•  Static type checking guarantees safe runtime adaptation.  



EnsembleS language features 

•  Imperative actor-based language. 

•  Channels instead of mailboxes. 

•  Support for adaptation. 



Adaptation in EnsembleS  

•  Discover: locate an actor with a given interface and  
satisfying a given query.  

•  Install: spawn a new actor instance at a specified stage.  

•  Migrate: move an executing actor to a different stage.  

•  Replace: replace an executing actor with a new  
actor instance with the same interface.  

•  Interact: connect to another actor and communicate with it.  



Adaptation in EnsembleS, with session types  

•  Discover: locate an actor with a given interface and  
satisfying a given query and a given session type.  

 
•  Replace: replace an executing actor with a new  

actor instance with the same interface  
and the same session type.  

•  Interact: connect to another actor and communicate with it, 
following its session type. 

EnsembleS uses multi-party session types. 
 
The implementation needs a trusted registry of typed actors.  



Replacement in EnsembleS  8 Multiparty Session Types for Safe Runtime Adaptation in an Actor Language

1 // session and interface definitions
2 actor fastA presents accountingI
3 follows accountingSession{
4 constructor() {}
5 behaviour{
6 receive data on input;
7 quicksort(data);
8 send data on output;
9 }

10 }
11
12 actor slowA presents accountingI
13 follows accountingSession{
14 pS= new property[2] of property("",0);
15 constructor() {
16 pS[0]:= new property("serial",823);
17 pS[1]:= new property("version",2);
18 publish pS;
19 }

20 behaviour{
21 receive data on input;
22 bubblesort(data);
23 send data on output;
24 } }
25
26 query alpha() { $serial==823 && $version<4; }
27
28 actor main presents mainI {
29 constructor() { }
30 behaviour {
31 // Find the slow actors matching query
32 actor_s = discover(accountingI,
33 accountingSession, alpha());
34 // Replace them with efficient versions
35 if(actor_s[0].length > 1) {
36 replace actor_s[0] with fastA();
37 }
38 } }

Figure 7 Session type-based replacement

3.4 Adaptation via discovery and replacement262

1 // define query alpha
2 query_a = alpha();
3 actor_s = discover(

4 Buyer1_interface, Buyer1_session , query_a);

5 if (actor_s[0].length > 1){

6 link me with actor_s[0];

7 msg = "book";
8 send msg on toB_string;

9 unlink Buyer1_session;

10 }

Figure 6 Session type-based discovery

EnsembleS supports runtime discovery of263

local or remote actor instances. As an example,264

in a sensor network, it may be desirable to con-265

nect to a sensor which has a battery level above266

a certain threshold. The EnsembleS query lan-267

guage allows the user to define a query on non-268

functional properties (such as battery level, signal269

strength, or name), as well as the channels ex-270

posed by an actor’s interface. This ensures that271

any discovered actor has the correct number and272

type of channels, and satisfies user’s preferences.273

To ensure that the discovered actor also obeys a274

declared protocol, EnsembleS uses session types in the discovery process. The green box275

in Fig. 6 shows how a session is used in the actor discovery process, and the yellow box276

shows how such actors are connected together. Runtime discovery does not appear in the277

session because it does not a�ect the behaviour of an application directly.278

EnsembleS also supports the replacement of executing actors, much like the hot-code279

swapping in Erlang [12]. The new actor must present the same interface as it takes over the280

channels of the actor being replaced at the location it was executing. Replacement happens281

at the beginning of an actor’s behaviour loop. Replacement has many uses, such as updating,282

changing, or extending some of the functionalities of existing software, and is particularly283

useful in embedded systems [33, 34]. The existing and new actors must follow the same284

session type, guaranteeing that replacement will not break existing actor interactions.285

Fig. 7 shows an example of a main actor searching for actors of type slowA (line 32), and286

replacing them with new actors of type fastA (lines 35–37). slowA actors are located by287

defining a query (line 26) over user-defined properties, which are published (lines 16–18).288

The discovery process is the same as above, but now the discovered actors are used for289

replacement rather than just communication.290

type accountingI is interface(
    in { Client, int[] } input;
    out { Client, int[] } output;
)

type accountingSession is session(
    data(int[]) from Client;
    data(int[]) to Client;
)



Results about EnsembleS  

•  We have formalised a core language with a type system and 
operational semantics. 

•  A correctly-typed system satisfies the following properties. 
 

•  Type safety: the behaviour of every actor matches its  
session type, and communication never has a type mismatch. 

•  Progress: if a system stops executing then either: 
- every actor is either terminated or waiting for input, or: 
- there is an unmatched discover operation. 



Conclusion  

•  Session types are a programming language mechanism for 
specifying and checking communication protocols. 

•  The field of session types is beginning to address issues of 
reliability and fault-tolerance. 

•  Our key idea is to combine session types and actor-based  
programming languages. 

•  The Stardust project has a great set of academic researchers 
and industrial partners.  
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