UmverSIty ‘ School of E PS RC

0 G aSgOW CompUtlng SClence Engineering and Physical Sciences

Research Council

Session Types for
Reliable Distributed Systems

S|mon Gay
, |Ver5|ty Glasgow
/ h 22
’77{{{ 7
$S| Sem'Rar d
| /4‘ $ " : ’
¥ T‘,, : | ?’

&7 of Glasgow

From data processing to communication

' Umversuy The Era of Data Processing
of Glasgow

For a long time (1950s — 1990s), most computing consisted of
Isolated computers doing data processing.

The importance of structured data was realised very early.
The first high-level programming languages supported data
structures and data types.

' Umversuy The Era of Data Processing
of Glasgow

vvvvvvvvvvvvvv

Data structure declarations in Cobol:

SRS PO S YU S O Sy P S . U SR S S M
K e e — — — ——— *
* DATA-NAME DATA-TYPE *
A e e e i — — — — ——————————————————————— o *
01 PRINCIPAL PIC 9999.
01 NUMBER-OF-YEARS PIC 99.
01 RATE-OF-INTEREST PIC 99.

Grace Hopper

' Umver31ty The Era of Data Processing
of Glasgow

Data structure declarations in Fortran 77:

INTEGER COLS,ROWS
PARAMETER (ROWS=12,COLS=10)
REAL MATRIX(ROWS,COLS) ,VECTOR (ROWS)

File photo

John Backus

' Umversuy The Era of Data Processing
of Glasgow

Lisp uses (dynamically typed) lists as a universal data structure:

(cons '(1 2) '(3 4))
;Output: ((1 2) 3 4)

John McCarthy

] Universit :
ofGlasgowy The Era of Data Processing

Niklaus Wirth, inventor of the programming language Pascal,
introduced the slogan “algorithms + data structures = programs”.

NIKLAUS wirTH

Blaise Pascal Niklaus Wirth

i g}gﬁgég Data Structures and Data Types

Programming languages allow data structures to be codified as
data types. Programming tools and environments use data types
as the basis for analysis and verification:

« at compile time, in languages such as Java, C#, Scala, Haskell
« at run time, in languages such as Python

Example, when programming in Java with Eclipse:

« ared X if you apply an operation to the wrong data type

* a menu suggesting appropriate operations for a data type

T Universit : :
@fGlaSgOWY The Era of Communication

vvvvvvvvvvvvvv

Computing has changed. We now depend on systems of
communicating programs:

« web applications and web services
 mobile apps and their connections to servers
* cloud computing

« data centres

Even within a single computer, further speed increases will
depend on communicating many-core programs.

§f University The Era of Communication
J of Glasgow

A new slogan for the era of communication:

programs + communication structures = systems
Communication structures are essential for the design of systems.
Kohei Honda suggested codifying communication structures

as session types, so that they are available to programming
languages and tools.

[Honda 1993; Takeuchi, Honda & Kubo 1994;
Honda, Vasconcelos & Kubo 1998].

Kohei Honda

&7 of Glasgow

Structured communication via session types

' yf(g‘gigég Session Types: The Original Concept

Type-theoretic specification of communication protocols,

so that protocol implementations can be verified by static
type-checking.

Maths server protocol (server side)

T =&{ plus: ?int. ?int. lint. T,
neg: ?int . lint . T,
quit: end } S = dual(T)

Maths server protocol (client side)
S =e{plus: lint.lint. ?int. S,

neg: lint. ?int . S,
quit: end }

M Universit ' : '
7l Session Types: Assumptions

vvvvvvvvvvvv

Assume that we are working in a concurrent or distributed system,
with point-to-point communication channels (like pi-calculus).

Channels are bi-directional (in practice they may be implemented
by pairs of uni-directional channels).

Communication may be synchronous (i.e. sender and receiver

both block), or asynchronous with message queues (only receiver
blocks).

M Universit ' i 1E
Ofo; Sgovz Session Types in Detail: Maths Server

external choice

receive send

T = &{ plus: ?int. ?int. lint. T,
neg: ?int . lint . T,
quit: end }

recursion

three options

Ef?ﬁﬁiﬁé@ Session Types in Detail: Maths Client

internal choice

send receive

lus: lint . lint . ?int . S,
neg: lint. ?int . S,«
quit: end }

recursion

three options

M Universit : _ !
OfGlangVX Imperative Pseudocode: Maths Client

S = @ plus: lint.lint.?int.S,
neg: lint.?int.S,
quit: end }

request connection ¢ : S from maths.org:75
select pluson c

send2onc

send3onc

receive x from c

select quiton c

compute with x

ey Static Typechecking: Maths Client

S = @ plus: lint.lint.?int.S,

- lint ?j
ne_g' nt.” mt'S’ assume a trusted registry
quit: end } of typed services

request connection ¢ : S from maths.org:75
only select is allowed —>Select plus_on ¢

send 2 N must be plus, neg or quit
only send is allowed | send 3 C
receive xfrom c must be int

only receive is allowed select quit on c

x must be used as int

compute with x

after this point, c
cannot be used

E}féﬁ%gé% Static Typechecking: Maths Client

S =e{plus: lint . lint. ?int. S,
neg: lint. ?int. S,
quit: end }

request connection ¢ : S from maths.org:75

c:S —>
o select pluson c
c:lint.lint.?int.S —mmm™>
send2onc
c :lint.?int.S >
_ send 3onc
c: ?int.S —> .
receive x from c
c:S —> .
select quiton c
c:end ->

compute with x

Imperative Pseudocode: Maths Server

' Umversuy

of Glasgow

T = &{ plus: ?int. ?int . lint . T,
neg: ?int . lint. T,

quit: end }
accept connection c : T on port 75

label start:
offer on c {

plus: receive x from c
receive y from c
send x+y on c
goto start

neg. receive zfromc
send-zonc
goto start

quit: break

University Static Typechecking: Maths Server

of Glasgow

T = &{ plus: ?int.?int.lint.T,
neg: ?int.lint.T,
quit: end }
accept connection c : T on port 75
label start:
only offer is allowed ——> offer on ¢ {
plus: receive x from c
receive y from c
send x+y on c
goto start
receive z from c
send —zonc
— goto start
quit: break

all options must be present

eg:

looping is only allowed when the type
of ¢ has returned to its initial state

“goto statement considered typeful” \

or use a recursive function }

gj%f(%ﬁ;gé% Unique Ownership of Channel Endpoints

It is essential that each endpoint of a channel is used by only
one component of a system.

Client1
\select plus
/select neg
Client2

one select would go first, then the other would be incorrect:
race condition

Server

T Universit ' :
Ofo;SgOV‘é Linear Typing

vvvvvvvvvvvv

To guarantee unique ownership of channel endpoints, session
type systems use standard techniques of linearity [Girard 1987].

Specific techniques for linear type systems may be based on e.g.
[Kobayashi, Pierce & Turner 1996] for pi-calculus, or
[Mackie 1994] for functional languages.

Unique ownership is also guaranteed in the presence of
delegation, i.e. sending a session-typed channel in a message.

A line of work following [Caires & Pfenning 2010] develops the
connection between session types and linear logic, following the
Curry-Howard / propositions as types paradigm.

University Session Typing Guarantees...

o of Glasgow

vvvvvvvvvvvv

No race conditions:
never two sends in parallel on one channel endpoint, etc

No communication mismatch:
if there is a send then there is a receive in parallel, and
the message types match

Session fidelity:
the sequence and types of messages on a channel match
the type of the channel

But deadlock-freedom is not guaranteed in general.

Proofs are based on subject reduction and considering the
evolution of types at each reduction step.

University The POP3 Protocol (RFC 1939)

Y of Glasgow

+OK string
START — = AUTHORIZATION

—ERR string

USER string +OK string PASS string

AUTHORIZATION _-----= H ______
| \/

QUIT! ~ERR string Quir, tOKstin
+OK Strin% OK stin TRANSACTION
END END

+OK int x int

STAT

QUIT: 4+OK string string

+0OK stn'n%

END

client message
——————— =

Server message

—ERR string -

' UmV@fSltY The POP3 Protocol as a Session Type
of Glasgow

S = START, A= AUTHORIZATION, T = TRANSACTION

S = e{ok : IStr . A}

A = &{quit : e{ok : IStr . end},
user : ?Str . e{error : 1Str . A,
ok : 1Str . &{quit : ®{ok : IStr . end},
pass : ?Str . e{error : I1Str . A,
ok : IStr. T}}}}

T = &{stat: ®{ok: !(IntxInt). T},
retr: ?Int.e{ok: IStr.IStr.T,
error: 1Str. T},

quit : ®{ok : !Str . end}}

™ University

B 57 Glasgow The Growth of Session Types as a Field

<+

vvvvvvvvvvvv

Research on session types has developed in many directions.

Incorporation in various programming language paradigms.
Curry-Howard correspondence.

Runtime monitoring as a complement to static checking.
Generalisation from two-party to multi-party protocoils.
Gradual typing and blame.

Connections with automata theory, time, and model-checking.

Language implementation and tool development.

N of Glasgow

Multi-party session types

gj%féﬁgé% Multi-Party Session Types

vvvvvvvvvvvvvv

Honda, Yoshida and Carbone [2008] developed a theory of
multi-party session types, generalising from the original

two-party (binary) theory.

Multi-party session types provide a methodology for the design of
communication-based systems, and there is an increasing
amount of tool support.

Nobuko Yoshida Marco Carbone

E}%ﬁ%@%@ Example from HYC 2008

< — - [Link] — — P/« — - [Link] — —
title -
<¢—— quote quote >
uote div 2 — . .
! " informal design
- ok ~--------
<—— address
date > branch
€------ quit --------
\ v \/
1 Bl—S: s(string).
2 S —>Bl: b{int).
3 S—B2: byint).
4 Bl — B2:by(int). g|0ba| type
5 B2—>S: s{ok:B2 — S: s(string).S — B2: b (date).end,

quit : end}

M Universit
of Glasgow Example from HYC 2008

Bl — S: s(string).

S —> B1l: b(int).

S — B2 : by(int).

B1 — B2 : b (int). g|0ba| type

B2 —» S: s{ok:B2 — S: s({string).S — B2: b (date).end,
quit : end}

DN =~ W -

endpoint projection, subject to
consistency conditions

Buyer 1. Sl<string> ; S?<int> ; B2!<int>
Buyer 2: S7?<int>; B1?7<int>; Se{ ok : Sl<string> ; S?<date> ; end, quit:end}

Seller : B1?<string> ; B1!<int>; B2!<int> ; B2&{ ok : B27<string> ; B2!<date> ; end ,
quit : end }

local types

Ef%ﬁig%% Example from HYC 2008

vvvvvvvvvvvvvv

Global types are expressed in Scribble [Honda et al. 2007 — 2016]
and there is a toolset for consistency checking, projection etc.

Local types are used for typechecking in an endpoint language,
using further tools to translate between Scribble and each language.

E.g. the Mungo / StMungo tools for Java [Gay et al. 2016-2021]

7 University
Of Glasgow But...

What about failure? Fault-tolerance? Reliability?

4f University What about failure? What about reliability?
J of Glasgow

Most of the literature on session types ignores failure.

Even if a whole closed system is being designed with types,
it's unrealistic to ignore hardware and communication failure.

Even more realistically, systems are open and components must
Interact with external non-designed agents.

The Stardust project (2020-2024) aims to combine the structuring
mechanism of session types and the reliability mechanism of the
actor paradigm.

i Efr(l}lﬁgé% The Stardust Project

Session Types for Reliable Distributed Systems

Funded by UK EPSRC 2020-2024.

University of Glasgow (SG, Phil Trinder)
University of Kent (Simon Thompson, Laura Bocchi)
Imperial College London (Nobuko Yoshida)

Actyx

Erlang Solutions Ltd
Lightbend

Quviq

Tata Consutancy Services ﬁ STARDUST

' Umversuy Actor Languages

of Glasgow

vvvvvvvvvvvvvv

Originate from the work of Carl Hewitt and Gul Agha.

Actors have private state, communicate by message-passing,
respond to incoming messages to determine actions.

Carl Hewitt Gul Agha

of Glasgovz Erlang

vvvvvvvvvvvvvv

The best-known actor language is Erlang.

Originally designed for scalable and reliable (99.9999% availability)
telecommunications software.

Reliability is achieved by timeouts and
supervision.

Supervision means detecting failure and
taking action, e.g. restarting an actor.

Usually failure is detected by timeouts.

Joe Armstrong

T Universit '
BT A Session Types and Erlang

vvvvvvvvvvvvvv

One of our aims is to develop a session type system for Erlang.

« Language extension or external tool?

 How do we adapt session types from channels to mailboxes?
 How do we combine static and dynamic typing?

« How can type information guide the design of supervision trees?

« What properties can we prove about well-typed systems?

UmvefSltY Preliminary work on session types and actors
7 of Glasgow

Multiparty Session Types for Safe Runtime
Adaptation in an Actor Language

Paul Harvey!
Rakuten Institute of Technology
paul@paul-harvey.org

Simon Fowler!
School of Computing Science, University of Glasgow
Simon.Fowler@glasgow.ac.uk

Ornela Dardha

School of Computing Science, University of Glasgow
Ornela.Dardha@glasgow.ac.uk

Simon J. Gay
School of Computing Science, University of Glasgow
Simon.Gay@Qglasgow.ac.uk

B e
of Glasgovz Overview

vvvvvvvvvvvv

« Adaptive software is increasingly important for pervasive
computing.

« Adaptation includes discovering, replacing and communicating
with software components that are not part of the original system.

 Ensemble is an actor-based language with support for adaptation.

* We designed and implemented EnsembleS by adding
session types to Ensemble.

« Static type checking guarantees safe runtime adaptation.

ofGlangVB\; EnsembleS language features

* Imperative actor-based language.

 Channels instead of mailboxes.

« Support for adaptation.

M Uni 1t : :
BT A Adaptation in EnsembleS

vvvvvvvvvvvvvv

« Discover: locate an actor with a given interface and
satisfying a given query.

 Install: spawn a new actor instance at a specified stage.
« Migrate: move an executing actor to a different stage.

* Replace: replace an executing actor with a new
actor instance with the same interface.

* |nteract: connect to another actor and communicate with it.

'Umvefslt‘/ Adaptation in EnsembleS, with session types
of Glasgow

vvvvvvvvvvvvvv

« Discover: locate an actor with a given interface and
satisfying a given query and a given session type.

* Replace: replace an executing actor with a new
actor instance with the same interface
and the same session type.

* |nteract: connect to another actor and communicate with it,
following its session type.

EnsembleS uses multi-party session types.

The implementation needs a trusted registry of typed actors.

O© 00O Ol WwN

M Universit
of Glasgovg

// session and interface definitions
actor fastA presents accountinglI
follows accountingSession{
constructor() {}
behaviour{
receive data on input;
quicksort(data);
send data on output;
}
}

actor slowA presents accountingI
follows accountingSession{
pS= new property[2] of property("",0);
constructor() {
pS[O]:= new property("serial",h823);
pS[1]:= new property("version",2);
publish pS;
}

type accountingI is interface(
in { Client, int[] } input;
out { Client, int[] } output;

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

Replacement in EnsembleS

behaviour{
receive data on input;
bubblesort(data);
send data on output;

Pl
query alpha() { $serial==823 && $version<4; }

actor main presents mainI {
constructor() { }
behaviour {
// Find the slow actors matching query
actor_s = discover(accountingI,
accountingSession, alpha());
// Replace them with efficient versions
if(actor_s[0].length > 1) {
replace actor_s[0] with fastA();
}
1}

type accountingSession is session(
data(int[]) from Client;
data(int[]) to Client;

T Universit
ofGlasgovz Results about EnsembleS

vvvvvvvvvvvv

« We have formalised a core language with a type system and
operational semantics.

* A correctly-typed system satisfies the following properties.

« Type safety: the behaviour of every actor matches its
session type, and communication never has a type mismatch.

* Progress: if a system stops executing then either:
- every actor is either terminated or waiting for input, or:
- there i1s an unmatched discover operation.

ofGlang\z Conclusion

vvvvvvvvvvvv

« Session types are a programming language mechanism for
specifying and checking communication protocols.

* The field of session types is beginning to address issues of
reliability and fault-tolerance.

* QOur key idea is to combine session types and actor-based
programming languages.

« The Stardust project has a great set of academic researchers
and industrial partners.

o/ of Glasgow

S

THANK YOU

